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The Session Initiation Protocol (SIP) is an application-layer control protocol that 

can establish, modify, and terminate multimedia sessions (conferences) such as Internet 

telephony calls and it is defined in the RFC3261. SIP is vulnerable to significant risks 

and vulnerabilities as the signaling is done over open and highly insecure Internet and 

SIP also offers user mobility. The massive deployment of Voice over Internet Protocol 

(VoIP) had raised the importance of the security and more precisely of the underlying 

signaling protocol SIP. 

In this thesis, we have studied the various security risks to SIP and various 

security mechanisms used with SIP to mitigate those risks. We have also evaluated the 

impact on performance of SIP registrar and proxy servers due to the overheads imposed 

by SIP authentication and use of Transport Layer Security (TLS) with SIP. The 

performance impact is evaluated using an experimental test-bed comprising of an Open 

Source SIP Server (OpenSIPS) and an open source SIP performance (SIPp) bench­

marking tool. We have also profiled the system costs in TLS using the OProfile utility of 

Linux. 
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CHAPTER 1 

INTRODUCTION 

VoIP refers to voice communications over Internet Protocol (IP) networks. It 

specifies the transmission and reception of audio over the IP based networks. The voice 

signals are digitized, compressed, packetized (converted to IP packets) and transmitted 

over the IP network. The receiving node will reproduce the voice signals by de-

packetizing, de-compressing, and converting digital data to analog signals. VoIP has 

gained tremendous acceptance and is widely deployed today mainly due to the reduced 

costs, demand for multimedia communications, and demand for convergence of voice 

and data networks. 

VoIP uses signaling protocols to establish and tear down calls, carry information 

required to locate users, and negotiate capabilities. Two standards have emerged for 

signaling and control for Internet Telephony. One is H.323 defined by International 

Telecommunication Union (ITU), and the other is Session Initiation Protocol (SIP) 

defined by the Internet Engineering Task Force (IETF). H.323 embraces the more 

traditional circuit-switched approach to signaling based on the Integrated Services Digital 

Network (ISDN) Q.931 protocol and earlier H-series recommendations where as SIP 

favors the more lightweight Internet approach based on Hyper Text Transfer Protocol 

(HTTP) [1] 
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Problem Statement 

As with any Internet based service, the security of voice calls is a major issue. 

The nature of service that SIP provides makes security an even more important feature. 

SIP based IP telephony system is vulnerable to general Internet attacks, as well as attacks 

which are unique to SIP. Some of SIP specific security attacks are registration hijacking, 

message modification, impersonation of a server, Denial of Service (DoS) attacks, 

tearing down Sessions, and replay attacks. As most of SIP development so far has 

focused on features and inter-operability, there exists ample opportunity to work on SIP 

security. SIP employs security mechanisms like Authentication, and Transport Layer 

Security (TLS) to counter the above attacks. Before deploying a VoIP network using 

SIP, it is very important for the network planners and administrators to understand the 

possible security threats, how to use the available security mechanisms, limitations of the 

existing security mechanisms, and the performance impact on SIP servers due to these 

security mechanisms. There is not a lot of emphasis put into understanding the impact of 

these security mechanisms on SIP server performance [2] [3][4][5]. 

In this thesis, we have studied the various security mechanisms employed by SIP 

and their limitations. We have also evaluated the impact on performance of SIP servers 

due to the Authentication and use of Transport Layer Security (TLS). 

Organization of Thesis 

The remainder of this thesis is organized in 6 chapters. We started with an 

overview of VoIP and SIP in Chapter 2. The Chapter 3 discusses SIP security risks. The 

2 



security mechanisms employed in SIP are described next in details in Chapter 4. The 

Chapter 5 describes the test setup and test tools used for evaluating the performance 

impact of SIP authentication and use of TLS with SIP. The Chapter 6 provides the 

performance results obtained using the experimental test setup and discusses the impact 

of SIP authentication and TLS on SIP server performance. Finally, the conclusions are 

provided in Chapter 7. 
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CHAPTER 2 

OVERVIEW OF VOIP AND SIP 

VoIP introduces the actual method of transmitting voice over an IP network and 

IP telephone. It describes telephony devices that use IP as the native transport for voice 

and call signaling. IP telephony needs VoIP to send calls over the network. 

SIP is widely used today in VoIP as it is a lightweight approach best suited for 

packet switched IP networks. Note that SIP is only a signaling protocol and not the 

media transport protocol. For media transport, different VoIP implementations may 

employ different protocols but the mostly used media transport protocol for multimedia 

communications over IP networks is the Real Time Protocol (RTP). This RTP is defined 

by the IETF in Request For Comments (RFC) 3550. The payload format for various 

COder and DECoders (CODECs) supported by RTP are defined in RFC 3551. The RFC 

3550 also defines the Real Time Control Protocol (RTCP) which helps addressing the 

issues related to delay and jitter in voice communications. 

VoIP Technology 

As shown in Figure 1 below, the Digital Signal Processor (DSP) segments the voice 

signal into frames by digitizing the voice signals, compressing the digital data, and 

framing the voice packets. These voice packets are then embedded into voice transport 

protocol like RTP or User Datagram Protocol (UDP) and are routed over the Internet 
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using IP in compliance with the International Telecommunications Union-

Telecommunications (ITU-T) specification H.323, the specification for transmitting 

multimedia (voice, video, and data) across a network. 

VOICE VOICE 
SIGNAL SIGNAL 

H5£i"£ci 

Decompress] on 
Data 

Compression 

De-
packetization Packet* nation 

INTERNET 

FIGURE 1. VoIP data processing. 

Because it is a delay-sensitive application, you need to have a well-engineered, 

end-to-end network to successfully use VoIP. Fine-tuning your network to adequately 

support VoIP involves a series of protocols and features to improve Quality of Service 

(QoS). Traffic shaping considerations must also be taken into account to ensure the 

reliability of the voice connection. 

A connection between a caller and a call recipient is established using a signaling 

protocol, usually SIP. SIP has many functions, including negotiating the CODECs used 

5 



during the call, transferring calls, and terminating calls. During a peer-to-peer call, VoIP 

phones communicate directly over IP and stream audio directly. 

SIP Introduction 

SIP is the IETF standard for IP telephony and it is defined in RFC 3261 as an 

application-layer control (signaling) protocol for creating, modifying, and terminating 

sessions with one or more participants [6]. These sessions include Internet telephone 

calls, multimedia distribution, and multimedia conferences. It seems to be the most 

promising candidate for call setup signaling for future IP-based telephony services, and it 

has been chosen by the Third-Generation Partnership Project (3GPP) as the protocol for 

multimedia application in 3G mobile networks [4]. 

VoIP requires creation, termination, and management of an audio session. There 

are many protocols that can provide the session management. However, VoIP signaling 

protocol has requirements of establishing, terminating, and managing audio sessions with 

the users whose location, availability, and capabilities can be dynamic. SIP is designed 

to work well in setting up and managing sessions even when users move between end 

points, have many different names, and have different capabilities. 

SIP Functionality 

SIP is developed as an agile, general-purpose tool for creating, modifying, and 

terminating sessions that works independently of underlying transport protocols and on 

the type of session being established [6]. SIP provides the capability for one end point 

(called user agent) to determine the location of another end point and to share one's 
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capabilities with the other and to agree on characteristics of the session being established. 

It uses SIP elements called proxy servers to help route requests to the user's current 

location, authenticate and authorize users for services, implement provider call-routing 

policies, and provide features to users. It provides the user location by using registration 

servers with which all the user agents of a domain will register with. The registration is 

then used by SIP proxy servers for routing incoming SIP requests. When the called user 

agent is in a different domain, SIP proxy server will contact SIP proxy server of the other 

domain for user location. SIP proxy server will request the registrar server for 

determining the user location by inputting a Universal Resource Identifier (URI) and 

receive back a set of zero or more URIs that help in forwarding the incoming requests. 

Note that registrations are one way to create the user location information database, but 

not the only way. The administrator can configure arbitrary mapping functions at his or 

her discretion. 

As defined in RFC 3261, SIP supports five facets of establishing and terminating 

multimedia communications: user location, user availability, user capabilities, session 

setup, and session management [6]. The user location is about determining the end 

system to be used for communication. The user availability is about determining the 

willingness of the called party to engage in communications. The user capabilities is 

about the determining the media and media parameters to be used. The session setup is 

about establishing the session between the called and calling parties. And the session 

management is about invoking the services, managing the transfer and termination of 

services, and modifying session parameters. 
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It is very important to note that SIP is one protocol among many protocols needed 

to build a multimedia architecture like VoIP. SIP does not do conference control or 

resource reservation or session description or real time media transport. Each of these 

functions is done by a separate protocol. VoIP typically uses SIP for session 

management, Session Description Protocol (SDP) for describing multimedia sessions, 

RTP for media transport, RTCP for QoS feedback, Real Time Streaming Protocol 

(RTSP) for control over the delivery of data with real-time properties, and MGCP (Media 

Gateway Control Protocol) for controlling Public Switched Telephone Network (PSTN) 

gateways. 

SIP Elements 

There are mainly three types of elements in SIP operation: User Agent Clients 

(UAC), User Agent Servers (UAS), and User Agents (UA). SIP RFC defines these 

elements as following. 

User Agent (UA): The entities interacting in a SIP scenario are called User 

Agents. A user agent is defined as a logical entity that can act as both a user agent client 

and user agent server [6]. A user agent will act as either a UAC or as a UAS or as both in 

a SIP transaction. 

User Agent Client (UAC): A user agent client is a logical entity that creates a 

new request, and then uses the client transaction state machinery to send it [6], The role 

of UAC lasts only for the duration of that transaction. In other words, if a piece of 
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software initiates a request, it acts as a UAC for the duration of that transaction. If it 

receives a request later, it assumes the role of a user agent server for the processing of 

that transaction. The set of processing functions required of a UAC that reside above the 

transaction and transport layers is termed as UAC core. Note that SIP UACs may or may 

not interact directly with a human user. 

User Agent Server (UAS): A user agent server is a logical entity that generates a 

response to a SIP request [6]. The response accepts, rejects, or redirects the request. This 

role lasts only for the duration of that transaction. In other words, if a piece of software 

responds to a request, it acts as a UAS for the duration of that transaction. If it generates 

a request later, it assumes the role of a user agent client for the processing of that 

transaction. The set of processing functions required at a UAS that resides above the 

transaction and transport layers is termed as UAS core. 

The various components of VoIP communication using SIP signaling protocol can 

be categorized depending on the function carried out. Following are these various 

components (a software component or dedicated equipment) commonly used today. 

Soft-phone: A soft-phone is a software application for making and receiving 

telephone calls using VoIP services. 

VoIP phones: The special telephones with built-in VoIP technology for making 

and receiving calls over an IP network such as the Internet. 
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SIP Registrar and SIP location server: SIP registrar accepts REGISTER requests 

and places the information it receives in those requests into the location service for the 

domain it handles [6], UAs register with the registrar from time to time to allow other 

UAs to locate them. A VoIP user is not bound to a host. So, there is a need for SIP or 

any other signaling protocol used with VoIP to provide the location service. The location 

service, as the name implies, allows a SIP user agent to locate another user agent. SIP 

provides location service through registration and location servers. Upon initialization 

and periodically, a SIP phone (end point) reports its location by registering with the 

registration server (registrar) of its domain. This information is then stored in the 

location server database. Note that other mechanisms can be employed along with the 

registrations to create the location data-base. Registrations are one way to create this 

information, but not the only way. Arbitrary mapping functions (user name or number to 

user location) can be configured at the discretion of the administrator. Note that a SIP 

user can register from multiple SIP phones. This allows a proxy to perform various types 

of searches to locate a SIP user. Similarly, more than one user can be registered on a 

single device at the same time. This allows multiple users to use SIP phone on a host. 

SIP Proxy Server: SIP proxy is an intermediary entity that acts as both a UAS 

and a UAC for the purpose of making requests on behalf of other UACs [6]. A proxy 

server primarily plays the role of routing, which means its job is to ensure that a request 

is sent to another entity closer to the targeted user. Proxies are also useful for enforcing 

policy (for example, making sure a user is allowed to make a call). A proxy interprets, 

and, if necessary, rewrites specific parts of a request message before forwarding it. 
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SIP proxy server allows routing of incoming SIP requests. When it receives a SIP 

request, it contacts the location server to resolve the username into an address and then 

forwards the message. The proxy can be either stateless or stateful. A stateless proxy is 

a logical entity that does not maintain the client or server transaction state machines 

defined in SIP RFC when it processes requests. A stateless proxy forwards every request 

it receives downstream and every response it receives upstream. A stateful proxy is a 

logical entity that maintains the client and server transaction state machines defined in 

SIP RFC during the processing of a request, also known as a transaction stateful proxy. 

The proxy servers can take flexible routing decisions. For example, it can route to 

voice server when a SIP phone signals it is busy. It can also do a parallel search, known 

as forking, by sending an INVITE to a number of locations at the same time. Proxy 

servers can also provide some mid-call features by remaining SIP messaging path 

between SIP end points. For this, the proxy will add to the INVITE a required routing 

header field known as Record-Route that contained a URI resolving to the hostname or IP 

address of the proxy. This information in Record-Route will be used by when SIP end 

point on the other end to send messages back through SIP proxy. 

Redirect Server: A redirect server is a user agent server that generates responses 

to requests it receives, directing the client to contact an alternate set of URIs [6]. It 

generally happens when a recipient has moved from its original position either 

temporarily or permanently. SIP redirect servers resolve the username into an address by 

contacting the location server but they do not forward or proxy the incoming SIP 
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messages. Instead, they provide the address to the sender. The sender then can send SIP 

message directly using the resolved address of the destination that he got from the 

redirect server. With this approach, the advantage is that proxy server will not be a 

bottleneck in forwarding SIP messages. However, SIP end points now have to perform 

all the routing and they can become complex depending on how much flexible they are in 

taking routing decisions. 

Note that the role of UAC and UAS, as well as proxy and redirect servers, is 

defined on a transaction-by-transaction basis. For example, the user agent initiating a call 

acts as a UAC when sending the initial INVITE request and as a UAS when receiving a 

BYE request from the calling agent. Similarly, the same software can act as a proxy 

server for one request and as a redirect server for the next request. Also, note that these 

servers are logical entities and implementations may combine them into a single 

application or run them on a single physical server. 

SIP Proxy Operational Modes: A SIP proxy server can be classified as either an 

inbound proxy server or outbound proxy server or local proxy server depending on how 

many UACs are sending requests to that proxy server and how many UASs are receiving 

calls through that proxy server [5]. An inbound proxy server receives calls from many 

UACs but forwards them to one UAS (usually to local proxy server). An outbound 

proxy server receives calls from one UAC and sends them out to several UASs. A local 

proxy will receive calls from several UACs and sends them to several UASs. 
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Overview of SIP Operation 

This section describes establishing and tearing down a VoIP session through SIP 

signaling using an example that was used in SIP RFC. The Figure 2 below shows a SIP 

trapezoid arrangement where two users, Alice and Bob, are in different domains [6]. The 

proxy servers act on behalf of Alice and Bob to facilitate the session establishment and 

tear-down. 

Alice's VoIP pnonc 

Domainl 
Proxy 

Domainl.co 

Domain2 
Proxy 

Domainl co 

Bob's VoIP phone 

FIGURE 2. SIP trapezoid network. 

Session Setup 

In this example, Alice uses a soft-phone to call Bob on his SIP phone over the 

Internet. Alice calls Bob using his SIP identity, a type of Uniform Resource Identifier 

(URI) called a SIP URI. It has a similar form to an email address, typically containing a 

username and a host name. In this case, it is sip:bob@domain2.com, where 

domain2.com is the domain of Bob's SIP service provider. Alice has a SIP URI of 

sip:alice@domainl.com. SIP also provides a secure URI, called a SIPS URI. An 
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example would be sips:bob@domain2.com. A call made to a SIPS URI guarantees that 

secure, encrypted transport (namely TLS) is used to carry all SIP messages from the 

caller to the domain of the callee. From there, the request is sent securely to the callee, 

but with security mechanisms that depend on the policy of the domain of the callee. 

The Figure 3 below shows a typical example of a SIP message exchange between 

Alice and Bob [6]. SIP is based on an HTTP-like request/response transaction model. 

Each transaction consists of a request that invokes a particular method, or function, on the 

server and at least one response. In this example, Alice initiates a call to Bob by sending 

an INVITE request addressed to Bob's SIP URI. The body of a SIP message contains a 

description of the session, encoded in some other protocol format like SDP. Since Alice 

does not know the location of Bob or SIP server in the domain2.com domain, the 

INVITE request will be forwarded to SIP proxy of Alice's domain, domainl .com. The 

address of the domainl .com SIP server could have been configured, or it could have been 

discovered by DHCP, for example. 

The domainl proxy receives the INVITE request and sends a 100 (Trying) 

response back to Alice's soft-phone. The response 100 (Trying) indicates that the 

INVITE has been received and that the proxy is working on her behalf to route the 

INVITE to the destination. 

The domainl .com proxy server locates the proxy server at domain2.com, possibly 

by DNS and forwards the INVITE request there. Before forwarding the request, the 
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atlanta.com proxy server adds an additional Via header field value that contains its own 

address (the INVITE already contains Alice's address in the first Via). 

The domain2.com proxy server receives the INVITE and responds with a 

response 100 (Trying) back to the domainl .com proxy server to indicate that it has 

received the INVITE and is processing the request. 

atlanta.com 
proxy 

biloxi.com 
proxy-

Alice 1 s 
softphone 

Bob' s 
SIP Phone 

INVITE Fl 
> 

100 Trying F3 
< 

INVITE F2 
> INVITE F4 

100 Trying F5 | > 
180 Ringing F6 

180 Ringing F7 |< 
180 Ringing F8 |< 

< | 200 OK FlO 
200 OK F9 

< 
200 OK Fll 

ACK F12 

< = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = >  

Media Session 

BYE F13 

200 OK F14 

FIGURE 3. Typical SIP session setup and teardown [6]. 

The domain2.com proxy server consults the location server for Bob's IP address 

and forwards the INVITE to Bob's SIP phone. The domain2.com proxy server also adds 

another Via header field value with its own address to the INVITE before it is proxied. 

15 



Bob's SIP phone receives the INVITE and rings to alert Bob to the incoming call. 

Bob's SIP phone indicates this in a response 180 (Ringing), which is routed back through 

the two proxies in the reverse direction. Each proxy uses the Via header field to 

determine where to send the response and removes its own address from the top. As a 

result, although DNS and location service lookups were required to route the initial 

INVITE, the response 180 (Ringing) can be returned to the caller without lookups or 

without state being maintained in the proxies. This also has the desirable property that 

each proxy that sees the INVITE will also see all responses to the INVITE. 

When Alice's softphone receives the response 180 (Ringing), it passes this 

information to Alice, perhaps using an audio ring-back tone or by displaying a message 

on Alice's screen. 

In this example, Bob decides to answer the call. When he picks up the handset or 

accepts the call on his soft-phone, his SIP phone sends a 200 (OK) response. The 200 

(OK) is routed back through the two proxies and is received by Alice's soft-phone, which 

then stops the ring-back tone and indicates that the call has been answered. The 200 

(OK) contains a message body with the SDP media description of the type of session that 

Bob is willing to establish with Alice. As a result, there is a two-phase exchange of SDP 

messages: Alice sent one to Bob, and Bob sent one back to Alice. This two-phase 

exchange provides basic negotiation capabilities and is based on a simple offer/answer 

model of SDP exchange. If Bob did not wish to answer the call or was busy on another 
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call, an error response would have been sent instead of the 200 (OK), which would have 

resulted in no media session being established. 

Finally, Alice's soft-phone sends an acknowledgement message, ACK, to Bob's 

SIP phone to confirm the reception of the final response (200 (OK)). In this example, the 

ACK is sent directly from Alice's soft-phone to Bob's SIP phone, bypassing the two 

proxies. This occurs because the endpoints have learned each other's address from the 

Contact header fields through the INVITE/200 (OK) exchange, which was not known 

when the initial INVITE was sent. 

Alice and Bob's media session has now begun, and they send media packets using 

the format to which they agreed in the exchange of SDP. In general, the end-to-end 

media packets take a different path from SIP signaling messages. 

Session Modification 

During the session, either Alice or Bob may decide to change the characteristics 

of the media session. This is accomplished by sending a re-INVITE containing a new 

media description. This re-INVITE references the existing dialog so that the other party 

knows that it is to modify an existing session instead of establishing a new session. The 

other party sends a 200 (OK) to accept the change. The requestor responds to the 200 

(OK) with an ACK. If the other party does not accept the change, he sends an error 

response such as 488 (Not Acceptable Here), which also receives an ACK. The failure of 

the re-INVITE does not cause the existing call to fail—the session continues using the 

previously negotiated characteristics. 
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Session Teardown 

At the end of the call, Bob disconnects (hangs up) first and generates a BYE 

message. This BYE is routed directly to Alice's soft-phone, again bypassing the proxies. 

Alice confirms receipt of the BYE with a 200 (OK) response, which terminates the 

session and the BYE transaction. 

Query Capabilities 

SIP supports querying an end point's capabilities. The OPTIONS SIP method 

allows one user agent to query the capabilities (supported SIP methods, content types, 

CODECs, and extensions) of another user agent without ringing it. This allows a user 

agent to insert only the headers that the destination SIP phone supports 
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CHAPTER 3 

SIP SECURITY THREATS 

The flexibility and rich feature-set of SIP based IP telephony compared to 

traditional PSTN based phone comes with the additional security risks. SIP based IP 

telephony system is vulnerable to general Internet attacks, as well as attacks which are 

specific to SIP. As most of SIP development so far has focused on features and inter­

operability, there exists ample opportunity to work on SIP security. In this section, let us 

discuss the various security attacks and threats applicable to SIP. 

Network Security 

In general, network security refers to providing secure communications over a 

public network such as Internet. The network security requires confidentiality, 

authentication, message integrity, and availability. The confidentiality allows only the 

sender and intended receiver can understand the messages being exchanged. The 

authentication allows the sender and receiver to confirm the identity of each other. The 

message integrity ensures that the messages are not altered (in transit, or afterwards) 

without detection. And the availability ensures that the services are accessible and 

available to users. 
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SIP Security Threats 

As with any other network protocol, SIP is exposed to a wide range of security 

attacks. When deployed in a private network where network equipment and users are 

trustworthy and physical security is agreeably sufficient, SIP security may not be needed. 

However, since SIP can be deployed in an unreliable and untrustworthy environment like 

Internet, it is susceptible to various security attacks that include the common TCP/IP 

attacks. The various SIP security threats can be classified as external or internal. 

External threats happen when packets are traversing through third-party networks where 

as internal threats happen due to malicious users within the same network. SIP security 

threats can also be classified as given below based on what feature of network security is 

being attacked. 

Confidentiality threats: These threats expose the content of the conversation or 

other data that is supposed to be confidential between the two SIP end points. Examples 

of these threats are sniffing and traffic analysis. In general, confidentiality is achieved 

through the encryption techniques. 

Integrity threats: These threats impact the ability to trust the identity of the caller, 

the integrity of the messages, or the identity of the recipient. Examples of these threats 

are registration hijacking, message tampering, and spoofing. 

Availability threats: These threats attempt to jeopardize the ability to make or 

receive a call. Examples of these threats are message fabrication, replay, and various 

DoS attacks. 
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The various security threats we discuss next are registration hijacking, message 

modification, impersonating a server, Denial of Service attacks, tearing down sessions, 

and replay attacks [7]. Understanding these threats helps us to understand the security 

mechanisms employed in SIP and to evaluate their impact on performance. 

Registration Hijacking 

In SIP registration, the registrar is not obliged to challenge the UA that has sent 

the registration request for authentication (In RFC3261, registrars are only 

RECOMMENDED to challenge registration requests). The absence of authentication or 

weak authentication makes the registration hijacking possible where an attacker can 

hijack the registration requests from a valid UA by impersonating that UA to a registrar. 

The attacker can then direct all requests (for example, incoming calls) for the affected 

UA (the UA being impersonated by the attacker) to his or her device by de-registering all 

existing contacts associated with the affected UA's URI and registering his/her own 

device as the contact address for the affected UA's URI. 

The registration hijacking can result in Denial of Service to a legitimate UA, 

eavesdropping by intercepting to listening to voice calls, attacker tricking the caller into 

leaving a message, Man-In-The-Middle (MITL) attack where attacker transparently sits 

between the calling and called UAs and collects and/or modifies both the signaling and 

media, or toll fraud by redirecting the incoming call to a media gateway. 
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This registration hijacking relies on absence or weak form of authentication for 

registration requests. A weak authentication like simple username/password is not 

enough as it can be easily broken using dictionary style attack. This demonstrates the 

need for strong authentication of SIP requests. However, implementing strong 

authentication is particularly difficult in SIP as SIP messages may traverse through a 

number of SIP elements that may legitimately modify the messages. 

Impersonating a Proxy Server 

In this threat, an attacker could impersonate the proxy server, and trick one of SIP 

users or proxy servers into communicating with him [7]. This occurs again due to lack of 

authentication of proxy servers. An attacker can get into the signaling stream through 

either Domain Naming Service (DNS) spoofing or Address Resolution Protocol (ARP) 

cache spoofing or by changing the proxy address for a SIP phone. This impersonation of 

a SIP server allows various security attacks like DoS, eavesdropping, and toll fraud. 

If the attacker is successful in impersonating a proxy server, he can get a complete 

control of a call. All outbound calls from a domain can be intercepted, blocked, and 

manipulated if the proxy server of that domain is impersonated using DNS spoofing. 

Similarly, the calls originating from a UA can be intercepted, blocked, and manipulated 

by the attacker when ARP cache spoofing is used against a network switch to trick a UA 

into communicating with it [7]. Prevention of this threat requires a means by which UAs 

can authenticate the servers to whom they send requests. 
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Tampering with Message Bodies 

In this attack, the attacker intercepts and modifies SIP messages. This message 

tampering is possible as SIP messages have no built-in mandatory means to insure 

integrity. This attack usually occurs because of a compromised proxy server which is 

trusted by the UAs in the domain of the proxy server. This attack can also occur through 

registration hijacking, proxy impersonation, or through any compromised SIP element 

which is trusted to process SIP messages [7]. 

For a specific example of this attack, consider a UA that is communicating 

session encryption keys for a media session using SIP messages. The UA may trust 

proxy in delivering SIP messages but not necessarily trust proxy for insuring integrity. In 

other words, the proxy administrators may be able to decrypt SIP messages and find out 

the encryption keys being exchanged. If an attacker can gain access to proxy, then he can 

gain access to all the information in SIP messages and this allows attacker to either 

tamper the message bodies or play the man in middle attack. 

To achieve protection against message tampering, SIP message bodies and some 

header fields need to be secured from end-to-end through encryption services. These end-

to-end message integrity services should work together with and be independent of the 

means used to secure interactions with intermediaries such as proxy servers. 

Denial of Service 

DoS is a common attack that targets one or more SIP elements to make one or 

more SIP services unavailable, usually by directing a high volume of traffic towards the 
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service thereby denying it to legitimate clients. The DoS attack can also be launched 

using multiple network hosts to flood a SIP element with a large amount of network 

traffic. These DoS attacks are called as Distributed DoS attacks. DoS is a major issue in 

SIP systems, as some kind of trust is involved in any deployment and that the DoS can be 

launched in a variety of ways. 

DoS due to high volume of traffic: In this DoS attack, SIP servers, voice 

gateway devices, firewalls, and DNS lookup servers will be bombarded with high volume 

of traffic; thereby make them unavailable for legitimate users. By gaining access to SIP 

element in a network, it can be used as a DoS launching point. 

DoS due to malformed SIP messages: In this DoS attack, malformed SIP 

messages will be sent to manipulating SIP states and cause DoS. 

DoS due to unauthenticated register requests: In this attack, a user is prevented 

from receiving further calls by deregistering that user with the registrar. The DoS is also 

caused by sending huge numbers of registration requests and thereby bringing down the 

registrar by depleting the memory resources of registrar. The DoS attack can also be 

launched by registering a huge number of bindings for the same host and thereby 

amplifying SIP traffic. 

DoS due to spoofed SIP messages: By spoofing SIP messages, the DoS attack can 

be launched in few ways. One way is through reflection where the attacker sends a 
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spoofed request with the spoofed IP address of target being attacked to many SIP 

elements, thereby generating a huge amount of traffic aimed back at target. 

Cancel/Bye DoS attack: This DoS attack is launched by tearing down the 

sessions using the BYE request as the BYE requests are not authenticated and are not 

acknowledged. 

Re-Invite DoS attack: This DoS attack is launched using re-INVITE messages 

that are used to change session parameters. One way is to redirect the media to broadcast 

address which generates a huge amount of traffic. Another way is to redirect the media 

sessions to a proxy or a gateway to bring it down. 

DoS through amplification: These DoS attacks use amplification by using the 

forking feature of proxy servers. One way is to put the victim's IP address into a spoofed 

Router header request, and send it to forking proxies, who will greatly amplify the 

number of messages returned to the victim. The Record-Route header could also be used 

for amplification by sending a large number of requests to many SIP users with the 

victim's IP address in the Record Route header and thereby making the victim to receive 

a large amount of traffic. 

Session Teardown Attack 

In this attack, the attacker tears down the sessions by sending spoofed BYE 

messages. This spoofing of BYE messages is possible by capturing some initial 

messages in a dialog. It is also possible to tear down the sessions by flooding the firewall 
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with BYE messages and thereby causing the firewall to tear down the UDP/TCP ports 

being used for legitimate calls. The session tear-down results in DoS by abrupt 

termination of existing calls or calls being setup. Preventing this session teardown 

attacks requires authentication of BYE request. 

Replay Attack 

In this attack, the attacker intercepts SIP messages and retransmits them as is so 

that the victim will have to reprocess these messages. Preventing this kind of attacks 

require encryption techniques and use of nonce. 
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CHAPTER 4 

SIP SECURITY MECHANISMS 

In this section, the various security mechanisms employed in SIP protocol today 

and their limitations are discussed. Also described are SIP security implementation 

requirements and issues. 

SIP Security Challenges 

The major difficulty with employing SIP security solutions is to make them work, 

without extensive co-ordination, in a wide variety of environments and usages. The 

security in SIP is very challenging as SIP uses many intermediaries like proxy servers, 

registrar servers, and redirect servers, SIP has many elements and supports multi-faceted 

trust relationships between them, SIP is deployed in a wide variety of environments, and 

SIP requires user-to-user operation. 

SIP Security Mechanisms 

SIP employs encryption mechanisms to provide confidentiality and to prevent 

malicious users from modifying the messages. However, the end-to-end encryption of 

SIP messages is not possible as SIP intermediaries need access to some information in 

SIP headers. For this reason, SIP supports both end-to-end encryption and hop-to-hop 

encryption techniques. 
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The end-to-end encryption is supported using S/MIME mechanisms described 

later in this section and is used for all the information that is not required to be accessed 

by the intermediaries. The hop-by-hop encryption is supported using IPSec or TLS and 

is used for preserving the confidentiality of the information that needs to be seen by the 

intermediaries. The encryption algorithms commonly used with SIP are the Data 

Encryption Standard (DES) and Advanced Encryption Standard (AES). Note that 

although encryption provides confidentiality of SIP messages, it can be detrimental to 

QoS. 

SIP employs a cryptographic authentication mechanism for providing the message 

integrity and verifying the autheticity of the senders of SIP messages. It is important to 

note that the authentication allows a UA to verify the identity of another UA but does not 

provide message integrity and hence the need for cryptographic authentication which 

combines the encryption and authentication techniques in order to provide authentication, 

confidentiality, message integrity, and protection against replay attacks. SIP 

authentication mechanism is based on the HTTP Digest authentication. SIP also supports 

a scheme called SIPS URI which allows indicating SIP intermediaries of the need to 

forward SIP messages using TLS security. 

Authentication 

SIP provides an authentication mechanism, which is based on the HTTP Digest 

authentication defined in RFC2617, for a UAC to identify itself to the UAS in another 

SIP element (proxy or registrar or another user) [6] [8]. The authentication is a challenge 
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based mechanism where SIP element receiving a message can challenge the sender for 

credentials. SIP element receiving the challenge through a response for its request should 

provide its credentials to assure its identity. SIP element, which receives the credentials 

from the sender of a SIP message in response to the challenge it sent, will verify the 

identity of the sender and ascertain whether the sender is authorized to make the request 

that it sent. 

The replay attacks are prevented by using a nonce in the authentication 

mechanism. Nonce stands for Number used once and is a unique number (often 

generated as a random number or a pseudo-random number) that will not be used again 

with in a pre-defined time so that the receiver can use it to identify the replay attacks. 

SIP authentication provides the message authentication and replay attack 

protection but not message integrity and confidentiality. SIP authentication should be 

used in conjunction with cryptographic techniques to prevent active attackers from 

modifying SIP requests and responses. 

User to User Authentication: A user can challenge another user for determining 

authenticity of a received message. This is accomplished through the use of the 401 and 

407 response codes as well as header fields for carrying challenges and credentials. The 

WWW-Authenticate header field is used by an UAS to challenge an UAC for credentials. 

The UAC authenticating will use the Authorization header to supply the credentials. 
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Authenticate Header (nonce and, realm) 

"Resend INVITE with Authorization-

nonce, arid realm) 

Response OK (status 100) 

UAS UAC 

FIGURE 4. User to user authentication 

As shown in above Figure, a UAC sends a request to a UAS. The UAS challenges 

the UAC by sending a response with 401 status code (Unauthorized) and WWW-

Authenticate header in the response. The UAS indicates the authentication scheme(s) 

and parameters applicable to the realm to the UAC through this WWW-Authenticate 

header. Upon receiving the response with Unauthorized (401) status code and WWW-

Authenticate header, the UAC will locate its credentials and resend the request along with 

proper credentials using the Authorization header in the request. The Authorization 

header will also consist of other parameters required in support of authentication and 

replay protection. 
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UAS will use the supplied credentials to verify the identity of the sender and 

whether the sender is authorized for the request made. If the sender is authenticated 

successfully, it will proceed with processing the request. Note that a UAC may send a 

request with Authorization header without being challenged to help reducing the 

overhead. 

Proxy-to-User Authentication: A SIP proxy or Registrar or Redirect server can 

authenticate a SIP UAC in the same way as described above except now the headers and 

response codes are different. 

Response (status code - 407) with "Proxy-
. Authenticate Header (nonce,; realm) 

"• Resend INVITE with Proxy-Authorization 
Header (nonce, realm, credentials) 

)K (status code = 100) 

FIGURE 5. Proxy to user authentication 
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As shown in Figure above, a UAC sends a request to a Proxy. The Proxy 

challenges the UAC by sending a response with 407 status code (Proxy Authorization 

Required) and Proxy-Authenticate header in the response. Upon receiving the response 

with Proxy Authorization Required (407) status code and Proxy-Authenticate header, the 

UAC will locate its credentials and resend the request along with proper credentials for 

the realm of the proxy using the Proxy-Authorization header field in the request. Proxy 

will use the supplied credentials to verify the identity of the sender. If the sender is 

authenticated successfully, proxy will forward the request. 

As proxies can fork requests, it is possible for a response to have multiple 

challenges (multiple Proxy-Authenticate and/or WWW-Authenticate messages). These 

different challenges may be for different realms or for the same realm. A proxy 

authorization header field is differentiated from that of another proxy using the realm 

parameter. The same credentials are used for the challenges with the same realm and the 

credentials will be different for the challenges with different realms. 

Proxy-to-Proxy Authentication: SIP does not support the proxy-to-proxy 

authentication as it does not define a mechanism for a proxy to identify itself to another 

proxy. If needed, this proxy-to-proxy authentication will have to be achieved with other 

means like IPSec and/or TLS that are supported by SIP. 

S/MIME 

The entire SIP message cannot be encrypted end-to-end as SIP intermediaries 

need to view certain SIP headers and may modify or add some SIP headers. As a result, 
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the end-to-end encryption techniques can only be used with SIP message bodies. SIP 

message bodies use the MIME format [8]. SIP supports S/MIME (Secure MIME) for 

securing the contents of MIME bodies within SIP messages. S/MIME encrypts SIP 

bodies with the public key of the receiver and signs it with the private key of sender. The 

receiver will use the public key of sender to verify the signature and private key of the 

receiver to decrypt SIP MIME bodies. This means, senders must know the public key of 

recipients and receivers must know the public key of sender. So, S/MIME requires 

exchanging or sharing the keys and is achieved through the use of certificates. 

S/MIME uses certificates that assert the association of the holder with the end-

user address that is formed by the concatenation of the userinfo, @, and domainname 

portions of a SIP or SIPS URI. These certificates are associated with the keys that are 

used to sign and encrypt SIP messages. The certificates may be issued by public 

certificate authorities or self-generated or pre-configured. The pre-configuration is not 

scalable and is used in deployments in which a previous trust relationship exists between 

all SIP entities. The self-generated certificates provide message integrity to some extent 

but may not provide the authentication. When cryptographic keys are exchanged with the 

use of self-signed certificates or certificates signed by an obscure authority, SIP is 

vulnerable to security attacks like replay attacks, impersonation attacks, and man-in-the-

middle attacks. The use of public certificate authorities is scalable and widely used but 

one main issue is that there is virtually no consolidated public certificate authority. 
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SIP also specifies the use of SIP message tunneling for providing protection to 

SIP header fields. In this case, the entire SIP message is encrypted and embedded within 

another SIP message for tunneling. This makes it difficult to tamper with SIP headers 

and easy to detect any tampering of SIP headers in the tunneled SIP message. However, 

this creates additional overhead. When tunneling is used, it is recommended to use TCP 

rather than UDP to avoid problems due to UDP fragmentation of larger messages. 

Transport Layer Security (TLS) 

TLS provides the security at transport layer. TLS encrypts signaling traffic, 

guaranteeing message confidentiality and integrity. TLS protects SIP signaling from 

replay attacks, man-in-the-middle attacks, eavesdropping, or unauthorized access by 

providing integrated key-management with mutual authentication and secure key 

distribution. Although TLS can be used for transport layer security when using any 

connection-oriented protocol, SIP specifies the use of TLS with TCP as TCP is the 

widely used transport protocol. The TLS protocol version 1.0 is defined in RFC2246. 

TLS performs a handshake process before encrypted data is transported. During 

the handshake, the TLS server and client perform peer authentication and exchange 

and/or negotiation of various parameters needed for selecting the cipher-suite and session 

keys [6] [8] [9], 

The Figure below shows the TLS call flow diagram [6] [9]. An outbound SIP 

request is sent from the client and the transport indicates the use of TLS. A TLS 

connection is opened towards the server on a specific IP address and port. All the 
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algorithms used in a TLS session, including those for key exchange, bulk data encryption 

and message digest, are specified by a cipher suite. The client sends a 'Client Hello' 

message specifying the TLS version and a list of suggested cipher suites it supports. 

The server responds with several messages. It first sends a 'Server Hello' message 

with the TLS version and a chosen cipher suite. It then presents a certificate or certificate 

chain to the client using the 'Certificate' message. Usually only the client authenticates 

the server. But SIP has support for mutual authentication. So when a server is 

configured for mutual authentication, it also requests a certificate from the client using 

the 'Certificate Request' message. The server also sends the client a 'Server Key 

Exchange' message when the 'Server Certificate' message does not contain enough data 

to allow the client to exchange a premaster secret. If sent, this message will immediately 

follow the 'Certificate' message from the server (or the 'Server Hello' message for the 

case of anonymous negotiation). The server then sends a 'Server Hello Done' message to 

tell the client that it has finished the initial negotiations. 

If the server requested a certificate, the client sends the certificate or certificate 

chain using the 'Certificate' message. The client then sends a Client Key Exchange 

message which may contain a Premaster Secret, Public Key, or nothing depending on the 

cipher suite chosen. This Premaster Secret is encrypted using the public key of the server 

certificate. 
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FIGURE 6. TLS call flow diagram. 

If the client is being authenticated by the server, the client will send the 

'Certificate Verify' message which is a signature over the previous handshake messages 
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using the client's certificate's private key. The server will verify this signature using the 

client's certificate's public key and thus can be assured of that certificate received is 

authenticated. This 'Certificate Verify' is sent only when client is presenting its 

certificate upon server's request. 

The client sends a 'Change Cipher Spec' message to tell the server that all future 

messages will be signed and encrypted as negotiated. And then it sends an authenticated 

and encrypted 'Finished' message indicating server that client is done with the handshake 

phase. 

After receiving the 'Finished' message from client, the server will decrypt and 

verify the hash and MAC. After successful verification, the server will send a 'Change 

Cipher Spec' message to tell the client that all future messages will be signed and 

encrypted as negotiated. The server then sends the authenticated and encrypted 

'Finished' message which client will verify before sending the encrypted data. 

Encrypted data: The client and the server communicate using the symmetric 

encryption algorithm and the cryptographic hash function negotiated, and the shared 

secret key exchanged. At the end of the connection, each side will send a 'Close Notify' 

message to inform the peer that the connection is closed. 

Session Reuse: The session reuse of TLS allows previously negotiated set of 

premaster secret and cipher suite to be reused. When a new session is established, the 

server stores the session information for reuse. Also, the session id used by server is 



conveyed to the client in the 'Server Hello' message. So, when a client wants to establish 

a session again, then it can use the previous session-id that was conveyed by the server. 

If session reuse is enabled, then server will first check if there was an established session 

with the given session id in the 'Client Hello' message. If the server finds that the 

session id requested was previously used, then it can agree to session reuse by specifying 

the same session id in the 'Server Hello' message. When the client realizes that server 

has agreed to session reuse, it will proceed directly to the 'Change Cipher Spec' and 

'Finished' messages avoiding the need for re-computation of premaster secret and 

renegotiation of cipher suite. 

SIPS URI scheme: SIPS URI scheme is specified in RFC 3261. It allows SIP 

elements to specify that end to end security is needed. The syntax of SIPS URI is same 

as that of SIP URI but begins with sips. When used as the Request-URI of a request, 

SIPS scheme signifies that each hop over which the request is forwarded, until the 

request reaches SIP entity responsible for the domain portion of the Request-URI, must 

be secured with TLS [6]. Once it reaches the domain in question it is handled in 

accordance with local security and routing policy. Note that in SIPS URI scheme, 

transport is independent of TLS, and thus "sips:alice@atlanta.com;transport=tcp" and 

"sips:alice@atlanta.com;transport=sctp" are both valid. 

IPSec 

IPSec is a set of network-layer protocol tools, defined in RFCs 2401-2411 and 

2451, that collectively can be used as a secure network protocol. IPSec provides 
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authentication and encryption services at the network layer [10]. For this, it uses two 

protocols: AH (Authentication Header) and ESP (Encapsulated Security Payload). The 

AH is used, as the name suggests, to authenticate the packets, and optionally anti-replay 

protection. It ensures the sender's authentication but does not provide confidentiality of 

data. The ESP is used to ensure that the data transmitted between the two hosts securely, 

optionally with authentication and integrity checking. An IPSec implementation can use 

either or both of these protocols. 

Both ESP and AH use security associations (SAs). A Security Association (SA) 

is a relationship between two or more entities that describes how the entities will use 

security services to communicate securely. The security association is unidirectional. It 

is uniquely identified by a randomly chosen unique number called the security parameter 

index (SPI), IPSec protocol (AH or ESP), and the destination IP address. When a system 

sends a packet that requires IPSec protection, it looks up the security association in its 

database, applies the specified processing, and then inserts the SPI from the security 

association into the IPSec header. When the IPSec peer receives the packet, it looks up 

the security association in its database by destination address and SPI and then processes 

the packet as required. In summary, the security association is simply a statement of the 

negotiated security policy between two devices. 

AH Protocol Fields: The next header field specifies the next protocol. The length 

field specifies length of the AH header. The SPI field is an index used in combination 

with destination address to identify the correct security association for the 
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communication. The sequence number field is a 32-bit number to identify an IP packet 

and provide replay protection. The authentication data field contains the integrity check 

value (ICV), which is calculated over the IP header, the AH header, and the IP payload. 

The receiver calculates the ICV value and verifies it against the ICV in the AH header. 

ESP Protocol Fields: The ESP protocol uses an ESP header, an ESP trailer, and 

an ESP authentication trailer. The ESP header includes Security Parameters Index (SPI) 

and sequence number. The ESP trailer contains the padding and next header fields. The 

padding is the bytes added (up to 255 bytes) to align encrypted payload as needed by the 

encryption algorithm. The next header field specifies the next protocol. The ESP 

authentication trailer contains the authentication data which is nothing but the integrity 

check value (ICV), calculated over the ESP header, the payload data, and the ESP trailer. 

IPSec Modes: The IPSec supports two modes of operation: transport mode and 

tunnel mode. In transport mode, only the IP payload is encrypted and/or authenticated. 

In tunnel mode, the entire IP datagram is encrypted and/or authenticated by encapsulating 

it with another IP header. The transport mode is used mostly for host-to-host 

communications whereas the tunnel mode is used for network-to-network 

communications as in VPNs and host-to-network communications. 

AH Protocol - Transport Mode: In this mode, the AH header is inserted between 

the IP header and the IP payload as shown in below Figure. The AH protocol signs the 

entire IP datagram except for the mutable fields in the IP header. 
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FIGURE 7. AH protocol—transport mode [10]. 

ESP Protocol -Transport Mode: The ESP protocol uses an ESP header, an ESP 

trailer, and an ESP authentication trailer as shown in below Figure. The ESP header is 

placed before the IP payload, the ESP trailer is placed after the IP payload, and the ESP 

authentication header is placed after the ESP trailer. The ESP encrypts the IP payload 

and ESP trailer and signs the ESP header, IP payload, and ESP trailer using the 

authentication data in ESP authentication trailer. 

ESP 
Auth 

trailer 

Encrypted with ESP header 

Signed by ESP Auth trailer 

FIGURE 8. ESP protocol—transport mode [10] 

AH Protocol -Tunnel Mode: In the tunnel mode, the IP datagram is encapsulated 

by the authentication header and an additional IP header as shown in below Figure. The 
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entire IP datagram including the additional IP header is signed except the mutable fields 

of the additional IP header. 

IP packet 

IP 
header 

Authentication 
header 

IP 
header 

IP payload 
(TCP segment, UDP message, 

XCMP message) 

Signed by Authentication header 

FIGURE 9. AH protocol—tunnel mode [10]. 

ESP Protocol -Tunnel Mode: The original IP data gram is added with ESP 

header, ESP trailer, and ESP authentication header and encapsulated within another IP 

header. The original IP datagram and ESP trailer will be encrypted with the ESP header 

for confidentiality. The ESP authentication trailer provides integrity for the ESP header, 

original IP datagram and the ESP trailer as shown in below Figure. 

IP packet 

ESP 
Auth 

trailer 

Encrypted with ESP header 

Signed by ESP Auth trailer 

FIGURE 10. ESP protocol—tunnel mode [10] 

42 



Key Exchange: To avoid issues with manual keying and pre-shared keys like 

symmetric key problem, scalability, and keeping keys secret, the IPSec uses Internet Key 

Exchange (IKE) to automatically exchange randomly generated keys which are 

transmitted using asymmetric encryption technology, according to negotiated algorithm 

details. The IKE negotiates the connection parameters, which includes what type of 

connection, what encryption algorithms to use, and what keys are used. 

Suitable Deployments: As IPSec is decoupled from SIP protocol and provides 

security at network layer, it is most suited for deployments where adding security to SIP 

would be arduous. The IPSec can be used on a hop-by-hop basis and hence is suited for 

deployment between two hosts or two administrative domains that have a trust 

relationship. The IPSec is also commonly used with UAs that have an existing trust 

relation-ship with their immediate proxy server. 

Limitations of Security Mechanisms in SIP 

The proxies need visibility into header fields and some features of messages. 

Also, NAT must be able to decrypt/re-encrypt SIP messages. This means encryption of 

full messages cannot be done end-to-end. The digest based authentication offers 

protection only for some parameters. The S/MIME lacks public key exchange 

infrastructure and the key exchange mechanism in SIP is susceptible to man-in-the-

middle attack [4]. Also, S/MIME can result in very large messages [4]. TLS is not 

supported over connection less protocols like UDP [4]. Also TLS requires maintenance 
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of many simultaneous long-lived connections [4]. Another major problem for use of TLS 

is that there is no guarantee that all SIP elements in the path support TLS. As well, the 

handshake can be costly because of PKI based authentication and key calculation for 

each TLS session. End-to-end IPSec deployment can be very challenging in a typical 

VoIP environment where end points are dynamic. Not suitable for protecting VoIP and 

unified communications data from end to end. SIP proxies and hops along the way will 

not be able to decrypt or modify the information in SIP packets. 
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CHAPTER 5 

PERFORMANCE EVALUATION TEST SETUP AND TOOLS 

SIP supports several distinct security mechanisms as described in the previous 

section. Choosing and deploying the security solutions in a SIP based VoIP network 

requires not only the extensive knowledge of how various security mechanisms work and 

what their limitations are, but also the impact of these security mechanisms on SIP 

servers. This chapter describes the setup, tools, and methodology used for evaluating the 

performance of SIP proxy, and registrar servers which are the bottleneck for performance 

compared to SIP user agents. 

Experimental Setup 

The performance impact of security mechanisms under consideration are 

evaluated using the real test bed implementation shown in below Figure. The 

performance (either CPS or RPS or CPU utilization for a given load) of SIP server under 

test is measured by running tests with and without employing the security mechanism 

whose performance impact is being evaluated. 

As can be seen in the below Figure, the test bed comprises of server under test 

connected to various load generators and call handlers. The load generators act as the 

UAC agents and the call-handlers act as the UAS agents. The UACs make calls to UASs 

via one or more SIP proxy servers. 
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FIGURE 11. Experimental setup. 

Server under Test (SUT): The SUT consists of the hardware and software 

required to support SIP servers (SIP proxy, redirect, and registration servers) whose 

performance is to be measured. The OpenSIPS server is used as the SUT in our 

performance evaluation setup. 

Load Generators: These are SIP UACs which generate the workload required for 

performance evaluation. One or more instances of load generators will be used 

depending on the required work load. Also, the load generators have configuration 

options for various parameters like transport protocol, type of SIP messages, enabling or 

disabling SIP advanced features, the number of requests, inter arrival time for requests, 
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and so on. These load generators are implemented using the open source SIPp [11] 

testing tool by developing the UAC XML scenarios as required. SIPp is described in the 

next section. 

Call Handlers: These are SIP UASs which handle the calls by responding to the 

requests from load generators within stipulated times [12]. These call handlers are also 

implemented using the open source SIPp testing tool by developing the UAS XML 

scenarios as appropriate for the test. 

Test Controller: The test controller configures the load generators, SUTs, and 

call-handlers, and starts the tests for evaluating performance. It also collects the 

necessary statistics of performance metrics for reporting. 

Performance Metrics 

Registrations per second (RPS): Registrations per second is the average number 

of successful registrations per second during the measurement interval [12]. 

Calls per second (CPS): Calls per second is defined as the average number of 

calls per second completed with a 2xx or 4xx response during a measurement interval 

[12]. For the proxy server performance evaluation test case, a single call includes both 

the INVITE and corresponding BYE transaction. 

CPU Utilization: The CPU utilization of SIP servers with different test scenarios 

at various work-loads. The profiling information is also used to identify the CPU 

utilization by different software components. 
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Test Methodology 

The performance evaluation is performed by stressing the SUT using many 

requests from the load generators. A number of tests with different load levels and 

different measurement intervals will be used to get the results as accurate as possible. 

Also, as the aim is to evaluate and compare the performance of a SIP server with 

and without a given security mechanism, all other performance bottlenecks like network 

throughput bottlenecks, network loading, path MTU, etc should be avoided. Also for, the 

same exact setup will be used for both cases of SIP with and without a security 

mechanism whose impact on performance is being evaluated. 

The RPS and CPS values are determined by taking an average over the results 

from tests run for different measurement intervals. In each test run, the RPS and CPS 

value is determined as the highest sustained value when the load on the server is 

increased until the transaction failure reaches a value of ~4%. The CPU utilization is also 

measured by taking average with the tests running for long enough time (around 5-10 

minutes) to minimize the measurement error. 

The load generators will not wait for the response for a request sent before 

sending the more requests. This way, the transaction round trip time will not be the 

bottleneck in performance measurements. 
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SIPp Overview 

SIPp is a free Open Source test tool/traffic generator for SIP protocol [11]. SIPp 

includes few basic user agent scenarios (UAC and UAS scenarios) to be able to establish 

and release multiple calls by generating the INVITE and BYE messages and their 

responses. SIPp supports the capability to read custom XML scenario files for generating 

and handling SIP user agent scenarios. This allows us to generate the complex SIP flows 

quickly. SIPp also supports collecting various statistics about running tests, display of 

the collected statistics dynamically, and periodic dump of statistics. SIPp also allows 

using different transports like UDP, TCP, and TLS. The call rates can also be adjusted 

dynamically. SIPp also supports SIP authentication, conditional scenarios, UDP 

retransmissions, error robustness (call timeout, protocol defense), call specific variable, 

POSIX regular expressions to extract and re-inject any protocol fields, custom actions 

(log, system command exec, call stop) on message receive, and field injection from 

external CSV file to emulate live users, etc. SIPp also supports media traffic through 

RTP echo and RTP/pcap replay. Media can be audio or audio and video. 

SIPp is used in our experimental setup for implementing the load generators and 

call handlers. This allows us to emulate thousands of user agents calling SIP system 

under test and thus facilitates us to evaluate the impact on SIP system performance due to 

the overhead incurred by SIP security features. 
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SIPp Embedded Scenarios 

SIPp supports the various embedded scenarios: UAC, UAC with media, UAS, 

regexp, Branch, UAC Out-of-call Messages, and 3PCC. The most commonly used 

scenarios are described below. 

UAC Scenario: This is the most common scenario of establishing and 

terminating a call. SIPp UAC will send an INVITE request, wait for the ACK, pauses 

little bit after the ACK, and terminates the call by sending BYE request. This scenario is 

shown in below Figure. 

SIPp UAC Remote 
(1) INVITE 

> 
(2) 100 (optional) 

< 

(3) 180 (optional) 
< 

(4) 200 
< 

(5) ACK 
> 

(6) PAUSE 

(7) BYE 
> 

(8) 200 
< 

FIGURE 12. SIPp embedded UAC scenario. 
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UAC Scenario with Media: This scenario is similar to UAC scenario except that 

there is media traffic using RTP protocol after establishing a call. This scenario is 

illustrated in below Figure. 

SIPp UAC Remote 
(1) INVITE 

> 
(2) 100 (optional) 
< 
(3) 180 (optional) 
< 
(4) 200 
< 
(5) ACK 

> 

(6) RTP send (8s) 
= > 

(7) RFC2833 DIGIT 1 
: > 

(8) BYE 
> 

(9) 200 
< 

FIGURE 13. SIPp embedded UAC with media scenario. 

UAS Scenario: This is the server scenario for establishing and terminating a 

call. As shown in the below Figure, the UAS will respond with 180 and 200 messages 
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for an INVITE request and with a 200 message for a BYE request. This scenario can be 

used when benchmarking SIPp UACs. 

Remote SIPp UAS 
(1) INVITE 

> 
(2) 180 
< 
(3) 200 
< 
(4) ACK 

> 

(5) PAUSE 

(6) BYE 
> 

(7) 200 
< 

FIGURE 14. SIPp embedded UAS scenario. 

Using SIPp with Integrated Scenarios 

The below command starts the UAS scenario which will be waiting for incoming 

calls to respond with OK response. 

# ./sipp -sn uas 

In order to generate the calls, we can now start the UAC scenario either on the 

same host or on a different host that is connected to the host running the UAS scenario. 
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Below is the command to start the UAC scenario on the same host where UAS scenario is 

running. This command starts the UAC scenario and sends the call requests to the server 

on 127.0.0.1 interface which is the local loopback interface. 

# ./sipp -sn uac 127.0.0.1 

The Figure below shows the UAS scenario screen capture while the calls are in 

progress between UAC and UAS scenarios running on the same host. 

- Scenario Screen 
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ME 
208 

FIGURE 15. SIPp UAS scenario screen capture. 

The Figure below shows the UAC scenario screen capture while the calls are in 

progress between UAC and UAS scenarios running on the same host. This screen 
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capture shows that SIPp dynamically reports the number of generated calls per second, 

total number of calls generated, and various SIP messages sent and received. 
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FIGURE 16. SIPp UAC scenario screen capture. 

The Figure below shows the UAS statistics after terminating the UAS scenario. 

As seen in the screen capture in below Figure, SIPp reports a summary of various 

statistics that include start time, last reset time, current time, elapsed time, call rate, 

number of incoming calls created, number of outgoing calls created, total calls created, 

number of successful calls, number of failed calls, average response time of the calls, and 

the call length. As this is an UAS scenario, we only have the incoming calls. 
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FIGURE 17. SIPp UAS scenario statistics 

The Figure below shows the UAC statistics after terminating the UAC scenario. 

As seen in the screen capture in below Figure, SIPp reports a summary of various 

statistics that include start time, last reset time, current time, elapsed time, call rate, 

number of incoming calls created, number of outgoing calls created, total calls created, 

number of successful calls, number of failed calls, average response time of the calls, and 

the call length. As this is an UAC scenario, we only have the outgoing calls. 
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FIGURE 18. SIPp UAC scenario statistics 

Developing and Using New SIPp XML scenarios 

With just the embedded scenarios, the use of SIPp will be limited. The ability 

to develop new scenarios using XML syntax quickly makes SIPp most powerful SIP 

testing tool. Please refer to SIPp documentation for the syntax, keywords, and examples 

to create a new SIPp scenario. The various XML scenarios developed as part of 

performance evaluation will be described in the next section along with the description of 

tests. 
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The other important reason that makes SIPp a powerful SIP testing tool is the 

support of various options that can be used to fine tune the performance measurements 

and fine tune SIPp scheduling of its various tasks. 

Open SIP Server (OpenSIPS) 

The Open SIP Server (OpenSIPS) is a mature Open Source implementation of a 

SIP server [13]. It includes SIP registrar server, SIP proxy/router server, and also 

application level functionalities. It supports UDP, TCP, and TLS transport layers. We 

have chosen OpenSIPS as it is the open source implementation and one of the enterprise 

or carrier-grade class servers with high performance. 

The OpenSIPS can be used as a SIP registrar server, a SIP proxy server, a SIP 

redirect server, a SIP location server, a SIP presence agent, a SIP back-to-back UA, SIP 

IM server, SIP to SMS gateway, SIP to XMPP gateway, SIP load-balancer, SIP front end 

for gateways, SIP NAT traversal unit, or SIP application server. In our study, we have 

used it as a SIP registrar server or as a SIP proxy server. The information on installing 

the OpenSIPS is provided in the OpenSIPS Installation Notes [14]. The OpenSIPS 

configuration is through the opensips.cfg script file. Various configuration parameters 

and the default opensips.cfg script file with TLS support are given in the OpenSIPS TLS 

Support documentation [15]. 
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OProfile 

The OProfile is a profiling system for Linux 2.2/2.4/2.6 systems on a number of 

architectures [16]. It supports profiling all parts of a running system (kernel, modules, 

interrupt handler, shared libraries, binaries, etc...). It is capable of profiling all parts of a 

running system, from the kernel (including modules and interrupt handlers) to shared 

libraries to binaries. It runs transparently in the background collecting information at a 

low overhead. These features make it ideal for profiling entire systems to determine 

bottle necks in real-world systems. OProfile uses various performance counters (like 

cache misses counter, CPU cycles counter, etc...) provided by the hardware and provides 

with profiles of code based on the number of these occurring events. It also supports 

call-graph option where it will record the function stack every time it takes a sample. 

OProfile has proven to be useful in a number of scenarios where we need a low overhead 

and less intrusive profiling system for capturing the performance behavior of the entire 

system. The instructions on using OProfile are given in the OProfile website [17]. 

The opreport utility is used to report formatted data out of OProfile. It produces 

two types of data: image summaries and symbol summaries. An image summary lists 

the number of samples for individual binary images such as libraries or applications. 

Symbol summaries provide per-symbol profile data. Following is the specific command 

used for reporting the profiling information logged by OProfile. 

#opreport ~demangle=smart —symbols usr/local/sbin/opensips 
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Systems Used for Testing 

For running SIPp UAC and UAS scenarios as load generators and call handlers, I 

have used the Dell Inspiron 14R, Dell Inspiron 15R, HP Compaq CQ57-315NR laptops. 

SIPp compiled with TLS support is installed on these laptops. The Open Secure Socket 

Layer (OpenS SL) library, IPv6 extension for cygwin, and libncurses needed for running 

SIPp with TLS are also installed. Below are the instructions used for compiling SIPp. 

When running in Windows, cygwin environment will be needed for compiling SIPp. 

# gunzip sipp-xxx.tar.gz 
# tar -xvf sipp-xxx.tar 
# cd sipp 
# make ossl 

For running the OpenSIPS, I have used the Dell Precision T3400 workstation 

which has Intel Pentium 4 CPU running at 2.80GHz. The cache size is 512KB and the 

total main memory is 1GB. Only one CPU core is enabled for the performance evaluation 

as we want to load the CPU utilization to 100% with few load generators to keep the 

setup simple and to exclude the overhead due to SMP environment. The Netgear ProSafe 

gigabit Ethernet switch (GS116NA) is used for interconnecting SIP elements. 

Procedure for Testing 

Configure all the load generators (SIPp UAC agents), SIP proxy server, SIP 

registrar server, and call handlers (SIP UAS agents) to be in the same network. Modify 

the opensips.cfg as needed. Various configurations include specifying the listening 

interface, transport protocol, L4 port id, configuration for relaying the messages to caller. 
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Start the OpenSIPS server on SIP server machine (server under test) using the below 

command. 

#opensips 

Add the user location (caller location) to the database using the below command. 

In this example, the user name is 1003 and its location is identified by SIP URI of 

'sip: 1003@192.168.1.100:5061'. 

# opensipsctl ul add 1003 sip:1003@192.168.1.100:5061 

Start the UAS agents on call handling machines by running SIPp UAS scenarios 

listening for the incoming calls. Below is SIPp command to start a UAS scenario 

listening for incoming call requests using TLS on 192.168.1.100 interface. In this 

command, the L4 port being listened to is also provided. Also, the TLS certificate and 

private key are provided. 

# sipp -sn uas -i 192.168.1.100 -p 5061 -t In -1 900 -tls_cert ./user-cert.pem -

tls_key ./user-privkey.pem 

Now, start the load generators (SIPp UAC scenarios) so that calls are established 

through SIP proxy server. Below is the command to start the UAC scenarios using TLS. 

With this command, SIPp sends the call requests at the rate of 100 calls per second using 

TLS. It sends these call requests out on the 192.168.1.200 interface and they are targeted 

to the 192.168.1.2 interface on SIP proxy server. 
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#sipp -sn uac 192.168.1.2:5061 -i 192.168.1.200 -p 5061 -t In -tls_cert ./user-

cert.pem -tls_key ./user-privkey.pem -1 900 -s 1003 -r 100 

In order to change the load, stop the current UAC scenario and start a new 

scenario with calls per second configured as needed. Or, more UAC agents can be 

started for generating more loads to SIP proxy server. While a test is in progress, 

measure the CPU utilization on SIP proxy server using the average over the test duration. 

Also, repeat the test to profile the CPU cycles spent on various software components. For 

profiling, start the OProfile while the test is running and stop the OProfile after the test 

duration has elapsed. Save the OProfile logged output so we have the information needed 

to analyze the percentage of CPU cycles spent among various software components. 
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CHAPTER 6 

PERFORMANCE EVALUATION 

In this chapter, we discuss the test cases used for measuring SIP server throughput 

rates and corresponding CPU utilization, the performance results obtained, and the 

OProfile profiling information noted. 

Evaluating Performance Impact Due to Authentication 

The performance impact due to digest based authentication in SIP is evaluated by 

measuring the RPS of SIP registrar servers with and without the digest authentication 

enabled. 

\ 
UAC 

SUT. SIP X 

Registrar Server 

iiiiiiiiiiiiiiil 

mmm 

FIGURE 19. Registration without authentication 
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The Figure 19 above shows the call flow between the UAC and SIP registrar 

server when registrar does not implement Authentication. In this case, the UAC sends 

the REGISTER requests without authentication request and the Registrar Server responds 

with the OK responses. A sample REGISTER request without authentication is shown in 

below Figure 20. 

REGISTER sip:registrar SIP/2.0 
Via: SIP/2.0/UDP origin 
From: <sip:>;tag=l 
To: sip:registrand 
Call-ID: call-id value 
CSeq: 1 REGISTER 
Contact: <sip:IP address> 
Expires: 7200 Content-Length: 0 

FIGURE 20. REGISTER request without authentication. 

The message flow for registrations with authentication is shown in below Figure 

21. In this case, the UAC first sends the REGISTER request without authentication. The 

UAS responds back with the UNAUTHORIZED response. The UAC then sends the 

REGISTER request with the AUTHORIZATION header. A sample REGISTER request 

with the AUTHORIZATION header is shown in below Figure 22. 
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FIGURE 21. Registration with authentication. 

REGISTER sip:registrar SIP/2.0 
Via: SIP/2.0/UDP origin 
From: <sip:registrand>;tag=l 
To: s ip:regi s trand 
Call-ID: call-id value 
CSeq: 1 REGISTER 

Contact: <sip:IP address> 
Expires: 7200 Authorization:Digest 
username="registrand", 
realm="SIPstone", 
nonce= Nea9c8e88df84fIcec4341ae6cbe5a359", 
opaque="", uri="registrar", 
response="dfe56131dl958046689cd83306477ecc" 
Content-Length: 0 

FIGURE 22. Authenticated REGISTER request 

64 



SIPp does not have built in UAC and UAS scenarios for SIP authentication. So, 

we have developed an XML file for this scenario and it is provided in Appendix-A. The 

Figure 23 below shows SIPp UAC using the XML scenario for the Registration with 

Authentication. 

FIGURE 23. SIPp screenshot of registration with authentication 

SIP Registrar Performance Results 

The CPU utilization of SIP server is measured with UDP or TCP as transport, and 

with or without Authentication. This means, we ran four different test cases: UDP 

transport and no authentication, UDP transport with authentication, TCP transport and no 

authentication, and TCP transport with authentication. For each of these four test cases, 

the CPU utilization is measured with varying workloads. These measurements are shown 

in graphical form in Figures 24 to 28. These measurements in table form are also 

provided in Appendix C. 

65 



The Figure 24 below shows comparison of SIP performance with and without 

Authentication using UDP as transport. As expected, the CPU utilization is higher for a 

given number of RPS when authentication is enabled. With UDP transport, the CPU 

utilization reaches 100% for approximately 5750 Registrations Per Second (RPS) when 

authentication is enabled where as the CPU utilization is only 29.7% for approximately 

8000 RPS when authentication is disabled. 

FIGURE 24. SIP registrar performance comparison—UDP. 

One way to compare the two test cases is by looking at the CPU utilization for a 

given number of RPS. For 5750 RPS, the CPU utilization is 19% when authentication is 

disabled and 100% when authentication is enabled. This means the degradation in 
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performance is approximately five times at 5750 RPS. In a similar fashion, the performance 

degradation for various RPS loads is calculated. The Figure 25 below shows the degradation in 

SIP registrar performance at various RPS loads. From this graph, we can note that the 

performance degradation varied from 4.63 times to 5.26 times depending on the RPS load. 

Taking an average of these results (minimizing measurement error), we have noted a performance 

degradation of approximately five times due to the SIP authentication. The performance 

degradation is approximately five times at any given RPS load and this suggests that this 

information can also be used for extrapolation when needed. However, it should be noted that 

platform specific improvements in CPU speed and memory access affecting the digest 

calculations may yield different numbers. We hope that these measurements give a good 

approximation of costs to be incurred when using SIP digest based authentication of SIP users. 

Performance Impact Due To SIP 
Authentication with UDP Transport 

o 

< 

Registrations Per Second 

FIGURE 25. SIP registrar performance degradation—UDP. 
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The Figure 26 below shows comparison of SIP performance with and without 

Authentication using TCP as transport. With TCP transport, the CPU utilization reaches 

100% for approximately 4500 Registrations Per Second (RPS) when authentication is 

enabled. The CPU utilization is only 42.5% for 8000 RPS when authentication is 

disabled. As expected the performance (RPS) has come down when TCP is used as 

transport protocol compared to UDP case due to the TCP overhead. 

120 

100 

——TCP+ 
Auth 

o60 

-TCP + NoAuth 

i 4000 6000 : 

Registrations Per Second 

8000 10000 2000 

FIGURE 26. SIP registrar performance comparison—TCP. 

The Figure 27 below shows the degradation in SIP registrar performance at 

various RPS loads. As with the UDP case, the performance degradation has varied from 

4.5 times to 5.4 times depending upon the RPS load. Taking the average of performance 

degradation measured at different loads, we can note that the performance degradation 
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due to SIP authentication is approximately five times. These results also indicate that the 

performance degradation due to SIP digest based authentication is approximately five 

times whether the transport protocol is UDP or TCP. 

FIGURE 27. SIP registrar performance degradation—TCP. 

The below Figure 28 shows all the four (two TCP and two UDP) test cases in one 

graph. It is clear from the graph that UDP provides more performance than TCP as UDP 

has less overhead compared to TCP. It is also clear that the performance degradation in 

both UDP and TCP cases is almost same. 
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FIGURE 28. SIP registrar performance comparison. 

Evaluating Performance Impact Due to TLS 

The performance impact due to TLS in SIP is evaluated by measuring the CPU 

utilization under varying loads of CPS using different test cases that have different 

transports and TLS settings. There are three different TLS settings to be taken into 

account: authentication (only client authenticating server or mutual), proxy server 

operating mode (proxy in the middle of proxy chain or inbound proxy or outbound proxy 

or local proxy), and session reuse (enabled or disabled). Note that the operating mode of 

a proxy is logical and all the other operating modes are special cases of local proxy mode. 

As our focus is in evaluating the impact of TLS overhead, we have chosen only one 
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operating mode (local proxy mode) so as to minimize the number of test cases while still 

covering the test cases needed for our evaluation. 

Most of the use cases are where clients authenticate server and not the mutual 

authentication. So, we need only one test case with mutual authentication to evaluate the 

performance impact due to mutual authentication compared to the case of only client 

authenticating server. Similarly, the benefit with session reuse is evaluated by picking up 

only one test case with session reuse enabled. The TLS test cases we have chosen are: 

Local proxy with client authentication and no session reuse (TLS-Local-Client), Local 

proxy with client authentication and session reuse (TLS-Local-Client-SessionReuse), and 

Local proxy with mutual authentication and no session reuse (TLS-Local-Mutual). To 

summarize, the different test cases we have used are: a) UDP transport, b) TCP Mono 

(Single socket), c) TCP Multi (Multiple sockets), d) TLS-Local-Client, e) TLS-Local-

Client-SessionReuse, and g) TLS-Local-Mutual. The results measured are provided in 

the Appendix D and plotted in this section. 

The performance degradation due to server also authenticating client is obtained 

by comparing the results from TLS-Local-Client and TLS-Local-Mutual test cases. The 

difference between these two cases is the additional overhead for the server to request the 

certificate from client and authenticating it in case of mutual authentication. The Figure 

29 below shows the performance degradation due to mutual authentication compared to 

client only authentication. The CPU utilization has reached 100% for around 95 calls per 
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second in case of mutual authentication and for around 135 calls per second in case of 

client only authentication. 
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IB TLS-Local-

Client 

TLS-Local-Mutual 
0 

0 50 100 150 200 250 300 

Calls Per Second 

FIGURE 29. SIP proxy server performance impact due to mutual authentication. 

The performance gain with session reuse enabled is obtained by comparing the 

results from TLS-Local-Client and TLS-Local-Client-SessionReuse test cases. These 

results are shown in below Figure 30. As can be seen from the Figure, the CPU 

utilization has reached 100% for about 135 calls per second in case of TLS-Local-Client 

case which is not using the session reuse and for about 320 calls per second in case of 

TLS-Local-Client-SessionReuse case which is using the session reuse. For this test, note 

that all the calls are made under few sessions which are established first time and are 

cached for subsequent use as session reuse is enabled. 
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FIGURE 30. SIP proxy server performance gain with session reuse. 

The performance impact on SIP proxy due to TLS is obtained by comparing the 

results from UDP and TCP test cases with the results from TLS-Local-Client and TLS-

Local-Mutual test cases. These results are plotted in below Figure 31. The CPU 

utilization reached 100% for around 95 calls per second load in case of TLS-Local-

Mutual test case where TLS is enabled with mutual authentication and multiple incoming 

and outgoing TLS connections. In case of TLS with client only authentication and 

session reuse not enabled, the peak throughput (where CPU utilization has reached 

100%) is around 135 calls per second. In case of TLS with client only authentication and 

session reuse enabled, the peak throughput is measured to be around 320 calls per second. 

The peak throughput for TCP case is around 865 calls per second when multiple sockets 

are used and around 1130 calls per second. Finally, the peak throughput measured for 

UDP case is 1810 calls per second. 
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CPU Utilization - UDP/TCP/TLS cases 
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FIGURE 31. SIP proxy server performance comparison. 

The peak CPS throughput for the different test cases is obtained from the data in 

above Figure 31 and is shown in graphical form in below Figure 32. From this data, we 

can infer that there is about nineteen times peak throughput degradation when TLS-

Local-Mutual is compared with the UDP case. And the degradation is about nine times 

when compared to the TCP multiple socket case. The TCP multiple socket case provides 

only 47% of peak performance that can be achieved with UDP. The overhead due to 

several TCP connections can be obtained by comparing the TCP Mono and TCP Multi 

cases and this overhead is about 14 %. The performance degradation due to the server 

also authenticating server when compared to the case of only client authenticating server 

is about 30%. When session reuse is enabled, the performance gain due to bypassing the 
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asymmetric cryptographic operations and avoiding the overhead of exchange of few 

messages needed for negotiation of secret key and other parameters is about 2.37 times. 
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FIGURE 32. SIP proxy peak CPS throughputs. 

Impact ofTLS-OProfile Results 

The SUT is profiled using Linux OProfile utility while different test are running 

and the collected logs are analyzed for determining the CPU time spent on various 

software components of interest. The summary of OProfile Results measured is provided 

in tables in Appendix E and are plotted and discussed in this section. The Figure 33 
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below shows the OProfile results summary for the UDP case with various loads. The 

three software components where CPU time is spent apart from the kernel are the 

opensips server, libc library, and tm library. Around 25% of CPU cycles are spent in 

opensips, 20% of CPU cycles are spent in libc, and 10% of CPU cycles are spent in tm 

library. What this means is that 25% of CPU utilization measured is due to the opensips 

software, and 20% of CPU utilization measured is due to the libc library functions, and 

10% of CPU utilization measured is due to the timer library (tm library). The CPU 

utilization measured will be different for different traffic loads and we have already noted 

this information as part of our TLS performance measurements. Another important point 

we can also note from Figure 33 is that this division of CPU cycles between different 

software components is almost same under different CPS loads. 

Oprofile Summary UDP 

opensips libc tm 

Software Component 

• 150 cps 

• 300 cps 

• 600 cps 

• 1000 cps 

FIGURE 33. OProfile results summary-UDP 

76 



The Figure 34 below shows the OProfile results summary for the TCP single 

socket case with various loads. The three software components where CPU time is spent 

apart from the kernel are the opensips server, libc library, and tm library. Around 25% of 

CPU cycles are spent in opensips, 16% of CPU cycles are spent in libc, and 7% of CPU 

cycles are spent in tm library. These results obtained with the OProfile will have to be 

multiplied with the CPU utilization measured to obtain the CPU utilization due to each of 

these software components of interest. We can also note that the division of CPU cycles 

between different software components is almost same under different CPS loads. 

Oprofile Summary - TCP Mono 

„ 30 ^ m I 
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• 150 cps 

• 200 cps 

• 400 cps 

• 600 cps 

800 cps 

opensips libc 

Software Component 

tm 

FIGURE 34. OProfile results summary—TCP mono. 
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The Figure 35 below shows the OProfile results summary for the TCP multi 

socket case with various loads. The three software components where CPU time is spent 

apart from the kernel are the opensips server, libc library, and tm library. Around 27% of 

CPU cycles are spent in opensips, 14% of CPU cycles are spent in libc, and 6% of CPU 

cycles are spent in tm library. These results obtained with the OProfile will have to be 

multiplied with the CPU utilization measured to obtain the CPU utilization due to each of 

these software components of interest. We can also note that the division of CPU cycles 

between different software components is almost same under different CPS loads. 

Oprofile Summary - TCP Multi 
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FIGURE 35. OProfile results summary—TCP multi. 

The Figure 36 below shows the OProfile results summary for the TCP-Local-

Client-SessionReuse case (TLS with client only authentication and session reuse enabled) 
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with various loads. The four software components where CPU time is spent apart from 

the kernel are the opensips server, libcrypto library, libssl library, and libc library. 

Around 18% of CPU cycles are spent in libcrypto library, 23% of CPU cycles are spent 

in libc, 3% of CPU cycles are spent in libssl library , and 11% of CPU cycles are spent in 

libc library. These results obtained with the OProfile will have to be multiplied with the 

CPU utilization measured to obtain the CPU utilization due to each of these software 

components of interest. We can also note that the division of CPU cycles between 

different software components is almost same under different CPS loads. 

Oprofile Summary - TLS-Local-Client-
SessionReuse 
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FIGURE 36. OProfile results summary-TLS local client session reuse. 

The Figure 37 below shows the OProfile results summary for the TCP-Local-

Client case with various loads. The four software components where CPU time is spent 

apart from the kernel are the opensips server, libcrypto library, libssl library, and libc 
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library. Around 48% of CPU cycles are spent in libcrypto library, 14% of CPU cycles 

are spent in libc, 3% of CPU cycles are spent in libssl library, and 8% of CPU cycles are 

spent in libc library. These results obtained with the OProfile will have to be multiplied 

with the CPU utilization measured to obtain the CPU utilization due to each of these 

software components of interest. We can also note that the division of CPU cycles 

between different software components is almost same under different CPS loads. 

Oprofile summary - TLS-Local-Client 
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FIGURE 37. OProfile results summary—TLS local client. 

The Figure 38 below shows the OProfile results summary for the TCP-Local-

Mutual case with various loads. The four software components where CPU time is spent 

apart from the kernel are the opensips server, libcrypto library, libssl library, and libc 

library. Around 58% of CPU cycles are spent in libcrypto library, 10% of CPU cycles are 
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spent in libc, 2% of CPU cycles are spent in libssl library, and 5% of CPU cycles are 

spent in libc library. These results obtained with the OProfile will have to be multiplied 

with the CPU utilization measured to obtain the CPU utilization due to each of these 

software components of interest. We can also note that the division of CPU cycles 

between different software components is almost same under different CPS loads. 

Oprofile summary - TLS-Local-Mutual 

libcrypto opensips libssl libc 

Software Component 

FIGURE 38. OProfile results summary—TLS local mutual. 

To compare the results from different test cases, we have normalized the results 

with CPU utilization measured. These normalized results for different test cases at a 

CPU load of 90 CPS are plotted in the below Figure 39. From this Figure, we can see 

that about 54.23% of CPU time is spent in libcrypto for the TLS-Local-Mutual, about 
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31.51% of CPU time is spent in libcrypto for the TLS-Local-Client, and about 4.43% of 

CPU time is spent in libcrypto for the TLS-Local-Client-SessionReuse. This means, the 

asymmetric cryptographic operation in TLS session establishment have increased the 

CPU utilization from 4.43% to 31.51% or 54.23% depending on whether the 

authentication is client only or mutual. Note that even though the cost due to libcrypto 

has gone up by 7.11 % between the TLS-Local-Client and TLS-Local-Client-

SessionReuse cases, the overall benefit of session reuse is about 2.37 times. As can be 

seen from the below Figure, this is due to the fact the costs associated with other 

components do not scale in the same ratio as that of libcrypto between the 2 cases. 

Oprofile Results Normalized - Comparison 

• TCP Mono 

• TLS-!. ocal-Client-SessionReuse 

• TLS-Local-Client 

• TLS-Local-Mutual 
Software Component 

FIGURE 39. Comparison of OProfile results normalized 
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From the OProfile summary results plotted in Figures 33 to 38 above, we can also 

notice that this division of CPU cycles, for a given test case, between different software 

components is almost same under different CPS loads. This means, we can also 

extrapolate the measured results for higher CPS loads as long as the platform under test 

can be assumed to have similar processor and memory access performance, though the 

measured results are specific to a given test setup. 
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CHAPTER 7 

CONCLUSIONS 

With rapid evolution of VoIP with SIP widely used as the signaling protocol, SIP 

security is becoming extremely important. In this thesis, we have studied the various 

security threats to SIP like registration hijacking, message modification, impersonating a 

server, Denial of Service (DoS), session tear down, and Replay attack. We have also 

studied the various security mechanisms (Authentication, S/MIME, and TLS) in practice 

to mitigate these threats. We have also evaluated the impact on performance of SIP 

servers due to Authentication and TLS. The open source OpenSIPS server is used as the 

registration or proxy server in our performance testing. The OpenSIPS server is 

configured through the configuration scripts for the required SIP proxy operations and 

security mechanisms. SIPp traffic generator is used for generating SIP traffic. The 

embeded UAC and UAS scenarios are used for generating and accepting the voice calls. 

SIPp test scenarios for registration with and without authentication are developed using 

the XML. We have used both UDP and TCP as transport protocols in evaluating the 

performance impact of Authentication on the SIP registrar server. The results show that 

the performance of the SIP registrar server has degraded by approximately five times due 

to SIP authentication. The results also show that the performance degradation noted is 

consistent across different SIP traffic loads with either UDP or TCP as the transport 

protocol. 
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The performance impact of TLS on the SIP proxy server is evaluated using same 

test-bed employing the OpenSIPS server and SIPp traffic generators. We.have used 

UDP, TCP, and TLS as transport protocols in this performance evaluation. We have 

noted that the performance of the SIP proxy server has improved by approximately 2.37 

times when session reuse is enabled by comparing the peak loads obtained when using 

TLS with and without session reuse. The performance degradation due to mutual 

authentication in TLS compared to client only authentication is measured to be around 

1.5 times. The performance degradation of the TLS local proxy server with mutual 

authentication is measured to be about nineteen times when compared to UDP case and 

about nine times when compared to TCP case. 

We have further analyzed the CPU utilization between the various TLS test cases 

using the OProfile. The OProfile utility allows us to profile the system by measuring the 

number of CPU cycles used by various software components (libcrypto, opensips, libssl, 

libtm, kernel, etc) within a given period of time. Using the OProfile results and the CPU 

utilization measurements, we have noted that cost incurred in TLS asymmetric 

cryptography operations in establishing the TLS session is approximately 7.11 times by 

comparing the CPU time spent in libcrypto between the 2 cases of TLS with and without 

session reuse. The OProfile results also show that the percentage of CPU cycles used by 

various software components like libcrypto, opensips, and libssl for a given test case is 

approximately same with various SIP traffic loads. This means the results obtained can 

also be extrapolated to different loads without introducing a significant error. 
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APPENDIX A 

SIP MESSAGES FOR REGISTRATION WITH AUTHENTICATION 
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The listing below shows the various SIP messages in SIP registration with 

authentication enabled. 

1) REGISTER Request without Authentication sent from the UAC. 

REGISTER sip: 192.168.1.150 SIP/2.0 
Via: SIP/2.0/UDP 192.168.1.151:5060;branch=z9hG4bK-l 100-1-0 
From: sipp <sip:sipp@ 192.168.1.15 l:5060>;tag=l 
To: sut <sip:service@ 192.168.1.150:5060 
Call-ID: 1-1100@192.168.1.151 
CSeq: 1 REGISTER 
Contact: sip:sipp@ 192.168.1.151:5060 
Max-Forwards: 70 
Expires: 1800 
User-Agent: SIPp/Linux 
Content-Length: 0 

2) UNAUTHORIZED Response received from SIP Registrar Server. 

SIP/2.0 401 Unauthorized 
Via: SIP/2.0/UDP 192.168.1.151:5060;branch=z9hG4bK-l 100-1-0 
From: sipp <sip:sipp@192.168.1.151:5060>;tag=l 
To: sut <sip:service@192.168.1.150:5060>;tag=l 16f6bbbl87428b76dfe896dc69c98ee.e87d 
Call-ID: 1-1100@192.168.1.151 
CSeq: 1 REGISTER 
WWW-Authenticate: Digest realm="192.168.1.150", 
nonce-'4b 1486500000110d07a8a496d88b628973dl59afa7a85bcf' 
Server: OpenSIPS (1.6.0-notls (i386/linux)) 
Content-Length: 0 

3) REGISTER Request with the Authorization Header 

REGISTER sip: 192.168.1.150 SIP/2.0 
Via: SIP/2.0/UDP 192.168.1.15 l:5060;branch=z9hG4bK-l 100-1-3 
From: sipp <sip:sipp@ 192.168.1.15 l:5060>;tag=l 
To: sut <sip:service@ 192.168.1.150:5060> 
Call-ID: 1-1100@192.168.1.151 
CSeq: 2 REGISTER 
Contact: sip:sipp@ 192.168.1.151:5060 
Authorization:Digest username-'userl", realm="192.168.1.150", uri-'sip: 192.168.1.150:5060", 
nonce="4b 1486500000110d07a8a496d88b628973dl59afa7a85bcf', 
response-'c9361531 c988bf253b 1 e9177548973fe",algorithm=MD5 
Max-Forwards: 70 
Expires: 1800 
User-Agent: SIPp/Linux 
Content-Length: 0 

88 



4) OK Response from SIP Registrar upon verifying the provided credentials. 

SIP/2.0 200 OK 
Via: SIP/2.0/UDP 192.168.1.15 l:5060;branch=z9hG4bK-l 100-1-3 
From: sipp <sip:sipp@192.168.1.151:5060>;tag=l 
To: sut <sip:service@192.168.1.150:5060>;tag=l 16f6bbbl87428b76dfe896dc69c98ee.515e 
Call-ID: 1-1100@192.168.1.151 
CSeq: 2 REGISTER 
Contact: <sip:sipp@ 192.168.1.151:5060>;expires= 1800 
Server: OpenSIPS (1.6.0-notls (i386/linux)) 
Content-Length: 0 
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<?xml version="1.0" encoding="ISO-8859-l" ?> 
<scenario name="Basic Sipstone UAC"> 
<send retrans="500"> 

<![CDATA[ 
REGISTER sip:[remote_ip] SIP/2.0 
Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch] 
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number] 
To: sut <sip:[service]@[remote_ip]:[remote_port]> 
Call-ID: [call id] 
CSeq: 7 REGISTER 
Contact: sip: sipp@[local_ip]: [local_port] 
Max-Forwards: 70 
Expires: 1800 
User-Agent: SIPp/Linux 
Content-Length: 0 

]]> 
</send> 

<recv response="100" optional="true"> 
</recv> 

<recv response="401" auth="true"> 
</recv> 

<send> 
<![CDATA[ 

REGISTER sip:[remote_ip] SIP/2.0 
Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch] 
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number] 
To: sut <sip:[service]@[remote_ip]:[remote_port]> 
Call-ID: [call id] 
CSeq: 8 REGISTER 
Contact: sip: sipp@[local_ip]: [local_port] 
[authentication username=userl password=passwordl] 
Max-Forwards: 70 
Expires: 1800 
User-Agent: SIPp/Linux 
Content-Length: [len] 

]]> 
</send> 

<recv response="200"> 
</recv> 

</scenario> 
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The table below summarizes the CPU loads for the four different test cases we 

have considered for evaluating the impact of SIP authentication on SIP Registrar 

performance. 

TABLE 1. CPU Utilization With and Without Authentication 

RPS UDP+ 
NoAuth 

TCP + 
NoAuth 

UDP+ 
Auth 

TCP+ 
Auth 

(UDP+Auth)/ 
(UDP+No Auth) 

(TCP+Auth)/ 
(TCP +No Auth) 

100 0.5 0.5 2.6 2 7 5.2 5.4 
250 08 1.1 3.9 5.7 4.875 5.181818182 

500 1 7 2.1 8 9.8 4.705882353 4.666666667 

750 24 3 11 14.5 4.583333333 4.833333333 

1000 3.3 3.9 16 19.1 4.848484848 4897435897 

1250 3.7 4.8 17.9 24.4 4.837837838 5083333333 
1500 4.5 . 21.8 28.9 4844444444 '37704918 

1750 5.8 7.8 27.5 34.4 474137931 4.410256^1 

2000 J 9.1 35 40.6 5.147058824 4.461538462 

2250 7.7 10.2 37 45.7 4.805194805 4480392157 

2500 8 5 10.8 39.9 50.7 4.694117647 4.694444444 

2750 9.3 11.4 44 54.2 4.731182796 4754385965 

3000 10.5 12.2 49.6 60 4.723809524 4.918032787 

3250 11.1 13.6 51.3 67.6 >21621622 4.970588235 

3500 12.2 14.5 57.7 72 '29508197 4.965517241 

3750 13.9 15.5 67 75.5 4.820143885 4.870967742 

4000 14.2 16 7 68 85.5 4.788732394 5 119760479 

4250 S 18.4 73 89.9 4.709677419 4.885869565 

4500 21 76.7 100 .92814371 4.761904762 

4750 17 23.6 79 100 47058824 

5000 18 • 87 :)0 133333333 

5750 v.) 27.2 100 100 :63157895 

6250 21.7 30.3 100 :)0 

6500 23.5 34.2 100 100 

7000 24,3 37 100 100 

7500 1 40.4 100 100 

8000 29.7 42.5 100 100 
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TABLE 2. CPU Utilization With and Without TLS 

CPS 

CPU Utilization 

CPS UDP TCP-Mono TCP-MuIti 

TLS-Local-

Client 

TLS-Local-Client-

SessionReuse 

TLS-

Local-

Mutual 
0 0 0 0 0 0 0 

10 0.5 • 2.8 6 3.3 8.9 

20 0.7 34 4 13.3 5.7 18.3 
30 1.4 4 5.1 21.1 8.3 28 

40 2 S 5 5.9 28.9 11.1 39 

50 2.4 6.2 7.7 35.7 13.6 50 ' 

60 3 6.9 8.6 43.2 16.1 61.2 

70 3.7 8 10.3 50.8 19.6 71.8 

80 4.3 9.2 11.4 58.2 22.5 82.3 

90 4.8 10.1 12.9 64.8 25.1 91.6 

95 5.2 10.3 13.1 71.6 28.7 100 

100 5.4 10.8 13.5 77.2 32.1 100 

110 5 9 11.5 14 3 83.9 34 8 100 

120 6.3 11.9 15.7 90.4 38.1 100 

130 6 9 12.5 17.8 97.2 41.3 100 

135 7.3 12.9 18.2 100 43.6 100 

140 7.8 13.3 18.5 100 44.5 100 

150 8.4 L4.7 19.3 100 42 100 

160 9 15.6 20.2 100 50.6 100 

170 9.6 16.2 21.3 100 54.1 100 

180 10 17.5 23.1 100 57.3 100 

190 10.4 18.1 23.7 100 60.7 100 

200 10.6 19.4 25.1 100 63.4 100 

210 11.1 19.6 26.6 100 66.3 100 

220 11.5 20.2 27.3 100 69.1 100 

230 12.1 21 28.4 100 ' . 1 100 

240 12.8 21.7 29.7 100 74.9 100 

250 13.4 22.8 3i 100 100 

260 13.9 23.4 31.6 100 80.6 100 

270 14.5 23,7 32.9 100 83.8 100 

280 15.1 24.9 34.1 86.9 100 

290 15.9 26.3 36.2 100 89.4 100 

o
 

o
 

17 27.1 36.9 100 94.1 100 
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310 17.3 27.8 38.2 100 97.8 100 

320 17.8 28.7 39.6 100 100 100 

330 18.4 29.7 40.5 100 100 100 

340 18.9 30.6 41.7 100 100 100 

350 19.3 31.4 42.8 100 100 100 

360 19.5 32.1 43.4 100 100 100 

370 20.1 32.9 43.9 100 100 100 

380 20.6 33.2 44.7 100 100 100 

390 20.9 33.9 45.5 100 100 100 

400 21.3 34.4 46.3 100 100 100 

410 21.8 34.9 47.2 100 100 100 

420 22.3 35.8 48.2 100 100 100 

430 22.8 36.7 48.9 100 100 100 

440 23.3 37.6 49.8 100 100 100 

450 24.1 38.3 51.1 100 100 100 

460 24.6 39.1 51.9 100 100 100 

470 25.1 40.1 52.7 100 100 100 

480 25.7 41.2 53.5 100 100 100 

490 26.2 42.3 54.5 100 100 100 

500 26.8 43.4 56.8 100 100 100 

510 27.3 44.1 57.5 100 100 100 

520 27.9 44.8 58.2 100 100 100 

530 28.3 45.7 58.9 100 100 100 

540 28.7 46.4 60.7 100 100 100 

550 29.4 47 61.5 100 100 100 

560 29.9 48.1 62.7 100 100 100 

580 30.4 50.2 64.5 100 100 100 

600 32.1 52.3 67.9 100 100 100 

610 32.8 53.1 68.8 100 100 100 

650 35.4 56.1 73.1 100 100 100 

700 38.1 60.5 78.4 100 100 100 

750 41.3 64.2 84.9 100 100 100 

800 44.7 68.8 92.5 100 100 100 

850 47.2 73.1 98.6 100 100 100 

865 48.3 74.5 100 100 100 100 

900 50.8 77.4 100 100 100 100 

950 54.3 82.2 100 100 100 100 

1000 57 86.9 100 100 100 100 
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1100 62.6 98.5 100 100 100 100 

1130 64.5 100 100 100 100 100 

1200 68.9 100 100 100 100 100 

1300 73.5 100 100 100 100 100 

1400 79.2 100 100 100 100 100 

1500 84.7 100 100 100 100 100 

1600 89.8 100 100 100 100 100 

1700 94.3 100 100 100 100 100 

1800 99.1 100 100 100 100 100 

1810 100 100 100 100 100 100 

1900 100 100 100 100 100 100 
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TABLE 3. OProfile Summary—UDP 

UDP 

CPS j 300 600 1000 

opensips 22.5 24.59 25.56 25.83 

libc 21.84 21.25 21.16 L.35 

tm 9.29 10.19 . 0.95 11.4 

TABLE 4. OProfile Results Normalized—UDP 

UDP 

CPS 90 300 600 1000 

opensips 1.08 4.1803 8.20476 14.7231 

libc 1.04832 3.6125 6.79236 12.1695 

tm 0.44592 1.7323 3.51495 6.498 

TABLE 5. OProfile Summary—TCP Single Socket 

TCP Mono 

CPS 90 200 400 600 800 

opensips 24.7 25.33 25.56 26.36 27.03 

libc 17.23 16.91 21.16 18.02 17.47 

tm 8.1 8.12 10.95 8.85 9.22 

TABLE 6. OProfile Results Normalized-TCP Single Socket 

TCP Mono 

CPS 90 200 400 600 800 

opensips •947 4.91402 8.79264 13.78628 18.59664 

libc 1.74023 3.28054 7.27904 2446 ~.,;:i936 

tm 181 1.57528 668 •i i.-2855 o -4336 
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TABLE 7 OProfile Summary—TCP Multiple Socket 

CPS 90 200 400 600 800 

opensips 28.24 29.02 29.57 29.75 29.97 

libc 14.9 14.82 14.98 15.31 17.03 

tm 7.39 7.39 7.9 8.05 7.22 

TABLE 8. OProfile Results Normalized—TCP Multiple Socket 

TCP Multi 

CPS 90 200 400 600 800 

opensips 3.64296 7.28402 13.69091 20.20025 27.72225 

libc 1.9221 3.71982 6.93574 10.39549 15.75275 

tm 0.95331 1.85489 3.6577 5.46595 6.6785 

TABLE 9. OProfile Summary—TLS Local Client 

TLS-Local-Ciient 

CPS 40 135 

libcryptc 48.62 48.63 49.21 

opensips 14 14.92 5.03 

libssl 3.06 3.3 3.35 

libc 7.74 7.94 7.93 
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TABLE 10. OProfile Results Normalized—TLS Local Client 

TLS-Local-Client 

CPS 40 90 135 

Libcrypto 14 05118 31.51224 49.21 

Opensips 4 046 9.66816 15.03 

Libssl 0.88434 2.1384 3.35 

Libc 2.23686 ~ .4512 7.93 

TABLE 11. OProfile Summary—TLS-Local-Client-Session Reuse 

TLS-Local-Client-

SessionReuse 

CPS 90 180 270 

libcrypto 17.67 18.73 18.79 

opensips 22.33 23.18 23.64 

libssl 2.82 3.05 5 . „  

libc 11.12 11.1 11.18 

TABLE 12. OProfile Results Normalized -TLS Local Client Session Reuse 

TLS-Loca CI ient-Ses; sionReuse 

CPS 90 180 270 

libcrypto 4.43517 10.73229 15.74602 

opensips 5.60483 13.28214 19.81032 

libssl 0.70782 1.74765 1 5978 

libc 2.79112 6.3603 9.36884 
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TABLE 13. OProfile Summary-TLS Local Mutual 

TLS-Local-Mutual 

CPS 30 60 \ 

libcrypto 58.22 58.83 3.21 

opensips 9.34 10.1 10.23 

libssl 2.06 2.13 2.15 

libc 4.74 4.91 4.96 

TABLE 14. OProfile Results Normalized—TLS Local Mutual 

TLS-Local-Mutua! 

CPS 30 60 90 

libcrypto 16.76736 36.00396 54.23636 

opensips 2.68992 6.1812 9.37068 

libssl 0.59328 1.30356 1 9694 

libc 1 36512 3.00492 4.54336 

TABLE 15. OProfile Results Normalized—90cps Load 

TestCase UC 

TC 

3HC 
TCP 

Multi 

90 
TLS 

Loc 

Clie 

cp 

al-
nt 

iS 

TLS-Local-

Client-Sessioi 

Reuse 

"^"TLS-

Local-

Mutual 

ibcrypto C ) 0 0 31.51224 4.435 17 54.23636 

ooensios ;*s ! 2.4947 3.64296 9.56816 5.604; 83 9.37068 

UDSSi 

LibC 

c 

1 04832 

> 0 

: 1.74023 

0 

1.9221 

2.1384 

5.14512 

0.707: 

2.791 

82 1.9694 

12 4.54336 

Tm 0.44592 : 0.8181 0.95331 0 0 0 

Kerne: 2.22576 1 ! 5.04697 6.38163 16.33608 ,.56H 06 21.1138 
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Given below is the output of opreport showing the profiling information for the 
case of TLS-Local-Client with a CPS load of 90. 

debian:/var# opreport -exclude-dependent ~threshold=0.1 
CPU: P4 / Xeon, speed 2793.37 MHz (estimated) 
Counted GLOBALPOWEREVENTS events (time during which processor is not stopped) with a unit mask of 0x01 (mandatory) 
count 100000 
GLOB ALPO WERE... | 
samples| %| 

263995 48.6188 libciypto.so.0.9.8 
111293 20.4963 no-vmlinux 
76032 14.0025 opensips 
42025 7.7396 libc-2.7.so 
16629 3.0625 libssl.so.0.9.8 
13488 2.4840 tm.so 
5088 0.9370 oprofiled 
2917 0.5372 syslogd 
1443 0.2658 acc.so 
898 0.1654 Xorg 
744 0.1370 libglib-2.0.so.0.1600.6 
725 0.1335 maxfwd.so 
669 0.1232 libpthread-2.7.so 
590 0.1087 libgobject-2.0.so.0.1600.6 
562 0.1035 rr.so 

debian:/var# opreport ~demangle=smart —symbols /usr/local/sbin/opensips 
CPU: P4 / Xeon, speed 2793.37 MHz (estimated) 
Counted GLOBAL POWER EVENTS events (time during which processor is not stopped) with a unit mask of 0x01 (mandatory) 
count 100000 
samples % image name symbol name 
10340 13.2907 opensips fmmalloc 
7045 9.0554 opensips tcpconn_new 
4845 6.2276 opensips parse_via 
4419 5.6800 opensips fm_free 
4161 5.3484 opensips tcpmainloop 
3629 4.6646 opensips sermalloc 
3279 4.2147 opensips ser_free 
2420 3.1106 opensips parseto 
2333 2.9988 opensips tcp_read_headers 
1898 2.4396 opensips do_action 
1621 2.0836 opensips fm_realloc 
1360 1.7481 opensips receivemsg 
1324 1.7018 opensips parseheaders 
1266 1.6273 opensips tcp_send 
1177 1.5129 opensips gethdrfield 
1168 1.5013 opensips parseuri 
1093 1.4049 opensips eval_expr 
1081 1.3895 opensips processlumps 
1062 1.3651 opensips parse_first_line 
990 1.2725 opensips forwardreply 
822 1.0566 [vdso] (tgid: 12018 range:0xb7f71000-0xb7f72000) (no symbols) 
815 1.0476 opensips tcp_receive_loop 
802 1.0309 opensips lumps_len 
759 0.9756 opensips tcp_read_req 
726 0.9332 opensips handle_io 
697 0.8959 opensips parse_hname2 
623 0.8008 opensips handleserchild 
612 0.7866 opensips build_req_buf_from_sip_req 
519 0.6671 opensips parse_cseq 
510 0.6555 [vdso] (tgid: 12022 range:0xb7f71000-0xb7f72000) (no symbols) 
491 0.6311 opensips .pit 
477 0.6131 opensips receive_fd 
475 0.6105 opensips check_ip_address 
413 0.5309 [vdso] (tgid:12019 range:0xb7f71000-0xb7f72000) (no symbols) 
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401 
389 
367 
355 
335 
330 
323 
321 
307 
288 
268 
268 
267 
261 
259 
244 
239 
231 
230 
214 
211 
207 
203 
186 
185 
178 
175 
173 
169 
168 
164 
161 
154 
146 
134 
134 
134 
133 
130 
123 
121 
112 
104 
101 
95 
85 
85 
85 
83 
80 
78 
77 
74 
74 
72 
69 
67 
65 
62 
61 
61 
61 
59 
58 
57 
57 

0.5167 opensips 
0.5154 opensips 
0.5000 opensips 
0.4717 opensips 
0.4563 opensips 
0.4306 opensips 
0.4242 opensips 
0.4152 opensips 
0.4126 opensips 
0.3946 opensips 
0.3702 opensips 
0.3445 opensips 
0.3445 opensips 
0.3432 opensips 
0.3355 opensips 
0.3329 opensips 
0.3136 opensips 
0.3072 opensips 
0.2969 opensips 
0.2956 opensips 
0.2751 opensips 
0.2712 opensips 
0.2661 opensips 
0.2609 opensips 
0.2391 opensips 
0.2378 opensips 
0.2288 opensips 
0.2249 opensips 
0.2224 opensips 
0.2172 opensips 
0.2159 opensips 
0.2108 opensips 
0.2069 opensips 
0.1979 opensips 
0.1877 opensips 
0.1722 opensips 
0.1722 opensips 
0.1722 opensips 
0.1710 opensips 
0.1671 opensips 
0.1581 opensips 
0.1555 opensips 
0.1440 opensips 
0.1337 opensips 
0.1298 opensips 
0.1221 opensips 
0.1093 opensips 
0.1093 opensips 
0.1093 opensips 
0.1067 opensips 
0.1028 opensips 
0.1003 opensips 
0.0990 opensips 
0.0951 opensips 
0.0951 opensips 
0.0925 opensips 
0.0887 opensips 
0.0861 opensips 
0.0835 opensips 
0.0797 opensips 
0.0784 opensips 
0.0784 opensips 
0.0784 opensips 
0.0758 opensips 
0.0746 opensips 
0.0733 opensips 
0.0733 opensips 

tls_read 
branchbuilder 
parse_msg 
handle_io 
build_res_buf_from_sip_req 
parsemethod 
clean_hdr_field 
tlsblockingwrite 
run_action_list 
tls_update_fd 
free_lump_list 
getstatvarfromnumcode 
parsecontentlength 
tls_fix_read_conn 
exec_pre_req_cb 
pv_printf 
get_ticks 
grep_sock_info 
free_sip_msg 
anchorlump 
del_flaged_lumps 
eat_line 
corejhash 
sendall 
resetavps 
viabuilder 
tlsaccept 
forward_request 
free_hdr_field_lst 
idbuilder 
free_via_list 
build_res_buf_from_sip_res 
resetsflag 
get_send_socket 
setavplist 
exec_post_req_cb 
hostentshmcpy 
tcpconndestroy 
str2s 
_shm_resize 
tls_tcpconn_init 
parse_from_header 
handle_tcp_child 
handle_new_connect 
runtoproute 
exec_pre_rpl_cb 
check_against_blacklist 
iowatchdel 
parsesipmsguri 
receivedtest 
verifycallback 
send2child 
fixupgetsvalue 
free_to 
io_watch_add 
pvge^specvalue 
get_branch 
set_ruri 
del_lump 
tcp_addr_hash 
eirortext 
printip 
reset_bl_markers 
start_timer_processes 
sendfd 
init_err_info 
ser realloc 
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53 
52 
51 
50 
50 
48 
47 
45 
38 
37 
34 
32 
31 
27 
26 
25 
25 
24 
22 
22 
21 
20 
19 
19 
11 
9 
7 
6 
5 
4 
3 
2 
2 

0.0707 opensips clear_branches 
0.0707 opensips insert_cond_lump_after 
0.0681 opensips insert_new_lump_after 
0.0668 opensips adjust_clen 
0.0656 opensips pv_get_xuri_attr 
0.0643 opensips check_transaction_quadruple 
0.0643 opensips tls_find_server_domain 
0.0617 opensips tcpconn_add 
0.0604 opensips pv_get_ruri 
0.0578 opensips insert_cond_lump_before 
0.0488 opensips insert_new_lump_before 
0.0476 opensips exec_post_rpl_cb 
0.0437 opensips insertsubstlumpafter 
0.0411 opensips getbOflags 
0.0398 opensips tls_dump_cert_info 
0.0347 opensips release_tcpconn 
0.0334 opensips check_self 
0.0321 opensips check_self_op 
0.0321 opensips tlsclose 
0.0308 opensips init sock opt 
0.0283 opensips pv_get_ruri_attr 
0.0283 opensips tls_print_errstack 
0.0270 opensips tls_tcpconn_clean 
0.0257 opensips setflag 
0.0244 opensips free_cseq 
0.0244 opensips get_authorized_cred 
0.0141 opensips recvall 
0.0116 opensips setbOflags 
0.0090 [vdso] (tgid: 12020 range:0xb7f71000-0xb7f72000) (no symbols) 
0.0077 [vdso] (tgid.12016 range:0xb7f71000-0xb7f72000) (no symbols) 
0.0064 [vdso] (tgid: 12021 range:0xb7f71000-0xb7f72000) (no symbols) 
0.0051 [vdso] (tgid: 12015 range:0xb7f71000-0xb7f72000) (no symbols) 
0.0039 opensips setbflag 
0.0026 opensips delete_expired_routine 
0.0026 opensips set_ruri_q 
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