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ABSTRACT
In SIP services, back-to-back user agents (B2BUAs) are pow-
erful but difficult to program correctly. StratoSIP is a high-
level, domain-specific language for programming SIP B2BUAs
safely. This paper describes the four major abstractions on
which the language is based. It explains how each abstrac-
tion is used in programming, and how it is implemented
in SIP. Because the abstractions are derived from the Dis-
tributed Feature Composition (DFC) architecture, Strato-
SIP programs compose easily with each other at runtime.
The implementation of StratoSIP runs in SIP Servlet con-
tainers.

1. INTRODUCTION
SIP (IETF RFC 3261) is the dominant protocol used for

IP-based multimedia systems. User agents,, which are usu-
ally SIP clients running on endpoint devices, may initiate
and terminate multimedia calls. A back-to-back user agent
(B2BUA) is a software process containing two or more user
agents back-to-back, as shown in Figure 1. A B2BUA is
often hosted by an application server in the signaling path
between endpoints. A B2BUA is a powerful SIP entity be-
cause it acts as user agent on each dialog that it participates
in, which means that it can perform all call-control func-
tions.
B2BUAs can be used to implement SIP-based telecom-

munication services in a way that is both modular and com-
positional. This is not a property of arbitrary B2BUAs,
but rather of those designed and composed according to the
principles of the Distributed Feature Composition (DFC)
architecture [6]. The DFC architecture is a proven technol-
ogy for rapid development of high-quality, easily modifiable
telecommunication services [14].
This paper reports on our progress toward making the

benefits of DFC available to SIP programmers. StratoSIP
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Figure 1: A typical back-to-back user agent.

(“SIP at a very high level”) is a new language for program-
ming B2BUAs, designed specifically for this purpose. It is
based on a set of abstractions adapted from DFC. The ab-
stractions do not restrict what a B2BUA can do, and they
support DFC-style modularity and composition.
There are several reasons why SIP programmers may have

avoided B2BUAs in the past. First, there are many motiva-
tions for deploying services in SIP endpoints, and B2BUAs
are usually associated with application servers in the net-
work. Our implementation of B2BUAs runs well in end-
points, however, so there is no need to avoid them to keep
services in endpoints [3].
Second, most network services are implemented as SIP

proxies, which are restricted in their behavior but can nev-
ertheless perform a wide range of routing functions. From
a broader perspective, routing services are the easy ones.
There are many other valuable services that can only be im-
plemented in B2BUAs because they require initiating and
terminating calls, multi-party control, and media control.
Also, this paper will show that, when modularity and com-
position are supported, some services that could formerly
be implemented in proxies must now be implemented as
B2BUAs.
Third, SIP B2BUAs are inherently complex and there-

fore difficult to program. For this reason, the StratoSIP
abstractions hide most of the details of SIP signaling, so
that programming B2BUAs becomes a relatively easy task.
The design of these abstractions is based on long experience,
and they have been subjected to extensive formal modeling
and verification. This makes StratoSIP programming safe
as well as easy.
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Figure 2: A DFC usage with three feature boxes. A, B, and C are endpoint devices.

Fourth, B2BUAs appear to present a danger of disrupting
end-to-end signaling. Our implementation of StratoSIP is
designed to preserve correct end-to-end behavior of SIP sig-
naling (except when that disruption is an intentional effect
of the B2BUA’s function and purpose). Like the other sig-
naling properties of our implementation, important aspects
of end-to-end correctness have been modeled and verified.
The main focus of this paper is the abstractions in Stra-

toSIP that make B2BUAs easy and safe to program, and
make them composable modules within the DFC architec-
ture. Section 2 introduces the most relevant aspects of DFC.
Section 3 gives an overview of StratoSIP programs, while
Sections 4 through 7 present the four principal abstrac-
tions in StratoSIP. Section 8 describes our implementation
of StratoSIP, which runs in SIP Servlet containers. The re-
mainder of the paper discusses related and future work.

2. MODULARITY AND COMPOSITION IN
THE DFC ARCHITECTURE

Modularity and composition in StratoSIP are adapted
from modularity and composition in the Distributed Fea-
ture Composition (DFC) architecture. This section gives a
brief overview of how DFC achieves these goals.
The unit of modularity is a feature, which can be any

increment of functionality that modifies or enhances ba-
sic connection service between two telecommunication end-
points. According to the DFC architecture, in the presence
of features telecommunication service is provided by a graph
called a usage, as shown in Figure 2. The nodes of a usage
are feature boxes, and each feature box is a concurrent soft-
ware process that implements a separate feature.
The edges of a DFC usage graph are complete internal

calls providing two-way, reliable, FIFO signaling connec-
tions. This means that each feature box is a signaling end-
point for the internal calls that it participates in. The word
“call” in internal call emphasizes the fact that signaling
along each edge conforms to a protocol that is based on
common telephony protocols. The word “internal” is used
to distinguish an edge in the graph from the informal, end-
to-end meaning of “call” in telecommunications. A DFC
process sends a setup message to initiate an internal call.
The DFC messages include status indicators, the two most

important of which are avail and unavail. The avail message
travels from the callee or receiving end of a call to the caller
or initiating end. It indicates that the entity identified by
the target address is available for communication. Its dual

is unavail, which indicates that the targeted entity is not
available.
The DFC messages also include messages that set up and

tear down media channels between endpoints connected by
signaling paths.
The goals of DFC are modularity and composition. Mod-

ularity is achieved when a feature can be designed and im-
plemented independently of all other features, and when fea-
tures can be added to a system or deleted from it without
changing other features. Composition is achieved when all
the features applicable in a situation work properly in a co-
operative and synergistic way.
A well-designed DFC feature box has the properties of

transparency, autonomy, and context-independence. The next
few paragraphs define these properties and explain how they
contribute to modularity and composition.
Transparency means that when a feature box is not ac-

tively performing its intended function, it is unobservable
by other boxes in the graph. It is acting as an identity ele-
ment. Transparency supports composition by ensuring that
an inactive feature does not interfere with active elements
in a usage.
Autonomy means that when a feature needs to perform

some function, it does so without help from other boxes. A
DFC feature box can act autonomously because it sits in a
signaling path between endpoint devices, where it can ob-
serve all the messages that travel between them. Because it
is a protocol endpoint, it can absorb or generate any mes-
sages that it needs to. It can even reconfigure the usage
by tearing down some internal calls and setting up others.
Autonomy supports modularity by making a feature box
self-contained.
Context-independence means that a feature does not know

or need to know what is at the other ends of the internal
calls it is participating in—those calls might lead to end-
point devices or to other feature boxes. This is essential
for composition because it means that a box reacts identi-
cally to a stimulus from an endpoint device or from another
feature box.
For example, consider the Record Voice Mail (RVM) and

Quiet Time (QT) features serving endpoint device B, as seen
in Figure 2. RVM is initially transparent. It reacts to un-
avail by placing a new call to a voicemail resource, and con-
necting the caller with the resource so that the caller can
record a voice message. When Quiet Time is enabled, as
soon as it receives an incoming call, it connects the caller to a



media server that implements an interactive voice-response
session. The server announces that the subscriber wishes
not to be disturbed unless the call is urgent, then prompts
for a touch-tone choice. If the caller says the call is urgent,
then QT disconnects the server, places a transparent out-
going call, and goes permanently transparent. If the caller
says the call is not urgent, then QT sends unavail upstream,
tears down its incoming call, and terminates itself.1

Either of RVM and QT behave correctly and make perfect
sense acting alone. They also behave well when composed,
because of context-independence. If RVM receives an un-
avail from downstream, it does not know or care whether
that message was generated by the callee’s endpoint device,
QT, or some other feature box. In all cases it gives the caller
an opportunity to record a voice message.
A DFC usage is assembled dynamically and evolves over

time. The mechanism for assembling usages is the DFC
routing algorithm, executed by a DFC router. A DFC router
has a different purpose from IP routers. The purpose of an
IP router is to find the destination of a message, while the
purpose of a DFC router is to insert feature boxes in the
paths of setup messages.
Each time a box sends a setup message, that message

goes to a DFC router that chooses a box to receive it, and
forwards the setup to the receiving box. Then the receiving
box sends an acknowledgment directly to the sending box,
and an internal call is formed between them.
Every continuous routing chain from one endpoint to an-

other contains a source region and a target region. The
source region comes first; it contains feature boxes work-
ing on behalf of the source address in its role as caller. The
target region contains feature boxes working on behalf of the
target address in its role as callee. Each address subscribes
to some (possibly empty) set of feature box types in each
region. In the figure, the routing chain from A to B has Call
Waiting (CW) in the source region of A, and RVM and QT
in the target region of B.
A simple routing chain from endpoint to endpoint begins

when the calling endpoint creates a setup message with the
new method and sends it to a DFC router. To continue the
chain, a feature box takes a setup message it has received
and applies the continue method to it. The continue method
returns a setup message that is suitable for continuing a
chain rather than starting a new one, and the box then sends
it to a DFC router.
Correct composition of features depends on assembling

the boxes of a region in the correct order. For example,
RVM and QT only interact correctly if RVM comes first.
This order is governed by a precedence relation in router
data.
Feature box types fall into two categories: free and bound.

When a DFC router is working on a setup message and
selects a free box type as its destination, the router creates
a new feature box (program object) as an instance of its
type. Thus each free feature box is a transient, anonymous
instantiation of its type. Bound feature boxes are different
because, for each address subscribing to a bound feature box
type (in either region), there is at most one instance of that

1Note that usages are dynamic, evolving as the features per-
form their functions. Thus any picture of a usage is a snap-
shot. Figure 2 is only accurate with respect to A and B after
QT places a transparent outgoing call and before this call
fails or is disconnected.

box type at any time. When a router is working on a setup
message and selects a bound box type as its destination,
if there is currently an instance of the bound box for that
address, then the setup goes to the existing instance.
In Figure 2, CW is a bound box type. As often happens,

A subscribes to it in both source and target regions, because
Call Waiting should be applicable to both outgoing and in-
coming calls. Because CW is bound, C’s call to A is routed
to this instance in A’s target region. This allows A to use
CW to switch between B and C if desired. The routing chain
from C to A has no features in the source region of C, and
CW in the target region of A.
There are other aspects of DFC routing, but this brief in-

troduction should be sufficient because this paper focuses on
signaling. Taken as a whole, the DFC routing algorithm sup-
ports transparency, autonomy, and context-independence of
feature boxes.

3. STRATOSIP PROGRAMS
A StratoSIP program defines a SIP B2BUA that approx-

imates a DFC feature box. A DFC internal call becomes an
invite dialog in SIP.
The implementation of StratoSIP requires only the SIP

messages used in the general SIP standard RFC 3261. Stra-
toSIP also handles some additional message types, as dis-
cussed in Section 7.
Semantically, a StratoSIP program is a sequential, deter-

ministic finite-state machine. Figures 3 and 4 are StratoSIP
programs in graphic form. A black dot is an initial state,
while the labeled states are stable states. The program im-
plementation has an input queue for each established invite
dialog, and one for incoming invite messages that establish
new dialogs.
Each explicit state transition is labeled by a guard, op-

tionally followed by a slash and a list of actions. The ex-
ecution cycle of a StratoSIP program is as follows. In a
quiescent state, if there is a message in one or more input
queues, the program chooses among the nonempty input
queues. It takes a message from the chosen queue and finds
the unique transition—which may be explicit or implicit—
whose guard is made true by the message. It then executes
that transition, which may entail a state change and many
actions, both explicit and implicit. When all of these actions
have been performed, the program becomes quiescent and
is ready to process the next input.
Note that this cycle definition automatically makes the

program input-enabled, which means that it can read and
process any message from any input queue at any time. We
add to this definition the constraint that the language im-
plementation must choose fairly among the input queues.
With this constraint, we have a guarantee that there is no
deadlock or livelock among B2BUAs.
The Attended Transfer (AT) feature enables a trainee

agent in a customer-service center to transfer a customer
call to a more experienced agent. The Attended Transfer
program (Figure 3) is used in examples throughout this pa-
per. Initially the feature receives an invite from a customer,
labels the dialog it initiates c, and continues it transparently
to a trainee agent t. Once customer and trainee are Talking,
the trainee can use a Web interface to move into a Consult-
ing state, in which the customer is on hold and the trainee
is talking to an expert agent (e). After consulting with the
expert, the trainee can resume talking to the customer, or



e <−> t

ui!Abandoned
ended(c) /

ui?Consult /

SettingUp

ui!Talking(t.src)
succeeded(t) /

e = rev(t,dest=expertAddr)

Abandoned

ui?Resume /

end(e)

c, e <−> t
Consulting

ended(t)

Transferred
c <−> e

ui?Transfer /
end(t)

c <−> t

Talking
c <−> t

ended(e)

rcv(c) / t = ctu(c)

Figure 3: StratoSIP program for the Attended
Transfer feature.

transfer the customer to the expert. If the customer gets
tired of waiting and hangs up during the consultation, then
trainee and expert are informed, and enter an Abandoned
state in which they are still talking.
The Trainee Monitoring (TM) feature allows the supervi-

sor of a trainee agent to listen to the trainee’s conversations
and whisper advice. The Trainee Monitoring program (Fig-
ure 4) is also used in examples. Initially the customer and
trainee are talking normally, just as in AT. If the trainee’s
supervisor (s) calls in, then the program goes to aMonitored
state in which all three parties are connected to a conference
bridge, so that the supervisor can listen and whisper to the
trainee. If the supervisor hangs up, then the customer and
trainee are still talking; if the customer hangs up, then the
supervisor and trainee are still talking.
Note that a Trainee Monitoring box must be a bound

box, because only a bound box can receive an invite after
the invite that instantiates the box. An Attended Transfer
box is a free box.
StratoSIP is written in textual form, with graphic ver-

sions of programs being generated automatically. This paper
makes no attempt to present the complete language syntax
or semantics. The language aspects that are omitted or ab-
breviated are ordinary aspects of programming languages
such as declarations, control structures, predicates, and ma-
nipulation of data structures such as messages. StratoSIP
has embedded Java syntax for access to Java data struc-
tures and APIs. For comparison, the textual form of the
AT program is given in the appendix.
StratoSIP is a descendant of Boxtalk [16], which was a

language designed for DFC but never implemented.

ended(c) /

rcv(s)[s.src==supervisor] /

sc = new(dest=conference)

cc = new(dest=conference);
tc = new(dest=conference);

PostMortem

end(cc);

end(tc);
end(sc)

end(cc);
ended(s) /

end(sc)
end(tc);

s <−> t

s<−>sc
c<−>cc,t<−>tc,

Monitored

NotMonitored
c <−> t

rcv(c) / t = ctu(c)

Figure 4: StratoSIP program for the Trainee Moni-
toring feature.

4. ACTIVE DIALOGS
From the perspective of a StratoSIP program, an active

dialog is an invite dialog that exists and can be observed and
manipulated by the program. In its initial state, a StratoSIP
program has no active dialogs.
An active dialog always begins when the program sends

or receives an initial invite message. The program receives
an invite through the guard rcv(dialog1), which becomes
true when and only when the invite message arrives. The
unique identifier of the active dialog is assigned to the dialog
variable dialog1, where it acts like a pointer to the dialog.
The program can send an initial invite through an action

such as dialog2 = new(dest) or dialog2 = ctu(dialog1). In
both of these actions dialog2 is the variable for the new di-
alog. The operation name new or ctu refers to the new or
continuemethod of the DFC routing algorithm, respectively,
used to create the invite. The method ensures that the mes-
sage is correctly formed for a DFC application router. The
argument dest is the destination address (SIP Request URI)
in the invite resulting from the new action. The argument
dialog1 is the variable pointing to the dialog whose invite is
continued to make the invite resulting from the ctu action.
At all times, the source (SIP From) and destination ad-

dresses of the invite that began a dialog can be referred to
as dialog.src and dialog.dest, respectively.
Both the AT and TM programs begin with a transition

labeled rcv(c) / t = ctu(c), where c points to the dialog
from the customer, and t points to the dialog to the trainee.
These transitions end in stable states annotated with the
dialog variables c and t. In StratoSIP every stable state
must be annotated with the variables pointing to the dialogs
that are active in that state. Nothing is more important for
the programmer to remember than what dialogs are active
in any state.



In addition to rcv, new, and ctu, the only other way
to create an active dialog is the operation rev for reverse.
Reverse is a DFC routing method similar to continue, except
that it is used when the new dialog has reversed roles with
respect to the dialog it is derived from. In AT, the dialog
to the consulting expert is derived from t with reverse. In
t the trainee is the destination of the dialog, while in e the
trainee is the source of the dialog.
In StratoSIP the four operations that create active dialogs

all appear to be atomic and instantaneous. The implemen-
tation of rcv immediately replies with a 183 message to
establish the dialog, and does not wait while the final re-
sponse to the received invite is being determined (the final
response is handled by other StratoSIP operations). The
implementations of the dialog-initiating operations send the
invite, but do not wait for a final response. Atomic, instan-
taneous operations keep programming simple, because the
programmer does not need to think about concurrency.
The operations that destroy active dialogs are also atomic

and instantaneous from the program perspective. The guard
ended(dialog1) becomes true when the implementation re-
ceives a message indicating that the other end of dialog1
wants it to end. Depending on the SIP state of the dialog,
this might be a cancel or bye request, or any failing final
response to the initial invite. If ended(dialog1) is followed
by a predicate such as [BusyHere], then the entire guard
becomes true only if the message received is the matching
SIP final response 486. The StratoSIP implementation au-
tomatically generates any required response to the message
that makes ended true, for example 200 OK in response to
a bye request.
To end an active dialog, a programmer uses the action

end(dialog1). Depending on the SIP state of the dialog, this
might entail sending a cancel or bye request, or a failing final
response to the initial invite. If end(dialog1) is followed by a
message modifier such as [Unauthorized], and if the action
is implemented by sending a final response, then the final
response is selected by the message modifier: 401. If a failing
response must be sent and there is no message modifier, the
default message type is 486.
After an ended guard or end action, the dialog is no longer

active and can no longer be manipulated through Strato-
SIP. The implementation automatically handles any cleanup
messages.
As further programming conveniences, StratoSIP has some

implicit transitions and actions that end active dialogs. First,
if a program for a bound feature box has a stable state with
no out-transition guarded by rcv, then that state has an im-
plicit self-transition rcv(unwanted)/end(unwanted). With-
out this implicit transition the program would not be input-
enabled.
Second, if a stable state with active dialog dialog1 has no

out-transition guarded by ended(dialog1), then it has an im-
plicit transition with this guard, entering the distinguished
terminal state in which the program has terminated.
Third, the terminal state has no active dialogs. If a tran-

sition enters the terminal state, then it has implicit actions
that end all remaining active dialogs. Because of the second
and third rules, the AT and TM programs need no explicit
transitions out of their Abandoned, Transferred, and Post-
mortem states.2

2Some programs need explicit transitions to the terminal
state. A transition to the terminal state can be found in

rcv(d)

d = rev(...)
d = ctu(...)
d = new(...)

succeeded(d)

d
Succeeded

d
Outgoing

end(d)

ended(d)

d

Incoming

Figure 5: The states and transitions of an invite
dialog in StratoSIP.

Figure 5 shows the major dialog states in StratoSIP, along
with the guards and actions that cause state transitions.
The guard succeeded(dialog1) is satisfied by the received
message first indicating that there has been success in reach-
ing the desired party. Commonly the message that makes
succeeded true of an outgoing dialog is a 200 OK in response
to the initial invite. In StratoSIP incoming dialogs can also
become succeeded, and messages other than 200 OK can
cause the state transition. These variations are explained in
Sections 5 and 6.
In AT, a transition guarded by succeeded(t) indicates

that the trainee is now talking to the customer. The transi-
tion sends a message to the trainee’s user interface (a Web
application). On receiving this information, the applica-
tion displays a Consult button for the trainee to click when
needed.
In AT, ui is a non-SIP message port allowing communica-

tion between the feature and its Web user interface. A pro-
gram can have any number of non-SIP message ports, which
look and act like active dialogs except that they are neither
created nor destroyed by dialog operations. AT also informs
the user interface when it enters the Abandoned state. The
messages Consult, Resume, and Transfer are sent by the user
interface because of mouse clicks in the trainee’s browser.
Satisfying the guard succeeded is equivalent to sending

or receiving an avail message in DFC. The equivalent to
unavail in DFC is a failure response to an initial invite, which
satisfies the guard ended.
Whenever a dialog is active, it is possible to send and

receive miscellaneous messages through the dialog, using the
syntax dialog1 ! messageType and dialog1 ? messageType
respectively. Section 7 will discuss this further.

5. COMPOSITIONAL MEDIA CONTROL
The state annotations in StratoSIP control media chan-

nels. If a state is annotated dialog1 <-> dialog2, which is
called a link between the active dialogs, then the implemen-
tation of the program attempts to create a media connection

Figure 8.
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between the endpoint devices to which dialog1 and dialog2
lead. If a state annotation contains dialog3 standing alone,
then the implementation of the program attempts to put me-
dia at dialog3’s endpoint device on hold. Holding means that
a media connection is established or not, according to the
choice made at the endpoint device, but even if a connection
is established no actual media packets are being transmitted.
StratoSIP assumes that a SIP message contains at most

one session descriptor. StratoSIP treats descriptors as wholes,
so a media connection between endpoints might include mul-
tiple channels transmitting several different media.
We say that implementation of a StratoSIP program “at-

tempts” to produce the desired media state, because no fea-
ture has unilateral control over media connections. Rather,
correct media control is a composition of the states and goals
of all the features in a signaling path. This is illustrated by
Figure 6, which shows what happens when a trainee’s ad-
dress subscribes to both AT and TM.
The figure contains four snapshots that occur in numbered

order. In Snapshot 1, AT is in its Talking state and TM is
in its NotMonitored state. The arrows show dialogs among
the customer C, the trainee T, and the two features. The
dotted lines within boxes are a graphic representation of the
links in the boxes’ current states. The dashed line represents
where there should be an actual audio channel, connecting
the endpoint devices along the shortest possible path.
In Snapshot 2, the trainee’s supervisor S has called in, and

TM is now in the Monitored state. There is a conference
server whose address is conference in the TM program. The
links within the TM program have changed, and the correct
media paths have changed along with them. In general,
assuming that all endpoint devices want media connection,
there should be a media connection between two devices if
and only if there is an unbroken path of dialogs and intra-

box links between them.
In Snapshot 3, the trainee has clicked “Consult” and AT

is in its Consulting state with new endpoint E (the expert).
The state in AT has new annotations (the dot shows that C
is on hold) and the correct media connections have changed
with the annotations. This shows clearly that correct media
behavior is not determined by one feature, but rather by the
composition of both of them.
Note that the implementation of AT works concurrently

with all dialogs to effect the changes from Snapshot 2 to
Snapshot 3. If it did one change at a time, the transition
would be much slower, and there might be undesirable in-
termediate media states.
In Snapshot 4, the trainee has clicked “Transfer,” which

caused AT to change media links and end its dialog t. Be-
cause this is the same as TM’s dialog c, TM is now in its
PostMortem state.
In [15] we argue that the two media-control primitives

link and hold are sufficient for a wide range of applications.
State annotation is all that a StratoSIP programmer does
to control media for his application. The implementation of
a StratoSIP program automatically performs compositional
media control, so that the actual media channels are correct
regardless of how many features are in the signaling path.
They also work correctly when the endpoint devices alter
media channels by issuing re-invite messages.
Note that the implementation of an annotation change

must work correctly regardless of the state of media sig-
naling when the change occurs. Multiple features and end-
points may be attempting changes concurrently. A nervous
trainee’s rapid clicking may initiate a change before the pre-
vious change has been completed. The tremendous com-
plexity of these situations in SIP means that it would be
imprudent to trust an implementation without formal anal-



ysis and verification.
Achieving correct compositional media control is no small

task. Our implementation is the culmination of many years
of work on this problem. In [15] we specified the problem
formally in temporal logic, showed a solution, and partially
verified the solution using model-checking. This solution
is relatively simple because it uses a signaling protocol de-
signed to make composition easy.
In [4] we presented a quite different algorithm that satis-

fies the same specification but with SIP signaling. This al-
gorithm uses SIP in the third-party call-control style of RFC
3725. It has also been partially verified by model-checking.
This is the algorithm for compositional media control built
into StratoSIP.
The StratoSIP implementation of media control hides from

the programmer all messages that carry session descriptions,
which are the messages in invite and re-invite transactions.
The implementation handles these messages automatically,
doing whatever is necessary to match the current state an-
notations, as described in [4]. The main exception to the
hiding is that a StratoSIP program has access to the non-
media aspects of initial invites, through the operations that
create dialogs.
In AT, when t receives a message causing that dialog to

enter the succeeded state, the implementation will send a
message with the same semantics to c, and c will also en-
ter the succeeded state. This is another result of the link
between t and c in AT.
Figure 6 also illustrates the role of precedence in govern-

ing feature interaction. If the order of the features were
reversed, then when AT was in its Consulting state and TM
was in itsMonitoring state, the supervisor would not be able
to hear or join the conversation between the trainee and the
expert. Clearly the precedence order in the figure causes the
features to interact in a better way.

6. EARLY MEDIA
In SIP, “early media” is media flow before the callee end-

point device has sent 200 OK indicating that the callee is
present.
Most discussions of early media, for example RFC 3960,

assume that the source of early media is the same as the
source of non-early media, namely the callee’s endpoint de-
vice. Often, however, a media channel is used for control
purposes. Telephony features use the audio channel for get-
ting information from the caller about how to handle the
call, for authenticating the caller (as opposed to authenti-
cating the device that the caller is using), and for informing
the caller about the progress of the attempt to reach the
callee. None of these early-media streams can come from
the callee’s endpoint device, because the device has not even
received an invite yet.
Early media is a problem in SIP because an initial in-

vite transaction incorporates both negotiation of the first
media connection and signaling that the call has succeeded.
General-purpose early media, as described above, requires
separating the two. Early media is not a problem in DFC
because messages can be used to set up media channels at
any time; these messages are independent of status messages
such as avail and unavail.
How can we approximate this aspect of DFC in SIP? The

SIP Working Group showed some awareness of this prob-
lem by standardizing the reliable provisional response (RFC
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Figure 7: SIP signaling for early media.

3262) and the update message (RFC 3311) soon after the
second version of the SIP standard (RFC 3261). Although
it seems that these extensions should solve the problem, they
do not. The reason is that third-party call control relies on
the following property of invite transactions: If an invite
has no session description, it is soliciting an offer session
description from the recipient. If the recipient sends a suc-
cessful response, that response must carry an offer, and the
inviter then sends an answer session description in the ack
message. Because of this capability, the invite and the offer
can come from different ends of the transaction. Neither re-
liable provisional responses nor update messages allow this
freedom [13].
The StratoSIP approach is to use invite (and re-invite)

transactions for all media control, because that is the sim-
plest and most general solution [12]. To illustrate this so-
lution, Figure 7 shows the SIP signaling among two user
agents and a feature box with early media. The feature is
Quiet Time (QT), first introduced in Section 2.
In the figure, QT acts as the recipient of the initial invite

transaction, answering the offer to establish an early media
session (Messages 1 and 2). The ack is labeled empty because
it has no session description (Message 3).
When the early media session is over, if the caller has

indicated that the call is urgent, QT solicits an offer from
the UAS (Messages 4 and 5). Eventually the UAS receives
an answer in the ack message that completes the transaction
(Message 9).
Because the protocol states on its left and right are dif-

ferent, QT must continue the rightward invite transaction
(Messages 4, 5, and 9) with a different leftward re-invite
transaction (Messages 6, 7, and 8). These message transla-
tions illustrate the fact that programming a SIP B2BUA to
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act transparently often entails far more work than merely
relaying messages from side to side.3

With this approach, one problem remains. On receiv-
ing Message 2, the UAC or any feature between the UAC
and QT, such as Record Voice Mail (RVM), think that the
callee is now present. A human caller will quickly learn
the difference, but RVM will not, and will go permanently
transparent. As explained in Section 2, it is essential for
composition that RVM be triggered by call failure, which
is now impossible because 200 OK precludes failure of the
initial invite.
We solve this problem by attaching a preliminary tag (pre)

to any SIP message, such as Message 2, that is not meant to
convey final success of the initial invite transaction. This tag
decouples status from media signaling, as in DFC. If RVM
is to the left of QT in Figure 7, the 200 OK [pre] (answer1)

3It is also necessary to reformat the session descriptions be-
tween the two transactions, because the channel order in
offer2 may not match the channel order in offer1.

will not make succeeded in its dialog true, but the subsequent
re-invite will. Figures 8 and 9 show the StratoSIP programs
for QT and RVM.
On receiving an initial invite, QT initiates a new dialog

to a VoiceXML server, passing the server a URL pointing
to a script. (The URL is supplied by the message modifier
[QTscript].) In the Prompting state the VoiceXML server
is linked to the caller.4 Following the script, the server plays
an announcement to the caller and then prompts for a touch-
tone indicating whether the call is urgent. Unlike the Web
interface to the AT feature, the server returns the results to
QT in SIP info messages (RFC 2976).
Note that the link inside Prompting is written with a tilde

rather than a hyphen. (Ignore the state annotation after the
slash, which will be explained in Section 7.) This means it
is a prelink, which acts in all respects like a link except that
it does not propagate final success from dialog r to dialog i.
The prelink causes Message 2 in Figure 7 to have a pre tag.
If the caller says his call is urgent, then QT continues i

to o and enters a state with a normal link. Because of it,
dialog success from the right (Message 5, which has no pre
tag) propagates to the left (Message 6 has no tag).
A normal link propagates success but does not generate

it. If there were another feature with early media to the
right of QT, then Message 5 would have a pre tag, and so
would Message 6.
If the caller says his call is not urgent, then QT goes to

the distinguished terminal state, which is represented graph-
ically by a bar. An implicit action will end i by sending bye.
If RVM is to the left of QT, it experiences the end of dialog
o before o has succeeded. RVM interprets this as call fail-
ure, and is triggered to connect the caller with a voicemail
server.
StratoSIP also has two versions of the state annotation

for holding a dialog. If a state is annotated with a dialog
variable not linked to another dialog variable but preceded
by a tilde, the annotation is called a prehold. The difference
between normal hold and prehold is that prehold does not
generate success. In other words, if there is a transition with
guard rcv(dialog1) going into a state in which dialog1 is held
normally, then the implementation responds with a normal
200 OK. If a transition with the same guard goes into a
state in which dialog1 is preheld, then the implementation
responds with 200 OK with a pre tag.
When StratoSIP features interact with other SIP elements,

they receive no pre tags, and the pre tags they send are ig-
nored. This loss of information reduces the ability of fea-
tures to discriminate cases, but causes no other harm [12].

7. STATUS MESSAGES
The previous three sections show how the StratoSIP prim-

itives for active dialogs, compositional media control, and
early media automatically handle the SIP messages involved
in creating invite dialogs, destroying them, and controlling
media sessions. These are the request types invite, ack,
cancel, and bye, and all their final responses. None of these
messages is manipulated directly by a StratoSIP program-
mer.
We call other SIP messages status messages, and allow

4Note that QT’s dialog with the media server is not shown
in Figure 7. To give more detail, offer1 is sent to the server,
and answer1 is received from the server.



programs direct access to them. At the same time, Strato-
SIP has mechanisms for dealing with them implicitly if de-
sired. These implicit mechanisms are convenient, and they
also serve the important purpose of ensuring well-defined de-
fault handling of every message. Without them, StratoSIP
programs would not be input-enabled.
The current StratoSIP types for these messages are Ring-

ing or 180, Forwarded or 181, Queued or 182, Progress or
183, Info, InfoSuccess, InfoFailure, Options, OptionsSuc-
cess, and OptionsFailure. RFC 3261 says that options re-
quests and their responses can occur within invite dialogs.
The provisional responses above are all unreliable.
Register and message requests are not included in this list

because they do not belong in invite dialogs (RFCs 3261
and 3428, respectively). Subscribe and notify requests can
be sent within invite dialogs (RFC 2543), but, following
the advice of RFC 5057, StratoSIP does not allow it. Sub-
scribe, notify, refer, prack, update, and reliable provisional
responses will be discussed further in Sections 9 and 10.
Message types can be used as patterns in guards, with

optional predicates, such as r?Info[Urgent] in the QT pro-
gram. Message types can be used as constructors in actions,
with optional message modifiers, such as r!InfoSuccess(msg)
in QT. Every constructor for a response type takes as a
mandatory argument the message to which it is a response.
msg is a built-in StratoSIP variable, defined during the exe-
cution of a transition as holding the message that triggered
the transition.
Status messages can be handled explictly, as described in

the previous paragraph. If a status message is not handled
explicitly, then implicit mechanisms take over. Not surpris-
ingly, if a request or 18x message is received from a dialog
that is linked to another dialog, implicit handling of the
message is to forward it to the other dialog. If a request or
18x message is received from an dialog that is held, implicit
handling of the message is to save it in a forwarding queue
for that dialog. If two dialogs are newly linked, and one has
a nonempty forwarding queue, then the queued messages are
immediately forwarded to the other dialog.5

Implicit handling of status responses is different, because
responses must go where the requests came from. If a re-
ceived response corresponds to a request generated by this
feature, then the response is dropped. If a received response
responds to a request that came from a dialog, and that
dialog is still active, then the response is sent to that dialog.
Most of the time, the relationships among active dialogs

governing media and status are the same. Dialogs are status-
linked or status-held in the same way that they are media-
linked or media-held. For those states in which this is not
the case, an optional set of state annotations after a slash
indicates the status links and holds.
This is illustrated by the Prompting state of the QT pro-

gram. The two dialogs are media-linked but not status-
linked, because status messages from i are intended for the
callee, and status messages from r are intended for the fea-
ture. If the feature proceeds to the Transparent state, then
all queued status messages from i will be forwarded to o.

8. IMPLEMENTATION
SIP Servlet containers are application servers running SIP,

5There is an explicit action to clear the queue at any time,
which can be used when this is not appropriate.

HTTP, and converged applications. Figure 10 shows the
runtime environment of our implementation of StratoSIP,
which is designed for SIP Servlet containers. A SIP Servlet
container can run in the network or in an endpoint [3].

applications

E4SS runtime

StratoSIP runtime

StratoSIP programs

(running in endpoint or network)SIP application server

DFC application router

SIP Servlet applications

Web

JSR 289 SIP Servlet container

Figure 10: The runtime environment of our imple-
mentation of StratoSIP.

The current standard for SIP Servlet containers [7] pro-
vides for a deployer-supplied application router and an API
to it. This API was designed with DFC in mind, and a
DFC router is part of our ECharts for SIP Servlets (E4SS)
suite of open-source tools [5]. There are now several im-
plementations of the new SIP Servlet standard, including
open-source implementations, so that anyone can run a SIP
Servlet container equipped with a DFC application router.
Each StratoSIP program runs as a SIP servlet. Strato-

SIP is compiled into the ECharts language [1], which is also
part of our ECharts for SIP Servlets (E4SS) suite of open-
source tools. ECharts is compiled into Java, so all StratoSIP
programs become applications in Java.
The implementation of StratoSIP also includes a library

to support the four principal abstractions described in this
paper. The SIP signaling to implement the abstractions
has been modeled in Promela and partially verified using
the model-checker Spin. For intuition about how the mod-
els look and what kind of verification can be done, see the
similar work in [13].
As mentioned in Section 6, behavior that is transparent

at the level of StratoSIP abstractions is often far from trans-
parent at the level of the SIP implementation. Nevertheless,
we are sensitive to the expectation that end-to-end signaling
will be preserved by network elements. In our implemen-
tation we have taken care to preserve end-to-end signaling
whenever possible.
At the time of this writing we have a StratoSIP-to-ECharts

translator and have completed much of the StratoSIP li-
brary. Because we still lack runtime support for early me-
dia, handling of SIP status messages, and some other details,
not all StratoSIP programs will run yet. Examples of pro-
grams that can run now, for example Attended Transfer,
have been tested extensively with the testing tool KitCAT
[10]. We expect to complete implementation of the initial
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Figure 11: Attended Transfer and Trainee Monitoring implemented with refer, replaces, and join.

version of StratoSIP by the end of 2009.
Because a StratoSIP program runs as a servlet in a SIP

Servlet container, its performance depends primarily on the
container. We test routinely on at least one commercial and
one open-source container, in order to head off any perfor-
mance or integration problems that may arise.

9. RELATED WORK
Other high-level, domain-specific languages have been pro-

posed for programming SIP services. As a fairly representa-
tive sample, we consider LESS, CPL, SPL, and Appel.
LESS [11] is intended primarily for services in endpoint

devices. CPL ([9], RFC 3880) and SPL [8] are intended
primarily for services in proxies. All are focused on rout-
ing logic, with LESS and CPL being more convenient than
StratoSIP for constructing decision trees that govern how
initial invites are redirected or otherwise handled. None is
compositional, performs media control, or can be used to
program B2BUAs.
Appel [2] is a language for expressing policies. These poli-

cies often concern routing logic, but may extend beyond the
handling of initial invites to such area as mid-call conferenc-
ing. However, the programming capabilities of Appel are
similar to those of LESS, CPL, and SPL. They fall far short
of what would be necessary to implement features such as
mid-call conferencing.
Feature function alone is not the only reason for choosing

B2BUAs over proxies. For example, some readers may have
noticed that our Record Voice Mail feature is a B2BUA,
while most SIP implementations of redirection on failure (of
which RVM is a special case) are proxies. Proxies are simpler
than B2BUAs, so it might seem that making RVM into a
B2BUA is an unnecessary complication.
StratoSIP RVM, however, works well in composition with

other features, even features such as QT that use early media
that is not from the callee’s endpoint. A proxy RVM would
fail to work in this situation, first because success of the
early-media session would switch its function off, and second
because (once the initial invite had succeeded) it could not
initiate a new dialog with the voicemail server.

ECharts is a programming language featuring dynamic,
hierarchical, and concurrent finite-state machines [1]. ECharts
for SIP Servlets (E4SS) [5] offers a library of fragments,
which are SIP-oriented finite-state machines that can be
nested in the states of application programs.
Because we have used E4SS ourselves for some time, we

can make a direct comparison between StratoSIP and E4SS
programs. The top-level E4SS program for Attended Trans-
fer has 9 states and 14 transitions. It uses one application-
specific embedded finite-state machine and (directly or indi-
rectly) 8 library fragments. Although an application pro-
grammer need not write fragments, he must understand
them quite well. There are transitions at the top level, for
example, whose guards examine the current states down to 3
or even 4 levels of nesting. The E4SS program for Attended
Transfer does not control media compositionally, and it has
not been verified.
Our final comparison is not to another programming lan-

guage, but rather to another style of using SIP. As explained
in Section 5, StratoSIP is implemented using the third-party
call-control style of signaling (RFC 3725). Some SIP appli-
cations, particularly localized applications such as IP PBXs,
now implement switching of media channels with the refer
method and replaces and join headers (RFCs 3515, 3891,
and 3911, respectively). RFC 4579 explains how to do con-
ferencing with refer, replaces, and join.
Figure 11 shows how these capabilities can be used to

produce the same behavior as produced by Figure 6. To
explain the signaling behavior very informally, the change
from Snapshot 1 to Snapshot 2 is initiated by two major
messages: (1) S invites T, with a join header asking to join
T’s current dialog, and (2) T sends refer to C, requesting
it to replace its current dialog with one to the conference
server. The change from Snapshot 2 to Snapshot 3 is also
initiated by two major messages: (1) T sends refer to the
conference server, requesting it to put C on hold, and (2) T
sends refer to the conference server, requesting it to call E.
The change from Snapshot 3 to Snapshot 4 is initiated by
three major messages: (1) T sends refer to C, requesting it
to replace its current dialog with one to E. (2) T sends bye



to the conference server. (3) S invites T.
There are many differences between the two implementa-

tions. First, unlike the StratoSIP implementation, the refer
implementation has no separation of signaling and media—
the media paths are the same as the signaling paths. This
made the refer solution much easier to invent than the Stra-
toSIP solution.
Second, the StratoSIP solution composes with features in

other network elements, while the refer solution does not.
With the StratoSIP solution, if there are other network el-
ements (proxies, application servers) in the signaling paths
between the endpoints and StratoSIP features, the other
network elements will continue to work as expected. Be-
cause the refer implementation allows endpoints to instruct
each other directly to destroy dialogs and create new ones,
if there are network elements in the original signaling paths,
most likely they will be lost when the signaling paths move.
Third, whether the StratoSIP features are located in the

network or in the endpoints, a StratoSIP feature composes
with other StratoSIP features, while the refer features do
not compose with other refer features. The StratoSIP AT
and TM programs are the same, whether they are running
alone or together. To make refer implementations of AT
and TM work together, on the other hand, it is necessary to
rewrite both programs completely.
Fourth, the StratoSIP solution requires far less signaling.

With the StratoSIP features running in T’s endpoint, to im-
plement the example scenario from no calls at all to Snap-
shot 4 (except with no TM Postmortem state) requires 48
messages between endpoints. To perform the same work,
the refer solution requires 81 messages.
Fifth, the StratoSIP solution only requires endpoints to

know basic SIP,6 while the refer solution requires imple-
mentation of several extensions.
Sixth, in Snapshot 4, the StratoSIP solution has a signal-

ing hairpin because the signaling path between C and E goes
through AT (wherever it is located), even though AT and
its subscriber T are no longer involved in this connection.
The refer solution has no signaling hairpin. We will address
this disadvantage in future work.

10. FUTURE WORK
The version of StratoSIP described in this paper is our

first, and not surprisingly needs many improvements.
We have already planned two major extensions for fea-

tures that StratoSIP does not currently handle. One ex-
tension will make it possible to program a feature handling
an arbitrary number of active dialogs. Currently there is a
distinct dialog variable for each active dialog, which means
that a program can handle only a fixed number of them. The
other extension will make it possible to control separate me-
dia channels separately. Currently all the media channels in
a session description must be controlled as a unit, because
session descriptions are not dissected.
Another aspect of StratoSIP that needs improvement is

its integration with full SIP. The additional SIP messages
that can carry session descriptions are reliable provisional
responses, prack requests and responses, and update requests
and responses. Although compositional media control does

6Section 6 introduced the pre tag, which is our own non-
standard extension to SIP. However, endpoints never need
to send or interpret these tags.

not require them, there is no intrinsic reason why the imple-
mentation cannot be extended to handle them when they are
received. The language should also be extended to handle
subscribe and notify requests within invite dialogs. These
are problematic only because of their interaction with the
definition of invite dialogs (RFC 5057).
Two remaining aspects of SIP are, from our perspective,

very troublesome. One is refer requests, for the reasons ex-
plained in Section 9. The other is the fact that SIP signaling
is not necessarily FIFO [13]. We think that SIP signaling
should be FIFO, and that refer requests should not be used
except within well-defined boundaries such as those of IP
PBXes. Further study will be needed to decide whether to
accommodate them in StratoSIP.
The generation of progress tones such as “ringback” and

“busytone” is surprisingly tricky, for two reasons. One rea-
son is that progress tones are a major source of feature inter-
actions; the other reason is that SIP as implemented in most
endpoint devices is overly restrictive. Both of these issues
are explained in detail in [12]. It would be worthwhile to
develop some general strategies for correct and robust han-
dling of progress tones, and to build them into StratoSIP.
Another important area for future work is optimization.

In particular, it would be nice to get rid of the StratoSIP
hairpin mentioned in Section 9. There is no conceptual
problem, because when there is a signaling hairpin through
the Attended Transfer feature, it has become permanently
transparent. The challenge is to design and verify a dis-
tributed algorithm, initiated by AT, to remove AT from the
signaling path.
Finally, we are very interested in converged services, com-

bining telecommunications with Web services. At present
StratoSIP programs have embedded Java code to interface
with Web services. In the future, we hope to support con-
vergence with more abstract mechanisms.

11. CONCLUSION
Although StratoSIP is a new language, its major abstrac-

tions have evolved from research that has been going on for
ten years. Their long history of experience and refinement
gives us confidence that they are useful and sound. The
design of StratoSIP shows that they can be combined in a
simple and attractive language.
Using StratoSIP, it is not difficult to program SIP B2BUAs

that perform media control. The programs are guaranteed
to use SIP signaling correctly, to compose automatically
with other StratoSIP programs, and to preserve end-to-end
signaling whenever possible.
As StratoSIP matures and becomes ready for use outside

our laboratory, it should improve the implementation qual-
ity of deployed SIP services. It might also cause a significant
increase in the number of people who are qualified to develop
them.
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APPENDIX
Text of the Attended Transfer program:

free box AttendedTransfer(ATtoJava atToJava)

declarations {

Call c, t, e;

NonSIPport ui;

<*Address expertAddr;*>
}

initialization {

<*expertAddr = atToJava.getExpertAddr();*>
}

graph {

initial state Init { };

transition Init ->
rcv(c) / t = ctu(c) -> SettingUp;

stable state SettingUp { c <-> t };

transition SettingUp ->

succeeded(t) / ui!Talking(t.src) -> Talking;

stable state Talking { c <-> t };

transition Talking ->

ui?Consult / e = rev(t,dest=expertAddr)
-> Consulting;

stable state Consulting { c, e <-> t };

transition Consulting -> ui?Resume / end(e)

-> Talking;
transition Consulting -> ended(e) -> Talking;

transition Consulting ->

ended(c) / ui!Abandoned -> Abandoned;

transition Consulting ->

ui?Transfer / end(t) -> Transferred;
transition Consulting -> ended(t) -> Transferred;

stable state Abandoned { e <-> t };

stable state Transferred { c <-> e };
}


