
ABSTRACT

PERFORMANCE EVALUATION OF SIP AUTHENTICATION AND TLS

By

Swapna Maguluri

August 2012

The Session Initiation Protocol (SIP) is an application-layer control protocol that

can establish, modify, and terminate multimedia sessions (conferences) such as Internet

telephony calls and it is defined in the RFC3261. SIP is vulnerable to significant risks

and vulnerabilities as the signaling is done over open and highly insecure Internet and

SIP also offers user mobility. The massive deployment of Voice over Internet Protocol

(VoIP) had raised the importance of the security and more precisely of the underlying

signaling protocol SIP.

In this thesis, we have studied the various security risks to SIP and various

security mechanisms used with SIP to mitigate those risks. We have also evaluated the

impact on performance of SIP registrar and proxy servers due to the overheads imposed

by SIP authentication and use of Transport Layer Security (TLS) with SIP. The

performance impact is evaluated using an experimental test-bed comprising of an Open

Source SIP Server (OpenSIPS) and an open source SIP performance (SIPp) bench­

marking tool. We have also profiled the system costs in TLS using the OProfile utility of

Linux.

PERFORMANCE EVALUATION OF SIP AUTHENTICATION AND TLS

A THESIS

Presented to the Department of Computer Engineering and Computer Science

California State University, Long Beach

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Engineering

Committee Members:

Tracy Bradley Maples, Ph.D. (Chair)
Burkhard Englert, Ph.D.

Min He, Ph.D.

College Designee:

Burkhard Englert, Ph.D.

By Swapna Maguluri

B.Tech., 2004, KLCE, Vijayawada, India

August 2012

UMI Number: 1520910

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation Publishing

UMI 1520910

Published by ProQuest LLC (2012). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

uest

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my thesis

advisor Dr. Tracy Maples for her excellent guidance and support. Her knowledge, ideas,

innovative thinking, and encouragement have been of immense help to me in carrying out

the thesis work.

Next, I would also like to express my sincere gratitude to Dr. Burkhard Englert

and Dr. Min He for being members of my thesis committee.

Finally, I would also like to thank my husband, parents, and friends for their

constant patience, support, and encouragement during the course of this thesis and the

Masters degree.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER

1. INTRODUCTION 1

Problem Statement 2
Organization of Thesis 2

2. OVERVIEW OF VOIP AND SIP 4

VoIP Technology 4
SIP Introduction 6
SIP Functionality 6
SIP Elements 8
Overview of SIP Operation 13

Session Setup 13
Session Modification 17
Session T eardown 18
Query Capabilities 18

3. SIP SECURITY THREATS 19

Network Security 19
SIP Security Threats 20
Registration Hij acking 21
Impersonating a Proxy Server 22
Tampering with Message Bodies 23
Denial of Service 23
Session Teardown Attack 25

iv

CHAPTER Page

Replay Attack 26

4. SIP SECURITY MECHANISMS 27

SIP Security Challenges 27
SIP Security Mechanisms 27

Authentication 28
S/MIME 32
Transport Layer Security (TLS) 34
IPSec 38

Limitations of Security Mechanisms in SIP 43

5. PERFORMANCE EVALUATION TEST SETUP AND TOOLS 45

Experimental Setup 45
Performance Metrics 47
Test Methodology 48
SIPp Overview 49

SIPp Embedded Scenarios 50
Using SIPp with Integrated Scenarios 52
Developing and Using New SIPp XML Scenarios 56

Open SIP Server (OpenSIPS) 57
OProfile 58
Systems Used for Testing 59
Procedure for Testing 59

6. PERFORMANCE EVALUATION 62

Evaluating Performance Impact due to Authentication 62
SIP Registrar Performance Results 65
Evaluating Performance Impact due to TLS 70
Impact of TLS—OProfile Results 75

7. CONCLUSIONS 84

APPENDICES 86

A. SIP MESSAGES FOR REGISTRATION WITH AUTHENTICATION 87

B. SIPp XML SCENARIO FOR AUTHENTICATION 90

C. SIP AUTHENTICATION-- PERFORMANCE MEASUREMENTS 92

v

APPENDICES Page

D. TLS PERFORMANCE EVALUATION RESULTS 94

E. OPROFILE RESULTS 98

REFERENCES 106

vi

LIST OF TABLES

TABLE Page

1. CPU Utilization With and Without Authentication 93

2. CPU Utilization With and Without TLS 95

3. OProfile Summary--UDP 99

4. OProfile Results Normalized to CPU utilization—UDP 99

5. OProfile Summary—TCP Single Socket 99

6. OProfile Results Normalized—TCP Single Socket 99

7. OProfile Summary—TCP Multiple Socket 100

8. OProfile Results Normalized—TCP Multiple Socket 100

9. OProfile Summary—TLS Local Client 100

10. OProfile Results Normalized—TLS Local Client 101

11. OProfile Summary—TLS Local Client Session Reuse 101

12. OProfile Results Normalized—TLS Local Client-Session Reuse 101

13. OProfile Summary—TLS Local Mutual 102

14. OProfile Results Normalized—TLS Local Mutual 102

15. OProfile Results Normalized—90cps Load 102

vii

LIST OF FIGURES

FIGURE Page

1. VoIP data processing 5

2. SIP trapezoid network 13

3. Typical SIP session setup and teardown 15

4. User to user authentication 30

5. Proxy to user authentication 31

6. TLS call flow diagram •. 36

7. AH protocol—transport mode 41

8. ESP protocol—transport mode 41

9. AH protocol—tunnel mode 42

10. ESP protocol—tunnel mode 42

11. Experimental setup 46

12. SIPp embedded UAC scenario 50

13. SIPp embedded UAC with media scenario 51

14. SIPp embedded UAS scenario 52

15. SIPp UAS scenario screen capture 53

16. SIPp UAC scenario screen capture 54

17. SIPp UAS scenario statistics 55

viii

FIGURE Page

18. SIPp UAC scenario statistics 56

19. Registration without authentication 62

20. REGISTER request without authentication 63

21. Registration with authentication 64

22. Authenticated REGISTER request 64

23. SIPp screenshot of registration with authentication 65

24. SIP registrar performance comparison—UDP 66

25. SIP registrar performance degradation-UDP 67

26. SIP registrar performance comparison—TCP 68

27. SIP registrar performance degradation—TCP 69

28. SIP registrar performance comparison 70

29. SIP proxy server performance impact due to mutual authentication 72

30. SIP proxy server performance gain with session reuse 73

31. SIP proxy server performance comparison 74

32. SIP proxy peak CPS throughputs 75

33. OProfile results summary—UDP 76

34. OProfile results summary—TCP mono 77

35. OProfile results summary—TCP multi 78

36. OProfile results summary—TLS local client session reuse 79

37. OProfile results summary—TLS local client 80

38. OProfile results summary—LS local mutual 81

ix

FIGURE

39. Comparison of OProfile results normalized

x

CHAPTER 1

INTRODUCTION

VoIP refers to voice communications over Internet Protocol (IP) networks. It

specifies the transmission and reception of audio over the IP based networks. The voice

signals are digitized, compressed, packetized (converted to IP packets) and transmitted

over the IP network. The receiving node will reproduce the voice signals by de-

packetizing, de-compressing, and converting digital data to analog signals. VoIP has

gained tremendous acceptance and is widely deployed today mainly due to the reduced

costs, demand for multimedia communications, and demand for convergence of voice

and data networks.

VoIP uses signaling protocols to establish and tear down calls, carry information

required to locate users, and negotiate capabilities. Two standards have emerged for

signaling and control for Internet Telephony. One is H.323 defined by International

Telecommunication Union (ITU), and the other is Session Initiation Protocol (SIP)

defined by the Internet Engineering Task Force (IETF). H.323 embraces the more

traditional circuit-switched approach to signaling based on the Integrated Services Digital

Network (ISDN) Q.931 protocol and earlier H-series recommendations where as SIP

favors the more lightweight Internet approach based on Hyper Text Transfer Protocol

(HTTP) [1]

1

Problem Statement

As with any Internet based service, the security of voice calls is a major issue.

The nature of service that SIP provides makes security an even more important feature.

SIP based IP telephony system is vulnerable to general Internet attacks, as well as attacks

which are unique to SIP. Some of SIP specific security attacks are registration hijacking,

message modification, impersonation of a server, Denial of Service (DoS) attacks,

tearing down Sessions, and replay attacks. As most of SIP development so far has

focused on features and inter-operability, there exists ample opportunity to work on SIP

security. SIP employs security mechanisms like Authentication, and Transport Layer

Security (TLS) to counter the above attacks. Before deploying a VoIP network using

SIP, it is very important for the network planners and administrators to understand the

possible security threats, how to use the available security mechanisms, limitations of the

existing security mechanisms, and the performance impact on SIP servers due to these

security mechanisms. There is not a lot of emphasis put into understanding the impact of

these security mechanisms on SIP server performance [2] [3][4][5].

In this thesis, we have studied the various security mechanisms employed by SIP

and their limitations. We have also evaluated the impact on performance of SIP servers

due to the Authentication and use of Transport Layer Security (TLS).

Organization of Thesis

The remainder of this thesis is organized in 6 chapters. We started with an

overview of VoIP and SIP in Chapter 2. The Chapter 3 discusses SIP security risks. The

2

security mechanisms employed in SIP are described next in details in Chapter 4. The

Chapter 5 describes the test setup and test tools used for evaluating the performance

impact of SIP authentication and use of TLS with SIP. The Chapter 6 provides the

performance results obtained using the experimental test setup and discusses the impact

of SIP authentication and TLS on SIP server performance. Finally, the conclusions are

provided in Chapter 7.

3

CHAPTER 2

OVERVIEW OF VOIP AND SIP

VoIP introduces the actual method of transmitting voice over an IP network and

IP telephone. It describes telephony devices that use IP as the native transport for voice

and call signaling. IP telephony needs VoIP to send calls over the network.

SIP is widely used today in VoIP as it is a lightweight approach best suited for

packet switched IP networks. Note that SIP is only a signaling protocol and not the

media transport protocol. For media transport, different VoIP implementations may

employ different protocols but the mostly used media transport protocol for multimedia

communications over IP networks is the Real Time Protocol (RTP). This RTP is defined

by the IETF in Request For Comments (RFC) 3550. The payload format for various

COder and DECoders (CODECs) supported by RTP are defined in RFC 3551. The RFC

3550 also defines the Real Time Control Protocol (RTCP) which helps addressing the

issues related to delay and jitter in voice communications.

VoIP Technology

As shown in Figure 1 below, the Digital Signal Processor (DSP) segments the voice

signal into frames by digitizing the voice signals, compressing the digital data, and

framing the voice packets. These voice packets are then embedded into voice transport

protocol like RTP or User Datagram Protocol (UDP) and are routed over the Internet

4

using IP in compliance with the International Telecommunications Union-

Telecommunications (ITU-T) specification H.323, the specification for transmitting

multimedia (voice, video, and data) across a network.

VOICE VOICE
SIGNAL SIGNAL

H5£i"£ci

Decompress] on
Data

Compression

De-
packetization Packet* nation

INTERNET

FIGURE 1. VoIP data processing.

Because it is a delay-sensitive application, you need to have a well-engineered,

end-to-end network to successfully use VoIP. Fine-tuning your network to adequately

support VoIP involves a series of protocols and features to improve Quality of Service

(QoS). Traffic shaping considerations must also be taken into account to ensure the

reliability of the voice connection.

A connection between a caller and a call recipient is established using a signaling

protocol, usually SIP. SIP has many functions, including negotiating the CODECs used

5

during the call, transferring calls, and terminating calls. During a peer-to-peer call, VoIP

phones communicate directly over IP and stream audio directly.

SIP Introduction

SIP is the IETF standard for IP telephony and it is defined in RFC 3261 as an

application-layer control (signaling) protocol for creating, modifying, and terminating

sessions with one or more participants [6]. These sessions include Internet telephone

calls, multimedia distribution, and multimedia conferences. It seems to be the most

promising candidate for call setup signaling for future IP-based telephony services, and it

has been chosen by the Third-Generation Partnership Project (3GPP) as the protocol for

multimedia application in 3G mobile networks [4].

VoIP requires creation, termination, and management of an audio session. There

are many protocols that can provide the session management. However, VoIP signaling

protocol has requirements of establishing, terminating, and managing audio sessions with

the users whose location, availability, and capabilities can be dynamic. SIP is designed

to work well in setting up and managing sessions even when users move between end

points, have many different names, and have different capabilities.

SIP Functionality

SIP is developed as an agile, general-purpose tool for creating, modifying, and

terminating sessions that works independently of underlying transport protocols and on

the type of session being established [6]. SIP provides the capability for one end point

(called user agent) to determine the location of another end point and to share one's

6

capabilities with the other and to agree on characteristics of the session being established.

It uses SIP elements called proxy servers to help route requests to the user's current

location, authenticate and authorize users for services, implement provider call-routing

policies, and provide features to users. It provides the user location by using registration

servers with which all the user agents of a domain will register with. The registration is

then used by SIP proxy servers for routing incoming SIP requests. When the called user

agent is in a different domain, SIP proxy server will contact SIP proxy server of the other

domain for user location. SIP proxy server will request the registrar server for

determining the user location by inputting a Universal Resource Identifier (URI) and

receive back a set of zero or more URIs that help in forwarding the incoming requests.

Note that registrations are one way to create the user location information database, but

not the only way. The administrator can configure arbitrary mapping functions at his or

her discretion.

As defined in RFC 3261, SIP supports five facets of establishing and terminating

multimedia communications: user location, user availability, user capabilities, session

setup, and session management [6]. The user location is about determining the end

system to be used for communication. The user availability is about determining the

willingness of the called party to engage in communications. The user capabilities is

about the determining the media and media parameters to be used. The session setup is

about establishing the session between the called and calling parties. And the session

management is about invoking the services, managing the transfer and termination of

services, and modifying session parameters.

7

It is very important to note that SIP is one protocol among many protocols needed

to build a multimedia architecture like VoIP. SIP does not do conference control or

resource reservation or session description or real time media transport. Each of these

functions is done by a separate protocol. VoIP typically uses SIP for session

management, Session Description Protocol (SDP) for describing multimedia sessions,

RTP for media transport, RTCP for QoS feedback, Real Time Streaming Protocol

(RTSP) for control over the delivery of data with real-time properties, and MGCP (Media

Gateway Control Protocol) for controlling Public Switched Telephone Network (PSTN)

gateways.

SIP Elements

There are mainly three types of elements in SIP operation: User Agent Clients

(UAC), User Agent Servers (UAS), and User Agents (UA). SIP RFC defines these

elements as following.

User Agent (UA): The entities interacting in a SIP scenario are called User

Agents. A user agent is defined as a logical entity that can act as both a user agent client

and user agent server [6]. A user agent will act as either a UAC or as a UAS or as both in

a SIP transaction.

User Agent Client (UAC): A user agent client is a logical entity that creates a

new request, and then uses the client transaction state machinery to send it [6], The role

of UAC lasts only for the duration of that transaction. In other words, if a piece of

8

software initiates a request, it acts as a UAC for the duration of that transaction. If it

receives a request later, it assumes the role of a user agent server for the processing of

that transaction. The set of processing functions required of a UAC that reside above the

transaction and transport layers is termed as UAC core. Note that SIP UACs may or may

not interact directly with a human user.

User Agent Server (UAS): A user agent server is a logical entity that generates a

response to a SIP request [6]. The response accepts, rejects, or redirects the request. This

role lasts only for the duration of that transaction. In other words, if a piece of software

responds to a request, it acts as a UAS for the duration of that transaction. If it generates

a request later, it assumes the role of a user agent client for the processing of that

transaction. The set of processing functions required at a UAS that resides above the

transaction and transport layers is termed as UAS core.

The various components of VoIP communication using SIP signaling protocol can

be categorized depending on the function carried out. Following are these various

components (a software component or dedicated equipment) commonly used today.

Soft-phone: A soft-phone is a software application for making and receiving

telephone calls using VoIP services.

VoIP phones: The special telephones with built-in VoIP technology for making

and receiving calls over an IP network such as the Internet.

9

SIP Registrar and SIP location server: SIP registrar accepts REGISTER requests

and places the information it receives in those requests into the location service for the

domain it handles [6], UAs register with the registrar from time to time to allow other

UAs to locate them. A VoIP user is not bound to a host. So, there is a need for SIP or

any other signaling protocol used with VoIP to provide the location service. The location

service, as the name implies, allows a SIP user agent to locate another user agent. SIP

provides location service through registration and location servers. Upon initialization

and periodically, a SIP phone (end point) reports its location by registering with the

registration server (registrar) of its domain. This information is then stored in the

location server database. Note that other mechanisms can be employed along with the

registrations to create the location data-base. Registrations are one way to create this

information, but not the only way. Arbitrary mapping functions (user name or number to

user location) can be configured at the discretion of the administrator. Note that a SIP

user can register from multiple SIP phones. This allows a proxy to perform various types

of searches to locate a SIP user. Similarly, more than one user can be registered on a

single device at the same time. This allows multiple users to use SIP phone on a host.

SIP Proxy Server: SIP proxy is an intermediary entity that acts as both a UAS

and a UAC for the purpose of making requests on behalf of other UACs [6]. A proxy

server primarily plays the role of routing, which means its job is to ensure that a request

is sent to another entity closer to the targeted user. Proxies are also useful for enforcing

policy (for example, making sure a user is allowed to make a call). A proxy interprets,

and, if necessary, rewrites specific parts of a request message before forwarding it.

10

SIP proxy server allows routing of incoming SIP requests. When it receives a SIP

request, it contacts the location server to resolve the username into an address and then

forwards the message. The proxy can be either stateless or stateful. A stateless proxy is

a logical entity that does not maintain the client or server transaction state machines

defined in SIP RFC when it processes requests. A stateless proxy forwards every request

it receives downstream and every response it receives upstream. A stateful proxy is a

logical entity that maintains the client and server transaction state machines defined in

SIP RFC during the processing of a request, also known as a transaction stateful proxy.

The proxy servers can take flexible routing decisions. For example, it can route to

voice server when a SIP phone signals it is busy. It can also do a parallel search, known

as forking, by sending an INVITE to a number of locations at the same time. Proxy

servers can also provide some mid-call features by remaining SIP messaging path

between SIP end points. For this, the proxy will add to the INVITE a required routing

header field known as Record-Route that contained a URI resolving to the hostname or IP

address of the proxy. This information in Record-Route will be used by when SIP end

point on the other end to send messages back through SIP proxy.

Redirect Server: A redirect server is a user agent server that generates responses

to requests it receives, directing the client to contact an alternate set of URIs [6]. It

generally happens when a recipient has moved from its original position either

temporarily or permanently. SIP redirect servers resolve the username into an address by

contacting the location server but they do not forward or proxy the incoming SIP

11

messages. Instead, they provide the address to the sender. The sender then can send SIP

message directly using the resolved address of the destination that he got from the

redirect server. With this approach, the advantage is that proxy server will not be a

bottleneck in forwarding SIP messages. However, SIP end points now have to perform

all the routing and they can become complex depending on how much flexible they are in

taking routing decisions.

Note that the role of UAC and UAS, as well as proxy and redirect servers, is

defined on a transaction-by-transaction basis. For example, the user agent initiating a call

acts as a UAC when sending the initial INVITE request and as a UAS when receiving a

BYE request from the calling agent. Similarly, the same software can act as a proxy

server for one request and as a redirect server for the next request. Also, note that these

servers are logical entities and implementations may combine them into a single

application or run them on a single physical server.

SIP Proxy Operational Modes: A SIP proxy server can be classified as either an

inbound proxy server or outbound proxy server or local proxy server depending on how

many UACs are sending requests to that proxy server and how many UASs are receiving

calls through that proxy server [5]. An inbound proxy server receives calls from many

UACs but forwards them to one UAS (usually to local proxy server). An outbound

proxy server receives calls from one UAC and sends them out to several UASs. A local

proxy will receive calls from several UACs and sends them to several UASs.

12

Overview of SIP Operation

This section describes establishing and tearing down a VoIP session through SIP

signaling using an example that was used in SIP RFC. The Figure 2 below shows a SIP

trapezoid arrangement where two users, Alice and Bob, are in different domains [6]. The

proxy servers act on behalf of Alice and Bob to facilitate the session establishment and

tear-down.

Alice's VoIP pnonc

Domainl
Proxy

Domainl.co

Domain2
Proxy

Domainl co

Bob's VoIP phone

FIGURE 2. SIP trapezoid network.

Session Setup

In this example, Alice uses a soft-phone to call Bob on his SIP phone over the

Internet. Alice calls Bob using his SIP identity, a type of Uniform Resource Identifier

(URI) called a SIP URI. It has a similar form to an email address, typically containing a

username and a host name. In this case, it is sip:bob@domain2.com, where

domain2.com is the domain of Bob's SIP service provider. Alice has a SIP URI of

sip:alice@domainl.com. SIP also provides a secure URI, called a SIPS URI. An

13

mailto:bob@domain2.com
mailto:alice@domainl.com

example would be sips:bob@domain2.com. A call made to a SIPS URI guarantees that

secure, encrypted transport (namely TLS) is used to carry all SIP messages from the

caller to the domain of the callee. From there, the request is sent securely to the callee,

but with security mechanisms that depend on the policy of the domain of the callee.

The Figure 3 below shows a typical example of a SIP message exchange between

Alice and Bob [6]. SIP is based on an HTTP-like request/response transaction model.

Each transaction consists of a request that invokes a particular method, or function, on the

server and at least one response. In this example, Alice initiates a call to Bob by sending

an INVITE request addressed to Bob's SIP URI. The body of a SIP message contains a

description of the session, encoded in some other protocol format like SDP. Since Alice

does not know the location of Bob or SIP server in the domain2.com domain, the

INVITE request will be forwarded to SIP proxy of Alice's domain, domainl .com. The

address of the domainl .com SIP server could have been configured, or it could have been

discovered by DHCP, for example.

The domainl proxy receives the INVITE request and sends a 100 (Trying)

response back to Alice's soft-phone. The response 100 (Trying) indicates that the

INVITE has been received and that the proxy is working on her behalf to route the

INVITE to the destination.

The domainl .com proxy server locates the proxy server at domain2.com, possibly

by DNS and forwards the INVITE request there. Before forwarding the request, the

14

mailto:bob@domain2.com

atlanta.com proxy server adds an additional Via header field value that contains its own

address (the INVITE already contains Alice's address in the first Via).

The domain2.com proxy server receives the INVITE and responds with a

response 100 (Trying) back to the domainl .com proxy server to indicate that it has

received the INVITE and is processing the request.

atlanta.com
proxy

biloxi.com
proxy-

Alice 1 s
softphone

Bob' s
SIP Phone

INVITE Fl
>

100 Trying F3
<

INVITE F2
> INVITE F4

100 Trying F5 | >
180 Ringing F6

180 Ringing F7 |<
180 Ringing F8 |<

< | 200 OK FlO
200 OK F9

<
200 OK Fll

ACK F12

< = >

Media Session

BYE F13

200 OK F14

FIGURE 3. Typical SIP session setup and teardown [6].

The domain2.com proxy server consults the location server for Bob's IP address

and forwards the INVITE to Bob's SIP phone. The domain2.com proxy server also adds

another Via header field value with its own address to the INVITE before it is proxied.

15

Bob's SIP phone receives the INVITE and rings to alert Bob to the incoming call.

Bob's SIP phone indicates this in a response 180 (Ringing), which is routed back through

the two proxies in the reverse direction. Each proxy uses the Via header field to

determine where to send the response and removes its own address from the top. As a

result, although DNS and location service lookups were required to route the initial

INVITE, the response 180 (Ringing) can be returned to the caller without lookups or

without state being maintained in the proxies. This also has the desirable property that

each proxy that sees the INVITE will also see all responses to the INVITE.

When Alice's softphone receives the response 180 (Ringing), it passes this

information to Alice, perhaps using an audio ring-back tone or by displaying a message

on Alice's screen.

In this example, Bob decides to answer the call. When he picks up the handset or

accepts the call on his soft-phone, his SIP phone sends a 200 (OK) response. The 200

(OK) is routed back through the two proxies and is received by Alice's soft-phone, which

then stops the ring-back tone and indicates that the call has been answered. The 200

(OK) contains a message body with the SDP media description of the type of session that

Bob is willing to establish with Alice. As a result, there is a two-phase exchange of SDP

messages: Alice sent one to Bob, and Bob sent one back to Alice. This two-phase

exchange provides basic negotiation capabilities and is based on a simple offer/answer

model of SDP exchange. If Bob did not wish to answer the call or was busy on another

16

call, an error response would have been sent instead of the 200 (OK), which would have

resulted in no media session being established.

Finally, Alice's soft-phone sends an acknowledgement message, ACK, to Bob's

SIP phone to confirm the reception of the final response (200 (OK)). In this example, the

ACK is sent directly from Alice's soft-phone to Bob's SIP phone, bypassing the two

proxies. This occurs because the endpoints have learned each other's address from the

Contact header fields through the INVITE/200 (OK) exchange, which was not known

when the initial INVITE was sent.

Alice and Bob's media session has now begun, and they send media packets using

the format to which they agreed in the exchange of SDP. In general, the end-to-end

media packets take a different path from SIP signaling messages.

Session Modification

During the session, either Alice or Bob may decide to change the characteristics

of the media session. This is accomplished by sending a re-INVITE containing a new

media description. This re-INVITE references the existing dialog so that the other party

knows that it is to modify an existing session instead of establishing a new session. The

other party sends a 200 (OK) to accept the change. The requestor responds to the 200

(OK) with an ACK. If the other party does not accept the change, he sends an error

response such as 488 (Not Acceptable Here), which also receives an ACK. The failure of

the re-INVITE does not cause the existing call to fail—the session continues using the

previously negotiated characteristics.

17

Session Teardown

At the end of the call, Bob disconnects (hangs up) first and generates a BYE

message. This BYE is routed directly to Alice's soft-phone, again bypassing the proxies.

Alice confirms receipt of the BYE with a 200 (OK) response, which terminates the

session and the BYE transaction.

Query Capabilities

SIP supports querying an end point's capabilities. The OPTIONS SIP method

allows one user agent to query the capabilities (supported SIP methods, content types,

CODECs, and extensions) of another user agent without ringing it. This allows a user

agent to insert only the headers that the destination SIP phone supports

18

CHAPTER 3

SIP SECURITY THREATS

The flexibility and rich feature-set of SIP based IP telephony compared to

traditional PSTN based phone comes with the additional security risks. SIP based IP

telephony system is vulnerable to general Internet attacks, as well as attacks which are

specific to SIP. As most of SIP development so far has focused on features and inter­

operability, there exists ample opportunity to work on SIP security. In this section, let us

discuss the various security attacks and threats applicable to SIP.

Network Security

In general, network security refers to providing secure communications over a

public network such as Internet. The network security requires confidentiality,

authentication, message integrity, and availability. The confidentiality allows only the

sender and intended receiver can understand the messages being exchanged. The

authentication allows the sender and receiver to confirm the identity of each other. The

message integrity ensures that the messages are not altered (in transit, or afterwards)

without detection. And the availability ensures that the services are accessible and

available to users.

19

SIP Security Threats

As with any other network protocol, SIP is exposed to a wide range of security

attacks. When deployed in a private network where network equipment and users are

trustworthy and physical security is agreeably sufficient, SIP security may not be needed.

However, since SIP can be deployed in an unreliable and untrustworthy environment like

Internet, it is susceptible to various security attacks that include the common TCP/IP

attacks. The various SIP security threats can be classified as external or internal.

External threats happen when packets are traversing through third-party networks where

as internal threats happen due to malicious users within the same network. SIP security

threats can also be classified as given below based on what feature of network security is

being attacked.

Confidentiality threats: These threats expose the content of the conversation or

other data that is supposed to be confidential between the two SIP end points. Examples

of these threats are sniffing and traffic analysis. In general, confidentiality is achieved

through the encryption techniques.

Integrity threats: These threats impact the ability to trust the identity of the caller,

the integrity of the messages, or the identity of the recipient. Examples of these threats

are registration hijacking, message tampering, and spoofing.

Availability threats: These threats attempt to jeopardize the ability to make or

receive a call. Examples of these threats are message fabrication, replay, and various

DoS attacks.

20

The various security threats we discuss next are registration hijacking, message

modification, impersonating a server, Denial of Service attacks, tearing down sessions,

and replay attacks [7]. Understanding these threats helps us to understand the security

mechanisms employed in SIP and to evaluate their impact on performance.

Registration Hijacking

In SIP registration, the registrar is not obliged to challenge the UA that has sent

the registration request for authentication (In RFC3261, registrars are only

RECOMMENDED to challenge registration requests). The absence of authentication or

weak authentication makes the registration hijacking possible where an attacker can

hijack the registration requests from a valid UA by impersonating that UA to a registrar.

The attacker can then direct all requests (for example, incoming calls) for the affected

UA (the UA being impersonated by the attacker) to his or her device by de-registering all

existing contacts associated with the affected UA's URI and registering his/her own

device as the contact address for the affected UA's URI.

The registration hijacking can result in Denial of Service to a legitimate UA,

eavesdropping by intercepting to listening to voice calls, attacker tricking the caller into

leaving a message, Man-In-The-Middle (MITL) attack where attacker transparently sits

between the calling and called UAs and collects and/or modifies both the signaling and

media, or toll fraud by redirecting the incoming call to a media gateway.

21

This registration hijacking relies on absence or weak form of authentication for

registration requests. A weak authentication like simple username/password is not

enough as it can be easily broken using dictionary style attack. This demonstrates the

need for strong authentication of SIP requests. However, implementing strong

authentication is particularly difficult in SIP as SIP messages may traverse through a

number of SIP elements that may legitimately modify the messages.

Impersonating a Proxy Server

In this threat, an attacker could impersonate the proxy server, and trick one of SIP

users or proxy servers into communicating with him [7]. This occurs again due to lack of

authentication of proxy servers. An attacker can get into the signaling stream through

either Domain Naming Service (DNS) spoofing or Address Resolution Protocol (ARP)

cache spoofing or by changing the proxy address for a SIP phone. This impersonation of

a SIP server allows various security attacks like DoS, eavesdropping, and toll fraud.

If the attacker is successful in impersonating a proxy server, he can get a complete

control of a call. All outbound calls from a domain can be intercepted, blocked, and

manipulated if the proxy server of that domain is impersonated using DNS spoofing.

Similarly, the calls originating from a UA can be intercepted, blocked, and manipulated

by the attacker when ARP cache spoofing is used against a network switch to trick a UA

into communicating with it [7]. Prevention of this threat requires a means by which UAs

can authenticate the servers to whom they send requests.

22

Tampering with Message Bodies

In this attack, the attacker intercepts and modifies SIP messages. This message

tampering is possible as SIP messages have no built-in mandatory means to insure

integrity. This attack usually occurs because of a compromised proxy server which is

trusted by the UAs in the domain of the proxy server. This attack can also occur through

registration hijacking, proxy impersonation, or through any compromised SIP element

which is trusted to process SIP messages [7].

For a specific example of this attack, consider a UA that is communicating

session encryption keys for a media session using SIP messages. The UA may trust

proxy in delivering SIP messages but not necessarily trust proxy for insuring integrity. In

other words, the proxy administrators may be able to decrypt SIP messages and find out

the encryption keys being exchanged. If an attacker can gain access to proxy, then he can

gain access to all the information in SIP messages and this allows attacker to either

tamper the message bodies or play the man in middle attack.

To achieve protection against message tampering, SIP message bodies and some

header fields need to be secured from end-to-end through encryption services. These end-

to-end message integrity services should work together with and be independent of the

means used to secure interactions with intermediaries such as proxy servers.

Denial of Service

DoS is a common attack that targets one or more SIP elements to make one or

more SIP services unavailable, usually by directing a high volume of traffic towards the

23

service thereby denying it to legitimate clients. The DoS attack can also be launched

using multiple network hosts to flood a SIP element with a large amount of network

traffic. These DoS attacks are called as Distributed DoS attacks. DoS is a major issue in

SIP systems, as some kind of trust is involved in any deployment and that the DoS can be

launched in a variety of ways.

DoS due to high volume of traffic: In this DoS attack, SIP servers, voice

gateway devices, firewalls, and DNS lookup servers will be bombarded with high volume

of traffic; thereby make them unavailable for legitimate users. By gaining access to SIP

element in a network, it can be used as a DoS launching point.

DoS due to malformed SIP messages: In this DoS attack, malformed SIP

messages will be sent to manipulating SIP states and cause DoS.

DoS due to unauthenticated register requests: In this attack, a user is prevented

from receiving further calls by deregistering that user with the registrar. The DoS is also

caused by sending huge numbers of registration requests and thereby bringing down the

registrar by depleting the memory resources of registrar. The DoS attack can also be

launched by registering a huge number of bindings for the same host and thereby

amplifying SIP traffic.

DoS due to spoofed SIP messages: By spoofing SIP messages, the DoS attack can

be launched in few ways. One way is through reflection where the attacker sends a

24

spoofed request with the spoofed IP address of target being attacked to many SIP

elements, thereby generating a huge amount of traffic aimed back at target.

Cancel/Bye DoS attack: This DoS attack is launched by tearing down the

sessions using the BYE request as the BYE requests are not authenticated and are not

acknowledged.

Re-Invite DoS attack: This DoS attack is launched using re-INVITE messages

that are used to change session parameters. One way is to redirect the media to broadcast

address which generates a huge amount of traffic. Another way is to redirect the media

sessions to a proxy or a gateway to bring it down.

DoS through amplification: These DoS attacks use amplification by using the

forking feature of proxy servers. One way is to put the victim's IP address into a spoofed

Router header request, and send it to forking proxies, who will greatly amplify the

number of messages returned to the victim. The Record-Route header could also be used

for amplification by sending a large number of requests to many SIP users with the

victim's IP address in the Record Route header and thereby making the victim to receive

a large amount of traffic.

Session Teardown Attack

In this attack, the attacker tears down the sessions by sending spoofed BYE

messages. This spoofing of BYE messages is possible by capturing some initial

messages in a dialog. It is also possible to tear down the sessions by flooding the firewall

25

with BYE messages and thereby causing the firewall to tear down the UDP/TCP ports

being used for legitimate calls. The session tear-down results in DoS by abrupt

termination of existing calls or calls being setup. Preventing this session teardown

attacks requires authentication of BYE request.

Replay Attack

In this attack, the attacker intercepts SIP messages and retransmits them as is so

that the victim will have to reprocess these messages. Preventing this kind of attacks

require encryption techniques and use of nonce.

26

CHAPTER 4

SIP SECURITY MECHANISMS

In this section, the various security mechanisms employed in SIP protocol today

and their limitations are discussed. Also described are SIP security implementation

requirements and issues.

SIP Security Challenges

The major difficulty with employing SIP security solutions is to make them work,

without extensive co-ordination, in a wide variety of environments and usages. The

security in SIP is very challenging as SIP uses many intermediaries like proxy servers,

registrar servers, and redirect servers, SIP has many elements and supports multi-faceted

trust relationships between them, SIP is deployed in a wide variety of environments, and

SIP requires user-to-user operation.

SIP Security Mechanisms

SIP employs encryption mechanisms to provide confidentiality and to prevent

malicious users from modifying the messages. However, the end-to-end encryption of

SIP messages is not possible as SIP intermediaries need access to some information in

SIP headers. For this reason, SIP supports both end-to-end encryption and hop-to-hop

encryption techniques.

27

The end-to-end encryption is supported using S/MIME mechanisms described

later in this section and is used for all the information that is not required to be accessed

by the intermediaries. The hop-by-hop encryption is supported using IPSec or TLS and

is used for preserving the confidentiality of the information that needs to be seen by the

intermediaries. The encryption algorithms commonly used with SIP are the Data

Encryption Standard (DES) and Advanced Encryption Standard (AES). Note that

although encryption provides confidentiality of SIP messages, it can be detrimental to

QoS.

SIP employs a cryptographic authentication mechanism for providing the message

integrity and verifying the autheticity of the senders of SIP messages. It is important to

note that the authentication allows a UA to verify the identity of another UA but does not

provide message integrity and hence the need for cryptographic authentication which

combines the encryption and authentication techniques in order to provide authentication,

confidentiality, message integrity, and protection against replay attacks. SIP

authentication mechanism is based on the HTTP Digest authentication. SIP also supports

a scheme called SIPS URI which allows indicating SIP intermediaries of the need to

forward SIP messages using TLS security.

Authentication

SIP provides an authentication mechanism, which is based on the HTTP Digest

authentication defined in RFC2617, for a UAC to identify itself to the UAS in another

SIP element (proxy or registrar or another user) [6] [8]. The authentication is a challenge

28

based mechanism where SIP element receiving a message can challenge the sender for

credentials. SIP element receiving the challenge through a response for its request should

provide its credentials to assure its identity. SIP element, which receives the credentials

from the sender of a SIP message in response to the challenge it sent, will verify the

identity of the sender and ascertain whether the sender is authorized to make the request

that it sent.

The replay attacks are prevented by using a nonce in the authentication

mechanism. Nonce stands for Number used once and is a unique number (often

generated as a random number or a pseudo-random number) that will not be used again

with in a pre-defined time so that the receiver can use it to identify the replay attacks.

SIP authentication provides the message authentication and replay attack

protection but not message integrity and confidentiality. SIP authentication should be

used in conjunction with cryptographic techniques to prevent active attackers from

modifying SIP requests and responses.

User to User Authentication: A user can challenge another user for determining

authenticity of a received message. This is accomplished through the use of the 401 and

407 response codes as well as header fields for carrying challenges and credentials. The

WWW-Authenticate header field is used by an UAS to challenge an UAC for credentials.

The UAC authenticating will use the Authorization header to supply the credentials.

29

INVITE"

RG3porise.'(statU3 code = 401) with WVWV:

Authenticate Header (nonce and, realm)

"Resend INVITE with Authorization-

nonce, arid realm)

Response OK (status 100)

UAS UAC

FIGURE 4. User to user authentication

As shown in above Figure, a UAC sends a request to a UAS. The UAS challenges

the UAC by sending a response with 401 status code (Unauthorized) and WWW-

Authenticate header in the response. The UAS indicates the authentication scheme(s)

and parameters applicable to the realm to the UAC through this WWW-Authenticate

header. Upon receiving the response with Unauthorized (401) status code and WWW-

Authenticate header, the UAC will locate its credentials and resend the request along with

proper credentials using the Authorization header in the request. The Authorization

header will also consist of other parameters required in support of authentication and

replay protection.

30

UAS will use the supplied credentials to verify the identity of the sender and

whether the sender is authorized for the request made. If the sender is authenticated

successfully, it will proceed with processing the request. Note that a UAC may send a

request with Authorization header without being challenged to help reducing the

overhead.

Proxy-to-User Authentication: A SIP proxy or Registrar or Redirect server can

authenticate a SIP UAC in the same way as described above except now the headers and

response codes are different.

Response (status code - 407) with "Proxy-
. Authenticate Header (nonce,; realm)

"• Resend INVITE with Proxy-Authorization
Header (nonce, realm, credentials)

)K (status code = 100)

FIGURE 5. Proxy to user authentication

31

As shown in Figure above, a UAC sends a request to a Proxy. The Proxy

challenges the UAC by sending a response with 407 status code (Proxy Authorization

Required) and Proxy-Authenticate header in the response. Upon receiving the response

with Proxy Authorization Required (407) status code and Proxy-Authenticate header, the

UAC will locate its credentials and resend the request along with proper credentials for

the realm of the proxy using the Proxy-Authorization header field in the request. Proxy

will use the supplied credentials to verify the identity of the sender. If the sender is

authenticated successfully, proxy will forward the request.

As proxies can fork requests, it is possible for a response to have multiple

challenges (multiple Proxy-Authenticate and/or WWW-Authenticate messages). These

different challenges may be for different realms or for the same realm. A proxy

authorization header field is differentiated from that of another proxy using the realm

parameter. The same credentials are used for the challenges with the same realm and the

credentials will be different for the challenges with different realms.

Proxy-to-Proxy Authentication: SIP does not support the proxy-to-proxy

authentication as it does not define a mechanism for a proxy to identify itself to another

proxy. If needed, this proxy-to-proxy authentication will have to be achieved with other

means like IPSec and/or TLS that are supported by SIP.

S/MIME

The entire SIP message cannot be encrypted end-to-end as SIP intermediaries

need to view certain SIP headers and may modify or add some SIP headers. As a result,

32

the end-to-end encryption techniques can only be used with SIP message bodies. SIP

message bodies use the MIME format [8]. SIP supports S/MIME (Secure MIME) for

securing the contents of MIME bodies within SIP messages. S/MIME encrypts SIP

bodies with the public key of the receiver and signs it with the private key of sender. The

receiver will use the public key of sender to verify the signature and private key of the

receiver to decrypt SIP MIME bodies. This means, senders must know the public key of

recipients and receivers must know the public key of sender. So, S/MIME requires

exchanging or sharing the keys and is achieved through the use of certificates.

S/MIME uses certificates that assert the association of the holder with the end-

user address that is formed by the concatenation of the userinfo, @, and domainname

portions of a SIP or SIPS URI. These certificates are associated with the keys that are

used to sign and encrypt SIP messages. The certificates may be issued by public

certificate authorities or self-generated or pre-configured. The pre-configuration is not

scalable and is used in deployments in which a previous trust relationship exists between

all SIP entities. The self-generated certificates provide message integrity to some extent

but may not provide the authentication. When cryptographic keys are exchanged with the

use of self-signed certificates or certificates signed by an obscure authority, SIP is

vulnerable to security attacks like replay attacks, impersonation attacks, and man-in-the-

middle attacks. The use of public certificate authorities is scalable and widely used but

one main issue is that there is virtually no consolidated public certificate authority.

33

SIP also specifies the use of SIP message tunneling for providing protection to

SIP header fields. In this case, the entire SIP message is encrypted and embedded within

another SIP message for tunneling. This makes it difficult to tamper with SIP headers

and easy to detect any tampering of SIP headers in the tunneled SIP message. However,

this creates additional overhead. When tunneling is used, it is recommended to use TCP

rather than UDP to avoid problems due to UDP fragmentation of larger messages.

Transport Layer Security (TLS)

TLS provides the security at transport layer. TLS encrypts signaling traffic,

guaranteeing message confidentiality and integrity. TLS protects SIP signaling from

replay attacks, man-in-the-middle attacks, eavesdropping, or unauthorized access by

providing integrated key-management with mutual authentication and secure key

distribution. Although TLS can be used for transport layer security when using any

connection-oriented protocol, SIP specifies the use of TLS with TCP as TCP is the

widely used transport protocol. The TLS protocol version 1.0 is defined in RFC2246.

TLS performs a handshake process before encrypted data is transported. During

the handshake, the TLS server and client perform peer authentication and exchange

and/or negotiation of various parameters needed for selecting the cipher-suite and session

keys [6] [8] [9],

The Figure below shows the TLS call flow diagram [6] [9]. An outbound SIP

request is sent from the client and the transport indicates the use of TLS. A TLS

connection is opened towards the server on a specific IP address and port. All the

34

algorithms used in a TLS session, including those for key exchange, bulk data encryption

and message digest, are specified by a cipher suite. The client sends a 'Client Hello'

message specifying the TLS version and a list of suggested cipher suites it supports.

The server responds with several messages. It first sends a 'Server Hello' message

with the TLS version and a chosen cipher suite. It then presents a certificate or certificate

chain to the client using the 'Certificate' message. Usually only the client authenticates

the server. But SIP has support for mutual authentication. So when a server is

configured for mutual authentication, it also requests a certificate from the client using

the 'Certificate Request' message. The server also sends the client a 'Server Key

Exchange' message when the 'Server Certificate' message does not contain enough data

to allow the client to exchange a premaster secret. If sent, this message will immediately

follow the 'Certificate' message from the server (or the 'Server Hello' message for the

case of anonymous negotiation). The server then sends a 'Server Hello Done' message to

tell the client that it has finished the initial negotiations.

If the server requested a certificate, the client sends the certificate or certificate

chain using the 'Certificate' message. The client then sends a Client Key Exchange

message which may contain a Premaster Secret, Public Key, or nothing depending on the

cipher suite chosen. This Premaster Secret is encrypted using the public key of the server

certificate.

35

llliiMliiilg!

CLIENT HELLO

SERVER HELLO

CERTIFICATE

CERTIFICATE REQUEST

SERVER KEY EXCHANGE

CERTIFICATE

•BISlli—11

i/l

^MBaaasH—

FINISHED =5
CHANGE giwiaiiiMiai

FINISHEE

CLOSE

FIGURE 6. TLS call flow diagram.

If the client is being authenticated by the server, the client will send the

'Certificate Verify' message which is a signature over the previous handshake messages

36

using the client's certificate's private key. The server will verify this signature using the

client's certificate's public key and thus can be assured of that certificate received is

authenticated. This 'Certificate Verify' is sent only when client is presenting its

certificate upon server's request.

The client sends a 'Change Cipher Spec' message to tell the server that all future

messages will be signed and encrypted as negotiated. And then it sends an authenticated

and encrypted 'Finished' message indicating server that client is done with the handshake

phase.

After receiving the 'Finished' message from client, the server will decrypt and

verify the hash and MAC. After successful verification, the server will send a 'Change

Cipher Spec' message to tell the client that all future messages will be signed and

encrypted as negotiated. The server then sends the authenticated and encrypted

'Finished' message which client will verify before sending the encrypted data.

Encrypted data: The client and the server communicate using the symmetric

encryption algorithm and the cryptographic hash function negotiated, and the shared

secret key exchanged. At the end of the connection, each side will send a 'Close Notify'

message to inform the peer that the connection is closed.

Session Reuse: The session reuse of TLS allows previously negotiated set of

premaster secret and cipher suite to be reused. When a new session is established, the

server stores the session information for reuse. Also, the session id used by server is

conveyed to the client in the 'Server Hello' message. So, when a client wants to establish

a session again, then it can use the previous session-id that was conveyed by the server.

If session reuse is enabled, then server will first check if there was an established session

with the given session id in the 'Client Hello' message. If the server finds that the

session id requested was previously used, then it can agree to session reuse by specifying

the same session id in the 'Server Hello' message. When the client realizes that server

has agreed to session reuse, it will proceed directly to the 'Change Cipher Spec' and

'Finished' messages avoiding the need for re-computation of premaster secret and

renegotiation of cipher suite.

SIPS URI scheme: SIPS URI scheme is specified in RFC 3261. It allows SIP

elements to specify that end to end security is needed. The syntax of SIPS URI is same

as that of SIP URI but begins with sips. When used as the Request-URI of a request,

SIPS scheme signifies that each hop over which the request is forwarded, until the

request reaches SIP entity responsible for the domain portion of the Request-URI, must

be secured with TLS [6]. Once it reaches the domain in question it is handled in

accordance with local security and routing policy. Note that in SIPS URI scheme,

transport is independent of TLS, and thus "sips:alice@atlanta.com;transport=tcp" and

"sips:alice@atlanta.com;transport=sctp" are both valid.

IPSec

IPSec is a set of network-layer protocol tools, defined in RFCs 2401-2411 and

2451, that collectively can be used as a secure network protocol. IPSec provides

38

authentication and encryption services at the network layer [10]. For this, it uses two

protocols: AH (Authentication Header) and ESP (Encapsulated Security Payload). The

AH is used, as the name suggests, to authenticate the packets, and optionally anti-replay

protection. It ensures the sender's authentication but does not provide confidentiality of

data. The ESP is used to ensure that the data transmitted between the two hosts securely,

optionally with authentication and integrity checking. An IPSec implementation can use

either or both of these protocols.

Both ESP and AH use security associations (SAs). A Security Association (SA)

is a relationship between two or more entities that describes how the entities will use

security services to communicate securely. The security association is unidirectional. It

is uniquely identified by a randomly chosen unique number called the security parameter

index (SPI), IPSec protocol (AH or ESP), and the destination IP address. When a system

sends a packet that requires IPSec protection, it looks up the security association in its

database, applies the specified processing, and then inserts the SPI from the security

association into the IPSec header. When the IPSec peer receives the packet, it looks up

the security association in its database by destination address and SPI and then processes

the packet as required. In summary, the security association is simply a statement of the

negotiated security policy between two devices.

AH Protocol Fields: The next header field specifies the next protocol. The length

field specifies length of the AH header. The SPI field is an index used in combination

with destination address to identify the correct security association for the

39

communication. The sequence number field is a 32-bit number to identify an IP packet

and provide replay protection. The authentication data field contains the integrity check

value (ICV), which is calculated over the IP header, the AH header, and the IP payload.

The receiver calculates the ICV value and verifies it against the ICV in the AH header.

ESP Protocol Fields: The ESP protocol uses an ESP header, an ESP trailer, and

an ESP authentication trailer. The ESP header includes Security Parameters Index (SPI)

and sequence number. The ESP trailer contains the padding and next header fields. The

padding is the bytes added (up to 255 bytes) to align encrypted payload as needed by the

encryption algorithm. The next header field specifies the next protocol. The ESP

authentication trailer contains the authentication data which is nothing but the integrity

check value (ICV), calculated over the ESP header, the payload data, and the ESP trailer.

IPSec Modes: The IPSec supports two modes of operation: transport mode and

tunnel mode. In transport mode, only the IP payload is encrypted and/or authenticated.

In tunnel mode, the entire IP datagram is encrypted and/or authenticated by encapsulating

it with another IP header. The transport mode is used mostly for host-to-host

communications whereas the tunnel mode is used for network-to-network

communications as in VPNs and host-to-network communications.

AH Protocol - Transport Mode: In this mode, the AH header is inserted between

the IP header and the IP payload as shown in below Figure. The AH protocol signs the

entire IP datagram except for the mutable fields in the IP header.

40

IP
header

Authentication
header

IP payload
(TCP segment, UDP message,

ICMP message)

Signed by Authentication header

FIGURE 7. AH protocol—transport mode [10].

ESP Protocol -Transport Mode: The ESP protocol uses an ESP header, an ESP

trailer, and an ESP authentication trailer as shown in below Figure. The ESP header is

placed before the IP payload, the ESP trailer is placed after the IP payload, and the ESP

authentication header is placed after the ESP trailer. The ESP encrypts the IP payload

and ESP trailer and signs the ESP header, IP payload, and ESP trailer using the

authentication data in ESP authentication trailer.

ESP
Auth

trailer

Encrypted with ESP header

Signed by ESP Auth trailer

FIGURE 8. ESP protocol—transport mode [10]

AH Protocol -Tunnel Mode: In the tunnel mode, the IP datagram is encapsulated

by the authentication header and an additional IP header as shown in below Figure. The

41

entire IP datagram including the additional IP header is signed except the mutable fields

of the additional IP header.

IP packet

IP
header

Authentication
header

IP
header

IP payload
(TCP segment, UDP message,

XCMP message)

Signed by Authentication header

FIGURE 9. AH protocol—tunnel mode [10].

ESP Protocol -Tunnel Mode: The original IP data gram is added with ESP

header, ESP trailer, and ESP authentication header and encapsulated within another IP

header. The original IP datagram and ESP trailer will be encrypted with the ESP header

for confidentiality. The ESP authentication trailer provides integrity for the ESP header,

original IP datagram and the ESP trailer as shown in below Figure.

IP packet

ESP
Auth

trailer

Encrypted with ESP header

Signed by ESP Auth trailer

FIGURE 10. ESP protocol—tunnel mode [10]

42

Key Exchange: To avoid issues with manual keying and pre-shared keys like

symmetric key problem, scalability, and keeping keys secret, the IPSec uses Internet Key

Exchange (IKE) to automatically exchange randomly generated keys which are

transmitted using asymmetric encryption technology, according to negotiated algorithm

details. The IKE negotiates the connection parameters, which includes what type of

connection, what encryption algorithms to use, and what keys are used.

Suitable Deployments: As IPSec is decoupled from SIP protocol and provides

security at network layer, it is most suited for deployments where adding security to SIP

would be arduous. The IPSec can be used on a hop-by-hop basis and hence is suited for

deployment between two hosts or two administrative domains that have a trust

relationship. The IPSec is also commonly used with UAs that have an existing trust

relation-ship with their immediate proxy server.

Limitations of Security Mechanisms in SIP

The proxies need visibility into header fields and some features of messages.

Also, NAT must be able to decrypt/re-encrypt SIP messages. This means encryption of

full messages cannot be done end-to-end. The digest based authentication offers

protection only for some parameters. The S/MIME lacks public key exchange

infrastructure and the key exchange mechanism in SIP is susceptible to man-in-the-

middle attack [4]. Also, S/MIME can result in very large messages [4]. TLS is not

supported over connection less protocols like UDP [4]. Also TLS requires maintenance

43

of many simultaneous long-lived connections [4]. Another major problem for use of TLS

is that there is no guarantee that all SIP elements in the path support TLS. As well, the

handshake can be costly because of PKI based authentication and key calculation for

each TLS session. End-to-end IPSec deployment can be very challenging in a typical

VoIP environment where end points are dynamic. Not suitable for protecting VoIP and

unified communications data from end to end. SIP proxies and hops along the way will

not be able to decrypt or modify the information in SIP packets.

44

CHAPTER 5

PERFORMANCE EVALUATION TEST SETUP AND TOOLS

SIP supports several distinct security mechanisms as described in the previous

section. Choosing and deploying the security solutions in a SIP based VoIP network

requires not only the extensive knowledge of how various security mechanisms work and

what their limitations are, but also the impact of these security mechanisms on SIP

servers. This chapter describes the setup, tools, and methodology used for evaluating the

performance of SIP proxy, and registrar servers which are the bottleneck for performance

compared to SIP user agents.

Experimental Setup

The performance impact of security mechanisms under consideration are

evaluated using the real test bed implementation shown in below Figure. The

performance (either CPS or RPS or CPU utilization for a given load) of SIP server under

test is measured by running tests with and without employing the security mechanism

whose performance impact is being evaluated.

As can be seen in the below Figure, the test bed comprises of server under test

connected to various load generators and call handlers. The load generators act as the

UAC agents and the call-handlers act as the UAS agents. The UACs make calls to UASs

via one or more SIP proxy servers.

45

Load
Generator2

Call
Handler 1

Call
HandlerM

Load
GeneratorN

Load
Generator 1

Test
Controller

SUT

FIGURE 11. Experimental setup.

Server under Test (SUT): The SUT consists of the hardware and software

required to support SIP servers (SIP proxy, redirect, and registration servers) whose

performance is to be measured. The OpenSIPS server is used as the SUT in our

performance evaluation setup.

Load Generators: These are SIP UACs which generate the workload required for

performance evaluation. One or more instances of load generators will be used

depending on the required work load. Also, the load generators have configuration

options for various parameters like transport protocol, type of SIP messages, enabling or

disabling SIP advanced features, the number of requests, inter arrival time for requests,

46

and so on. These load generators are implemented using the open source SIPp [11]

testing tool by developing the UAC XML scenarios as required. SIPp is described in the

next section.

Call Handlers: These are SIP UASs which handle the calls by responding to the

requests from load generators within stipulated times [12]. These call handlers are also

implemented using the open source SIPp testing tool by developing the UAS XML

scenarios as appropriate for the test.

Test Controller: The test controller configures the load generators, SUTs, and

call-handlers, and starts the tests for evaluating performance. It also collects the

necessary statistics of performance metrics for reporting.

Performance Metrics

Registrations per second (RPS): Registrations per second is the average number

of successful registrations per second during the measurement interval [12].

Calls per second (CPS): Calls per second is defined as the average number of

calls per second completed with a 2xx or 4xx response during a measurement interval

[12]. For the proxy server performance evaluation test case, a single call includes both

the INVITE and corresponding BYE transaction.

CPU Utilization: The CPU utilization of SIP servers with different test scenarios

at various work-loads. The profiling information is also used to identify the CPU

utilization by different software components.

47

Test Methodology

The performance evaluation is performed by stressing the SUT using many

requests from the load generators. A number of tests with different load levels and

different measurement intervals will be used to get the results as accurate as possible.

Also, as the aim is to evaluate and compare the performance of a SIP server with

and without a given security mechanism, all other performance bottlenecks like network

throughput bottlenecks, network loading, path MTU, etc should be avoided. Also for, the

same exact setup will be used for both cases of SIP with and without a security

mechanism whose impact on performance is being evaluated.

The RPS and CPS values are determined by taking an average over the results

from tests run for different measurement intervals. In each test run, the RPS and CPS

value is determined as the highest sustained value when the load on the server is

increased until the transaction failure reaches a value of ~4%. The CPU utilization is also

measured by taking average with the tests running for long enough time (around 5-10

minutes) to minimize the measurement error.

The load generators will not wait for the response for a request sent before

sending the more requests. This way, the transaction round trip time will not be the

bottleneck in performance measurements.

48

SIPp Overview

SIPp is a free Open Source test tool/traffic generator for SIP protocol [11]. SIPp

includes few basic user agent scenarios (UAC and UAS scenarios) to be able to establish

and release multiple calls by generating the INVITE and BYE messages and their

responses. SIPp supports the capability to read custom XML scenario files for generating

and handling SIP user agent scenarios. This allows us to generate the complex SIP flows

quickly. SIPp also supports collecting various statistics about running tests, display of

the collected statistics dynamically, and periodic dump of statistics. SIPp also allows

using different transports like UDP, TCP, and TLS. The call rates can also be adjusted

dynamically. SIPp also supports SIP authentication, conditional scenarios, UDP

retransmissions, error robustness (call timeout, protocol defense), call specific variable,

POSIX regular expressions to extract and re-inject any protocol fields, custom actions

(log, system command exec, call stop) on message receive, and field injection from

external CSV file to emulate live users, etc. SIPp also supports media traffic through

RTP echo and RTP/pcap replay. Media can be audio or audio and video.

SIPp is used in our experimental setup for implementing the load generators and

call handlers. This allows us to emulate thousands of user agents calling SIP system

under test and thus facilitates us to evaluate the impact on SIP system performance due to

the overhead incurred by SIP security features.

49

SIPp Embedded Scenarios

SIPp supports the various embedded scenarios: UAC, UAC with media, UAS,

regexp, Branch, UAC Out-of-call Messages, and 3PCC. The most commonly used

scenarios are described below.

UAC Scenario: This is the most common scenario of establishing and

terminating a call. SIPp UAC will send an INVITE request, wait for the ACK, pauses

little bit after the ACK, and terminates the call by sending BYE request. This scenario is

shown in below Figure.

SIPp UAC Remote
(1) INVITE

>
(2) 100 (optional)

<

(3) 180 (optional)
<

(4) 200
<

(5) ACK
>

(6) PAUSE

(7) BYE
>

(8) 200
<

FIGURE 12. SIPp embedded UAC scenario.

50

UAC Scenario with Media: This scenario is similar to UAC scenario except that

there is media traffic using RTP protocol after establishing a call. This scenario is

illustrated in below Figure.

SIPp UAC Remote
(1) INVITE

>
(2) 100 (optional)
<
(3) 180 (optional)
<
(4) 200
<
(5) ACK

>

(6) RTP send (8s)
= >

(7) RFC2833 DIGIT 1
: >

(8) BYE
>

(9) 200
<

FIGURE 13. SIPp embedded UAC with media scenario.

UAS Scenario: This is the server scenario for establishing and terminating a

call. As shown in the below Figure, the UAS will respond with 180 and 200 messages

51

for an INVITE request and with a 200 message for a BYE request. This scenario can be

used when benchmarking SIPp UACs.

Remote SIPp UAS
(1) INVITE

>
(2) 180
<
(3) 200
<
(4) ACK

>

(5) PAUSE

(6) BYE
>

(7) 200
<

FIGURE 14. SIPp embedded UAS scenario.

Using SIPp with Integrated Scenarios

The below command starts the UAS scenario which will be waiting for incoming

calls to respond with OK response.

./sipp -sn uas

In order to generate the calls, we can now start the UAC scenario either on the

same host or on a different host that is connected to the host running the UAS scenario.

52

Below is the command to start the UAC scenario on the same host where UAS scenario is

running. This command starts the UAC scenario and sends the call requests to the server

on 127.0.0.1 interface which is the local loopback interface.

./sipp -sn uac 127.0.0.1

The Figure below shows the UAS scenario screen capture while the calls are in

progress between UAC and UAS scenarios running on the same host.

- Scenario Screen
I © t a 1 c a 11, s I ra r& ^ pe r t

SS U BP
lo t -il-t irn*

8i; lis n&v* call
4^ c a 11:3
8 fhmn in if >•
0 €?.X1
3 open sack

INU!

ME
208

FIGURE 15. SIPp UAS scenario screen capture.

The Figure below shows the UAC scenario screen capture while the calls are in

progress between UAC and UAS scenarios running on the same host. This screen

53

capture shows that SIPp dynamically reports the number of generated calls per second,

total number of calls generated, and various SIP messages sent and received.

"iirt Hie 1 1 r D x

< n * «•* : ̂ length
ISXK£5

£ c e n r- io S c re e ri I i • • ? 3 - Clian f/e S e Fe r>
% V- -« "J ~i;1 rife J u t >.X I""C d i i ! .t: j ;C \ # • J «> L t

5.«88 3 4(i i*• „ y.. e. i»b ybis i u bp ;*
i I daiMfsq I. , 1
v i ixnxr •!;€?/

ii I c*Il rrs# carded)

?«<!*- v>-\; 1 V:,, vt >• - r !J

IWH'X'E
< - -

1 <t 0 < -
18 3 <-
200 <•••
H€K

Pause E
ME l.©@ <»

FIGURE 16. SIPp UAC scenario screen capture.

The Figure below shows the UAS statistics after terminating the UAS scenario.

As seen in the screen capture in below Figure, SIPp reports a summary of various

statistics that include start time, last reset time, current time, elapsed time, call rate,

number of incoming calls created, number of outgoing calls created, total calls created,

number of successful calls, number of failed calls, average response time of the calls, and

the call length. As this is an UAS scenario, we only have the incoming calls.

54

U7V

•a l l th

FIGURE 17. SIPp UAS scenario statistics

The Figure below shows the UAC statistics after terminating the UAC scenario.

As seen in the screen capture in below Figure, SIPp reports a summary of various

statistics that include start time, last reset time, current time, elapsed time, call rate,

number of incoming calls created, number of outgoing calls created, total calls created,

number of successful calls, number of failed calls, average response time of the calls, and

the call length. As this is an UAC scenario, we only have the outgoing calls.

55

t : a p T i n e

?. Beset Tin&

line

Statistic* ocr-eers
2069-11 ~ 11 22 s§3 ;• -j £ : 043
2 Of 19 - .11 — 11 22 :00 ? ? 9 " 1X 3

20m~~i 1 ~~i i 2 2 ; 88 :3 V * 3 S 3

l.1 -9 1; Char?e 3c:?e:i
:2SSeObl09.04687b
i2^08&ii9
12333303x13.33333-

i^er H&ne

v^sed line

•1 Bate

! Periodic.

i ee^eenMi" ^
I 8 » 3 3 3 cpa

I r. r o a? i n g c & 11 ei*e at eel

Cut; & i r* g c a lie re at eef
3- ;>:u. Call created

rant. Call

3 ̂ .c- & 3 u 1 c a 11

Fa i ea 11

3es po s e I tr-m I

Call Lznyth

=00;00:08S
; 00:80:00?
••• lest 1> ruinated

Canulatiye yalne

Q3-C§Cr:IC3, 3133

? ,3'93 ; eps

192

182

102

0@"00:00=
m~ 00; 00;

§02
004

FIGURE 18. SIPp UAC scenario statistics

Developing and Using New SIPp XML scenarios

With just the embedded scenarios, the use of SIPp will be limited. The ability

to develop new scenarios using XML syntax quickly makes SIPp most powerful SIP

testing tool. Please refer to SIPp documentation for the syntax, keywords, and examples

to create a new SIPp scenario. The various XML scenarios developed as part of

performance evaluation will be described in the next section along with the description of

tests.

56

The other important reason that makes SIPp a powerful SIP testing tool is the

support of various options that can be used to fine tune the performance measurements

and fine tune SIPp scheduling of its various tasks.

Open SIP Server (OpenSIPS)

The Open SIP Server (OpenSIPS) is a mature Open Source implementation of a

SIP server [13]. It includes SIP registrar server, SIP proxy/router server, and also

application level functionalities. It supports UDP, TCP, and TLS transport layers. We

have chosen OpenSIPS as it is the open source implementation and one of the enterprise

or carrier-grade class servers with high performance.

The OpenSIPS can be used as a SIP registrar server, a SIP proxy server, a SIP

redirect server, a SIP location server, a SIP presence agent, a SIP back-to-back UA, SIP

IM server, SIP to SMS gateway, SIP to XMPP gateway, SIP load-balancer, SIP front end

for gateways, SIP NAT traversal unit, or SIP application server. In our study, we have

used it as a SIP registrar server or as a SIP proxy server. The information on installing

the OpenSIPS is provided in the OpenSIPS Installation Notes [14]. The OpenSIPS

configuration is through the opensips.cfg script file. Various configuration parameters

and the default opensips.cfg script file with TLS support are given in the OpenSIPS TLS

Support documentation [15].

57

OProfile

The OProfile is a profiling system for Linux 2.2/2.4/2.6 systems on a number of

architectures [16]. It supports profiling all parts of a running system (kernel, modules,

interrupt handler, shared libraries, binaries, etc...). It is capable of profiling all parts of a

running system, from the kernel (including modules and interrupt handlers) to shared

libraries to binaries. It runs transparently in the background collecting information at a

low overhead. These features make it ideal for profiling entire systems to determine

bottle necks in real-world systems. OProfile uses various performance counters (like

cache misses counter, CPU cycles counter, etc...) provided by the hardware and provides

with profiles of code based on the number of these occurring events. It also supports

call-graph option where it will record the function stack every time it takes a sample.

OProfile has proven to be useful in a number of scenarios where we need a low overhead

and less intrusive profiling system for capturing the performance behavior of the entire

system. The instructions on using OProfile are given in the OProfile website [17].

The opreport utility is used to report formatted data out of OProfile. It produces

two types of data: image summaries and symbol summaries. An image summary lists

the number of samples for individual binary images such as libraries or applications.

Symbol summaries provide per-symbol profile data. Following is the specific command

used for reporting the profiling information logged by OProfile.

#opreport ~demangle=smart —symbols usr/local/sbin/opensips

58

Systems Used for Testing

For running SIPp UAC and UAS scenarios as load generators and call handlers, I

have used the Dell Inspiron 14R, Dell Inspiron 15R, HP Compaq CQ57-315NR laptops.

SIPp compiled with TLS support is installed on these laptops. The Open Secure Socket

Layer (OpenS SL) library, IPv6 extension for cygwin, and libncurses needed for running

SIPp with TLS are also installed. Below are the instructions used for compiling SIPp.

When running in Windows, cygwin environment will be needed for compiling SIPp.

gunzip sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp
make ossl

For running the OpenSIPS, I have used the Dell Precision T3400 workstation

which has Intel Pentium 4 CPU running at 2.80GHz. The cache size is 512KB and the

total main memory is 1GB. Only one CPU core is enabled for the performance evaluation

as we want to load the CPU utilization to 100% with few load generators to keep the

setup simple and to exclude the overhead due to SMP environment. The Netgear ProSafe

gigabit Ethernet switch (GS116NA) is used for interconnecting SIP elements.

Procedure for Testing

Configure all the load generators (SIPp UAC agents), SIP proxy server, SIP

registrar server, and call handlers (SIP UAS agents) to be in the same network. Modify

the opensips.cfg as needed. Various configurations include specifying the listening

interface, transport protocol, L4 port id, configuration for relaying the messages to caller.

59

Start the OpenSIPS server on SIP server machine (server under test) using the below

command.

#opensips

Add the user location (caller location) to the database using the below command.

In this example, the user name is 1003 and its location is identified by SIP URI of

'sip: 1003@192.168.1.100:5061'.

opensipsctl ul add 1003 sip:1003@192.168.1.100:5061

Start the UAS agents on call handling machines by running SIPp UAS scenarios

listening for the incoming calls. Below is SIPp command to start a UAS scenario

listening for incoming call requests using TLS on 192.168.1.100 interface. In this

command, the L4 port being listened to is also provided. Also, the TLS certificate and

private key are provided.

sipp -sn uas -i 192.168.1.100 -p 5061 -t In -1 900 -tls_cert ./user-cert.pem -

tls_key ./user-privkey.pem

Now, start the load generators (SIPp UAC scenarios) so that calls are established

through SIP proxy server. Below is the command to start the UAC scenarios using TLS.

With this command, SIPp sends the call requests at the rate of 100 calls per second using

TLS. It sends these call requests out on the 192.168.1.200 interface and they are targeted

to the 192.168.1.2 interface on SIP proxy server.

60

#sipp -sn uac 192.168.1.2:5061 -i 192.168.1.200 -p 5061 -t In -tls_cert ./user-

cert.pem -tls_key ./user-privkey.pem -1 900 -s 1003 -r 100

In order to change the load, stop the current UAC scenario and start a new

scenario with calls per second configured as needed. Or, more UAC agents can be

started for generating more loads to SIP proxy server. While a test is in progress,

measure the CPU utilization on SIP proxy server using the average over the test duration.

Also, repeat the test to profile the CPU cycles spent on various software components. For

profiling, start the OProfile while the test is running and stop the OProfile after the test

duration has elapsed. Save the OProfile logged output so we have the information needed

to analyze the percentage of CPU cycles spent among various software components.

61

CHAPTER 6

PERFORMANCE EVALUATION

In this chapter, we discuss the test cases used for measuring SIP server throughput

rates and corresponding CPU utilization, the performance results obtained, and the

OProfile profiling information noted.

Evaluating Performance Impact Due to Authentication

The performance impact due to digest based authentication in SIP is evaluated by

measuring the RPS of SIP registrar servers with and without the digest authentication

enabled.

\
UAC

SUT. SIP X

Registrar Server

iiiiiiiiiiiiiiil

mmm

FIGURE 19. Registration without authentication

62

The Figure 19 above shows the call flow between the UAC and SIP registrar

server when registrar does not implement Authentication. In this case, the UAC sends

the REGISTER requests without authentication request and the Registrar Server responds

with the OK responses. A sample REGISTER request without authentication is shown in

below Figure 20.

REGISTER sip:registrar SIP/2.0
Via: SIP/2.0/UDP origin
From: <sip:>;tag=l
To: sip:registrand
Call-ID: call-id value
CSeq: 1 REGISTER
Contact: <sip:IP address>
Expires: 7200 Content-Length: 0

FIGURE 20. REGISTER request without authentication.

The message flow for registrations with authentication is shown in below Figure

21. In this case, the UAC first sends the REGISTER request without authentication. The

UAS responds back with the UNAUTHORIZED response. The UAC then sends the

REGISTER request with the AUTHORIZATION header. A sample REGISTER request

with the AUTHORIZATION header is shown in below Figure 22.

63

R E G I S T E R F 1 |

I R E G I S T E R I

S U T : S I P
R e g i s t r a r S e r v e r

FIGURE 21. Registration with authentication.

REGISTER sip:registrar SIP/2.0
Via: SIP/2.0/UDP origin
From: <sip:registrand>;tag=l
To: s ip:regi s trand
Call-ID: call-id value
CSeq: 1 REGISTER

Contact: <sip:IP address>
Expires: 7200 Authorization:Digest
username="registrand",
realm="SIPstone",
nonce= Nea9c8e88df84fIcec4341ae6cbe5a359",
opaque="", uri="registrar",
response="dfe56131dl958046689cd83306477ecc"
Content-Length: 0

FIGURE 22. Authenticated REGISTER request

64

SIPp does not have built in UAC and UAS scenarios for SIP authentication. So,

we have developed an XML file for this scenario and it is provided in Appendix-A. The

Figure 23 below shows SIPp UAC using the XML scenario for the Registration with

Authentication.

FIGURE 23. SIPp screenshot of registration with authentication

SIP Registrar Performance Results

The CPU utilization of SIP server is measured with UDP or TCP as transport, and

with or without Authentication. This means, we ran four different test cases: UDP

transport and no authentication, UDP transport with authentication, TCP transport and no

authentication, and TCP transport with authentication. For each of these four test cases,

the CPU utilization is measured with varying workloads. These measurements are shown

in graphical form in Figures 24 to 28. These measurements in table form are also

provided in Appendix C.

65

The Figure 24 below shows comparison of SIP performance with and without

Authentication using UDP as transport. As expected, the CPU utilization is higher for a

given number of RPS when authentication is enabled. With UDP transport, the CPU

utilization reaches 100% for approximately 5750 Registrations Per Second (RPS) when

authentication is enabled where as the CPU utilization is only 29.7% for approximately

8000 RPS when authentication is disabled.

FIGURE 24. SIP registrar performance comparison—UDP.

One way to compare the two test cases is by looking at the CPU utilization for a

given number of RPS. For 5750 RPS, the CPU utilization is 19% when authentication is

disabled and 100% when authentication is enabled. This means the degradation in

120

UDP+
Auth

UDP+NoAuth

0 2000 4000 6000 8000 10000

Registrations Per Second

66

performance is approximately five times at 5750 RPS. In a similar fashion, the performance

degradation for various RPS loads is calculated. The Figure 25 below shows the degradation in

SIP registrar performance at various RPS loads. From this graph, we can note that the

performance degradation varied from 4.63 times to 5.26 times depending on the RPS load.

Taking an average of these results (minimizing measurement error), we have noted a performance

degradation of approximately five times due to the SIP authentication. The performance

degradation is approximately five times at any given RPS load and this suggests that this

information can also be used for extrapolation when needed. However, it should be noted that

platform specific improvements in CPU speed and memory access affecting the digest

calculations may yield different numbers. We hope that these measurements give a good

approximation of costs to be incurred when using SIP digest based authentication of SIP users.

Performance Impact Due To SIP
Authentication with UDP Transport

o

<

Registrations Per Second

FIGURE 25. SIP registrar performance degradation—UDP.

67

The Figure 26 below shows comparison of SIP performance with and without

Authentication using TCP as transport. With TCP transport, the CPU utilization reaches

100% for approximately 4500 Registrations Per Second (RPS) when authentication is

enabled. The CPU utilization is only 42.5% for 8000 RPS when authentication is

disabled. As expected the performance (RPS) has come down when TCP is used as

transport protocol compared to UDP case due to the TCP overhead.

120

100

——TCP+
Auth

o60

-TCP + NoAuth

i 4000 6000 :

Registrations Per Second

8000 10000 2000

FIGURE 26. SIP registrar performance comparison—TCP.

The Figure 27 below shows the degradation in SIP registrar performance at

various RPS loads. As with the UDP case, the performance degradation has varied from

4.5 times to 5.4 times depending upon the RPS load. Taking the average of performance

degradation measured at different loads, we can note that the performance degradation

68

due to SIP authentication is approximately five times. These results also indicate that the

performance degradation due to SIP digest based authentication is approximately five

times whether the transport protocol is UDP or TCP.

FIGURE 27. SIP registrar performance degradation—TCP.

The below Figure 28 shows all the four (two TCP and two UDP) test cases in one

graph. It is clear from the graph that UDP provides more performance than TCP as UDP

has less overhead compared to TCP. It is also clear that the performance degradation in

both UDP and TCP cases is almost same.

Performance Impact Due To SIP
Authentication with TCP Transport

o

Registrations Per Second

69

120

TCP+

Auth

•UDP+
Auth

-TCP + NoAuth

•UDP+NoAuth

0 5000 10000

Registrations Per Second

FIGURE 28. SIP registrar performance comparison.

Evaluating Performance Impact Due to TLS

The performance impact due to TLS in SIP is evaluated by measuring the CPU

utilization under varying loads of CPS using different test cases that have different

transports and TLS settings. There are three different TLS settings to be taken into

account: authentication (only client authenticating server or mutual), proxy server

operating mode (proxy in the middle of proxy chain or inbound proxy or outbound proxy

or local proxy), and session reuse (enabled or disabled). Note that the operating mode of

a proxy is logical and all the other operating modes are special cases of local proxy mode.

As our focus is in evaluating the impact of TLS overhead, we have chosen only one

70

operating mode (local proxy mode) so as to minimize the number of test cases while still

covering the test cases needed for our evaluation.

Most of the use cases are where clients authenticate server and not the mutual

authentication. So, we need only one test case with mutual authentication to evaluate the

performance impact due to mutual authentication compared to the case of only client

authenticating server. Similarly, the benefit with session reuse is evaluated by picking up

only one test case with session reuse enabled. The TLS test cases we have chosen are:

Local proxy with client authentication and no session reuse (TLS-Local-Client), Local

proxy with client authentication and session reuse (TLS-Local-Client-SessionReuse), and

Local proxy with mutual authentication and no session reuse (TLS-Local-Mutual). To

summarize, the different test cases we have used are: a) UDP transport, b) TCP Mono

(Single socket), c) TCP Multi (Multiple sockets), d) TLS-Local-Client, e) TLS-Local-

Client-SessionReuse, and g) TLS-Local-Mutual. The results measured are provided in

the Appendix D and plotted in this section.

The performance degradation due to server also authenticating client is obtained

by comparing the results from TLS-Local-Client and TLS-Local-Mutual test cases. The

difference between these two cases is the additional overhead for the server to request the

certificate from client and authenticating it in case of mutual authentication. The Figure

29 below shows the performance degradation due to mutual authentication compared to

client only authentication. The CPU utilization has reached 100% for around 95 calls per

71

second in case of mutual authentication and for around 135 calls per second in case of

client only authentication.

Mutual vs Client Only Authentication

^ 150

100
IB TLS-Local-

Client

TLS-Local-Mutual
0

0 50 100 150 200 250 300

Calls Per Second

FIGURE 29. SIP proxy server performance impact due to mutual authentication.

The performance gain with session reuse enabled is obtained by comparing the

results from TLS-Local-Client and TLS-Local-Client-SessionReuse test cases. These

results are shown in below Figure 30. As can be seen from the Figure, the CPU

utilization has reached 100% for about 135 calls per second in case of TLS-Local-Client

case which is not using the session reuse and for about 320 calls per second in case of

TLS-Local-Client-SessionReuse case which is using the session reuse. For this test, note

that all the calls are made under few sessions which are established first time and are

cached for subsequent use as session reuse is enabled.

72

TLS with and without Session Reuse
150

SS
~ 100

TLS-Local-
Client 3 50

a. o ^
0

•TLS-Local-Client-
SessionReuse

0 100 200

Calls Per Second

300 400

FIGURE 30. SIP proxy server performance gain with session reuse.

The performance impact on SIP proxy due to TLS is obtained by comparing the

results from UDP and TCP test cases with the results from TLS-Local-Client and TLS-

Local-Mutual test cases. These results are plotted in below Figure 31. The CPU

utilization reached 100% for around 95 calls per second load in case of TLS-Local-

Mutual test case where TLS is enabled with mutual authentication and multiple incoming

and outgoing TLS connections. In case of TLS with client only authentication and

session reuse not enabled, the peak throughput (where CPU utilization has reached

100%) is around 135 calls per second. In case of TLS with client only authentication and

session reuse enabled, the peak throughput is measured to be around 320 calls per second.

The peak throughput for TCP case is around 865 calls per second when multiple sockets

are used and around 1130 calls per second. Finally, the peak throughput measured for

UDP case is 1810 calls per second.

73

CPU Utilization - UDP/TCP/TLS cases
120

UDP

100

TCP-Mono

TCP-MuIti

TLS-Local-
Client

0

TLS-Local-Client-
SessionReuse

0 500 1000

Calls Per Second

1500 2000 TLS-Local-Mutual

FIGURE 31. SIP proxy server performance comparison.

The peak CPS throughput for the different test cases is obtained from the data in

above Figure 31 and is shown in graphical form in below Figure 32. From this data, we

can infer that there is about nineteen times peak throughput degradation when TLS-

Local-Mutual is compared with the UDP case. And the degradation is about nine times

when compared to the TCP multiple socket case. The TCP multiple socket case provides

only 47% of peak performance that can be achieved with UDP. The overhead due to

several TCP connections can be obtained by comparing the TCP Mono and TCP Multi

cases and this overhead is about 14 %. The performance degradation due to the server

also authenticating server when compared to the case of only client authenticating server

is about 30%. When session reuse is enabled, the performance gain due to bypassing the

74

asymmetric cryptographic operations and avoiding the overhead of exchange of few

messages needed for negotiation of secret key and other parameters is about 2.37 times.

2000 f"

1800 f

1600 V
I

1400 Y TS i
|.200

^L000 f'

u
800

600

400

200

Peak CPS Throughput

TCP Multi

Mono

TLS Local Client TLS Local Client TLS Local

Session Reuse Mutual

FIGURE 32. SIP proxy peak CPS throughputs.

Impact ofTLS-OProfile Results

The SUT is profiled using Linux OProfile utility while different test are running

and the collected logs are analyzed for determining the CPU time spent on various

software components of interest. The summary of OProfile Results measured is provided

in tables in Appendix E and are plotted and discussed in this section. The Figure 33

75

below shows the OProfile results summary for the UDP case with various loads. The

three software components where CPU time is spent apart from the kernel are the

opensips server, libc library, and tm library. Around 25% of CPU cycles are spent in

opensips, 20% of CPU cycles are spent in libc, and 10% of CPU cycles are spent in tm

library. What this means is that 25% of CPU utilization measured is due to the opensips

software, and 20% of CPU utilization measured is due to the libc library functions, and

10% of CPU utilization measured is due to the timer library (tm library). The CPU

utilization measured will be different for different traffic loads and we have already noted

this information as part of our TLS performance measurements. Another important point

we can also note from Figure 33 is that this division of CPU cycles between different

software components is almost same under different CPS loads.

Oprofile Summary UDP

opensips libc tm

Software Component

• 150 cps

• 300 cps

• 600 cps

• 1000 cps

FIGURE 33. OProfile results summary-UDP

76

The Figure 34 below shows the OProfile results summary for the TCP single

socket case with various loads. The three software components where CPU time is spent

apart from the kernel are the opensips server, libc library, and tm library. Around 25% of

CPU cycles are spent in opensips, 16% of CPU cycles are spent in libc, and 7% of CPU

cycles are spent in tm library. These results obtained with the OProfile will have to be

multiplied with the CPU utilization measured to obtain the CPU utilization due to each of

these software components of interest. We can also note that the division of CPU cycles

between different software components is almost same under different CPS loads.

Oprofile Summary - TCP Mono

„ 30 ^ m I
> 25 u "
a 20 o

• 150 cps

• 200 cps

• 400 cps

• 600 cps

800 cps

opensips libc

Software Component

tm

FIGURE 34. OProfile results summary—TCP mono.

77

The Figure 35 below shows the OProfile results summary for the TCP multi

socket case with various loads. The three software components where CPU time is spent

apart from the kernel are the opensips server, libc library, and tm library. Around 27% of

CPU cycles are spent in opensips, 14% of CPU cycles are spent in libc, and 6% of CPU

cycles are spent in tm library. These results obtained with the OProfile will have to be

multiplied with the CPU utilization measured to obtain the CPU utilization due to each of

these software components of interest. We can also note that the division of CPU cycles

between different software components is almost same under different CPS loads.

Oprofile Summary - TCP Multi

> 25

a. 20

1 15

opensips iibc tm

Software Component

• 150 cps

• 200 cps

• 400 cps

• 600 cps

m 800 cps

FIGURE 35. OProfile results summary—TCP multi.

The Figure 36 below shows the OProfile results summary for the TCP-Local-

Client-SessionReuse case (TLS with client only authentication and session reuse enabled)

78

with various loads. The four software components where CPU time is spent apart from

the kernel are the opensips server, libcrypto library, libssl library, and libc library.

Around 18% of CPU cycles are spent in libcrypto library, 23% of CPU cycles are spent

in libc, 3% of CPU cycles are spent in libssl library , and 11% of CPU cycles are spent in

libc library. These results obtained with the OProfile will have to be multiplied with the

CPU utilization measured to obtain the CPU utilization due to each of these software

components of interest. We can also note that the division of CPU cycles between

different software components is almost same under different CPS loads.

Oprofile Summary - TLS-Local-Client-
SessionReuse

a 25

libcrypto opensips libssl

Software Component

l 90 cps

I 180 cps

1270 cps

FIGURE 36. OProfile results summary-TLS local client session reuse.

The Figure 37 below shows the OProfile results summary for the TCP-Local-

Client case with various loads. The four software components where CPU time is spent

apart from the kernel are the opensips server, libcrypto library, libssl library, and libc

79

library. Around 48% of CPU cycles are spent in libcrypto library, 14% of CPU cycles

are spent in libc, 3% of CPU cycles are spent in libssl library, and 8% of CPU cycles are

spent in libc library. These results obtained with the OProfile will have to be multiplied

with the CPU utilization measured to obtain the CPU utilization due to each of these

software components of interest. We can also note that the division of CPU cycles

between different software components is almost same under different CPS loads.

Oprofile summary - TLS-Local-Client

: „ 5 0 ' ' g [:

I I 4 0 • •

i so ; "
I re • 40 cps

£ 20 ' • 90 cps

| 1 0 Y ' ' - - - - - - 1 3 5 C P S

5 j | , I , . . JliBiil-- 1...
0 — * - i - — ~:

libcrypto opensips libssl libc
Software Component

. ,, . , .. , ~ ̂ , « « „ , , V, _ _ „ - , . . , ̂ . *. , , , ... „ » ,

FIGURE 37. OProfile results summary—TLS local client.

The Figure 38 below shows the OProfile results summary for the TCP-Local-

Mutual case with various loads. The four software components where CPU time is spent

apart from the kernel are the opensips server, libcrypto library, libssl library, and libc

library. Around 58% of CPU cycles are spent in libcrypto library, 10% of CPU cycles are

80

spent in libc, 2% of CPU cycles are spent in libssl library, and 5% of CPU cycles are

spent in libc library. These results obtained with the OProfile will have to be multiplied

with the CPU utilization measured to obtain the CPU utilization due to each of these

software components of interest. We can also note that the division of CPU cycles

between different software components is almost same under different CPS loads.

Oprofile summary - TLS-Local-Mutual

libcrypto opensips libssl libc

Software Component

FIGURE 38. OProfile results summary—TLS local mutual.

To compare the results from different test cases, we have normalized the results

with CPU utilization measured. These normalized results for different test cases at a

CPU load of 90 CPS are plotted in the below Figure 39. From this Figure, we can see

that about 54.23% of CPU time is spent in libcrypto for the TLS-Local-Mutual, about

81

31.51% of CPU time is spent in libcrypto for the TLS-Local-Client, and about 4.43% of

CPU time is spent in libcrypto for the TLS-Local-Client-SessionReuse. This means, the

asymmetric cryptographic operation in TLS session establishment have increased the

CPU utilization from 4.43% to 31.51% or 54.23% depending on whether the

authentication is client only or mutual. Note that even though the cost due to libcrypto

has gone up by 7.11 % between the TLS-Local-Client and TLS-Local-Client-

SessionReuse cases, the overall benefit of session reuse is about 2.37 times. As can be

seen from the below Figure, this is due to the fact the costs associated with other

components do not scale in the same ratio as that of libcrypto between the 2 cases.

Oprofile Results Normalized - Comparison

• TCP Mono

• TLS-!. ocal-Client-SessionReuse

• TLS-Local-Client

• TLS-Local-Mutual
Software Component

FIGURE 39. Comparison of OProfile results normalized

82

From the OProfile summary results plotted in Figures 33 to 38 above, we can also

notice that this division of CPU cycles, for a given test case, between different software

components is almost same under different CPS loads. This means, we can also

extrapolate the measured results for higher CPS loads as long as the platform under test

can be assumed to have similar processor and memory access performance, though the

measured results are specific to a given test setup.

83

CHAPTER 7

CONCLUSIONS

With rapid evolution of VoIP with SIP widely used as the signaling protocol, SIP

security is becoming extremely important. In this thesis, we have studied the various

security threats to SIP like registration hijacking, message modification, impersonating a

server, Denial of Service (DoS), session tear down, and Replay attack. We have also

studied the various security mechanisms (Authentication, S/MIME, and TLS) in practice

to mitigate these threats. We have also evaluated the impact on performance of SIP

servers due to Authentication and TLS. The open source OpenSIPS server is used as the

registration or proxy server in our performance testing. The OpenSIPS server is

configured through the configuration scripts for the required SIP proxy operations and

security mechanisms. SIPp traffic generator is used for generating SIP traffic. The

embeded UAC and UAS scenarios are used for generating and accepting the voice calls.

SIPp test scenarios for registration with and without authentication are developed using

the XML. We have used both UDP and TCP as transport protocols in evaluating the

performance impact of Authentication on the SIP registrar server. The results show that

the performance of the SIP registrar server has degraded by approximately five times due

to SIP authentication. The results also show that the performance degradation noted is

consistent across different SIP traffic loads with either UDP or TCP as the transport

protocol.

84

The performance impact of TLS on the SIP proxy server is evaluated using same

test-bed employing the OpenSIPS server and SIPp traffic generators. We.have used

UDP, TCP, and TLS as transport protocols in this performance evaluation. We have

noted that the performance of the SIP proxy server has improved by approximately 2.37

times when session reuse is enabled by comparing the peak loads obtained when using

TLS with and without session reuse. The performance degradation due to mutual

authentication in TLS compared to client only authentication is measured to be around

1.5 times. The performance degradation of the TLS local proxy server with mutual

authentication is measured to be about nineteen times when compared to UDP case and

about nine times when compared to TCP case.

We have further analyzed the CPU utilization between the various TLS test cases

using the OProfile. The OProfile utility allows us to profile the system by measuring the

number of CPU cycles used by various software components (libcrypto, opensips, libssl,

libtm, kernel, etc) within a given period of time. Using the OProfile results and the CPU

utilization measurements, we have noted that cost incurred in TLS asymmetric

cryptography operations in establishing the TLS session is approximately 7.11 times by

comparing the CPU time spent in libcrypto between the 2 cases of TLS with and without

session reuse. The OProfile results also show that the percentage of CPU cycles used by

various software components like libcrypto, opensips, and libssl for a given test case is

approximately same with various SIP traffic loads. This means the results obtained can

also be extrapolated to different loads without introducing a significant error.

85

APPENDICES

86

APPENDIX A

SIP MESSAGES FOR REGISTRATION WITH AUTHENTICATION

87

The listing below shows the various SIP messages in SIP registration with

authentication enabled.

1) REGISTER Request without Authentication sent from the UAC.

REGISTER sip: 192.168.1.150 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.151:5060;branch=z9hG4bK-l 100-1-0
From: sipp <sip:sipp@ 192.168.1.15 l:5060>;tag=l
To: sut <sip:service@ 192.168.1.150:5060
Call-ID: 1-1100@192.168.1.151
CSeq: 1 REGISTER
Contact: sip:sipp@ 192.168.1.151:5060
Max-Forwards: 70
Expires: 1800
User-Agent: SIPp/Linux
Content-Length: 0

2) UNAUTHORIZED Response received from SIP Registrar Server.

SIP/2.0 401 Unauthorized
Via: SIP/2.0/UDP 192.168.1.151:5060;branch=z9hG4bK-l 100-1-0
From: sipp <sip:sipp@192.168.1.151:5060>;tag=l
To: sut <sip:service@192.168.1.150:5060>;tag=l 16f6bbbl87428b76dfe896dc69c98ee.e87d
Call-ID: 1-1100@192.168.1.151
CSeq: 1 REGISTER
WWW-Authenticate: Digest realm="192.168.1.150",
nonce-'4b 1486500000110d07a8a496d88b628973dl59afa7a85bcf'
Server: OpenSIPS (1.6.0-notls (i386/linux))
Content-Length: 0

3) REGISTER Request with the Authorization Header

REGISTER sip: 192.168.1.150 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.15 l:5060;branch=z9hG4bK-l 100-1-3
From: sipp <sip:sipp@ 192.168.1.15 l:5060>;tag=l
To: sut <sip:service@ 192.168.1.150:5060>
Call-ID: 1-1100@192.168.1.151
CSeq: 2 REGISTER
Contact: sip:sipp@ 192.168.1.151:5060
Authorization:Digest username-'userl", realm="192.168.1.150", uri-'sip: 192.168.1.150:5060",
nonce="4b 1486500000110d07a8a496d88b628973dl59afa7a85bcf',
response-'c9361531 c988bf253b 1 e9177548973fe",algorithm=MD5
Max-Forwards: 70
Expires: 1800
User-Agent: SIPp/Linux
Content-Length: 0

88

4) OK Response from SIP Registrar upon verifying the provided credentials.

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.15 l:5060;branch=z9hG4bK-l 100-1-3
From: sipp <sip:sipp@192.168.1.151:5060>;tag=l
To: sut <sip:service@192.168.1.150:5060>;tag=l 16f6bbbl87428b76dfe896dc69c98ee.515e
Call-ID: 1-1100@192.168.1.151
CSeq: 2 REGISTER
Contact: <sip:sipp@ 192.168.1.151:5060>;expires= 1800
Server: OpenSIPS (1.6.0-notls (i386/linux))
Content-Length: 0

89

APPENDIX B

SIPp XML SCENARIO FOR AUTHENTICATION

90

<?xml version="1.0" encoding="ISO-8859-l" ?>
<scenario name="Basic Sipstone UAC">
<send retrans="500">

<![CDATA[
REGISTER sip:[remote_ip] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>
Call-ID: [call id]
CSeq: 7 REGISTER
Contact: sip: sipp@[local_ip]: [local_port]
Max-Forwards: 70
Expires: 1800
User-Agent: SIPp/Linux
Content-Length: 0

]]>
</send>

<recv response="100" optional="true">
</recv>

<recv response="401" auth="true">
</recv>

<send>
<![CDATA[

REGISTER sip:[remote_ip] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>
Call-ID: [call id]
CSeq: 8 REGISTER
Contact: sip: sipp@[local_ip]: [local_port]
[authentication username=userl password=passwordl]
Max-Forwards: 70
Expires: 1800
User-Agent: SIPp/Linux
Content-Length: [len]

]]>
</send>

<recv response="200">
</recv>

</scenario>

91

APPENDIX C

SIP AUTHENTICATION - PERFORMANCE MEASUREMENTS

92

The table below summarizes the CPU loads for the four different test cases we

have considered for evaluating the impact of SIP authentication on SIP Registrar

performance.

TABLE 1. CPU Utilization With and Without Authentication

RPS UDP+
NoAuth

TCP +
NoAuth

UDP+
Auth

TCP+
Auth

(UDP+Auth)/
(UDP+No Auth)

(TCP+Auth)/
(TCP +No Auth)

100 0.5 0.5 2.6 2 7 5.2 5.4
250 08 1.1 3.9 5.7 4.875 5.181818182

500 1 7 2.1 8 9.8 4.705882353 4.666666667

750 24 3 11 14.5 4.583333333 4.833333333

1000 3.3 3.9 16 19.1 4.848484848 4897435897

1250 3.7 4.8 17.9 24.4 4.837837838 5083333333
1500 4.5 . 21.8 28.9 4844444444 '37704918

1750 5.8 7.8 27.5 34.4 474137931 4.410256^1

2000 J 9.1 35 40.6 5.147058824 4.461538462

2250 7.7 10.2 37 45.7 4.805194805 4480392157

2500 8 5 10.8 39.9 50.7 4.694117647 4.694444444

2750 9.3 11.4 44 54.2 4.731182796 4754385965

3000 10.5 12.2 49.6 60 4.723809524 4.918032787

3250 11.1 13.6 51.3 67.6 >21621622 4.970588235

3500 12.2 14.5 57.7 72 '29508197 4.965517241

3750 13.9 15.5 67 75.5 4.820143885 4.870967742

4000 14.2 16 7 68 85.5 4.788732394 5 119760479

4250 S 18.4 73 89.9 4.709677419 4.885869565

4500 21 76.7 100 .92814371 4.761904762

4750 17 23.6 79 100 47058824

5000 18 • 87 :)0 133333333

5750 v.) 27.2 100 100 :63157895

6250 21.7 30.3 100 :)0

6500 23.5 34.2 100 100

7000 24,3 37 100 100

7500 1 40.4 100 100

8000 29.7 42.5 100 100

93

APPENDIX D

TLS PERFORMANCE EVALUATION RESULTS

94

TABLE 2. CPU Utilization With and Without TLS

CPS

CPU Utilization

CPS UDP TCP-Mono TCP-MuIti

TLS-Local-

Client

TLS-Local-Client-

SessionReuse

TLS-

Local-

Mutual
0 0 0 0 0 0 0

10 0.5 • 2.8 6 3.3 8.9

20 0.7 34 4 13.3 5.7 18.3
30 1.4 4 5.1 21.1 8.3 28

40 2 S 5 5.9 28.9 11.1 39

50 2.4 6.2 7.7 35.7 13.6 50 '

60 3 6.9 8.6 43.2 16.1 61.2

70 3.7 8 10.3 50.8 19.6 71.8

80 4.3 9.2 11.4 58.2 22.5 82.3

90 4.8 10.1 12.9 64.8 25.1 91.6

95 5.2 10.3 13.1 71.6 28.7 100

100 5.4 10.8 13.5 77.2 32.1 100

110 5 9 11.5 14 3 83.9 34 8 100

120 6.3 11.9 15.7 90.4 38.1 100

130 6 9 12.5 17.8 97.2 41.3 100

135 7.3 12.9 18.2 100 43.6 100

140 7.8 13.3 18.5 100 44.5 100

150 8.4 L4.7 19.3 100 42 100

160 9 15.6 20.2 100 50.6 100

170 9.6 16.2 21.3 100 54.1 100

180 10 17.5 23.1 100 57.3 100

190 10.4 18.1 23.7 100 60.7 100

200 10.6 19.4 25.1 100 63.4 100

210 11.1 19.6 26.6 100 66.3 100

220 11.5 20.2 27.3 100 69.1 100

230 12.1 21 28.4 100 ' . 1 100

240 12.8 21.7 29.7 100 74.9 100

250 13.4 22.8 3i 100 100

260 13.9 23.4 31.6 100 80.6 100

270 14.5 23,7 32.9 100 83.8 100

280 15.1 24.9 34.1 86.9 100

290 15.9 26.3 36.2 100 89.4 100

o

o

17 27.1 36.9 100 94.1 100

95

310 17.3 27.8 38.2 100 97.8 100

320 17.8 28.7 39.6 100 100 100

330 18.4 29.7 40.5 100 100 100

340 18.9 30.6 41.7 100 100 100

350 19.3 31.4 42.8 100 100 100

360 19.5 32.1 43.4 100 100 100

370 20.1 32.9 43.9 100 100 100

380 20.6 33.2 44.7 100 100 100

390 20.9 33.9 45.5 100 100 100

400 21.3 34.4 46.3 100 100 100

410 21.8 34.9 47.2 100 100 100

420 22.3 35.8 48.2 100 100 100

430 22.8 36.7 48.9 100 100 100

440 23.3 37.6 49.8 100 100 100

450 24.1 38.3 51.1 100 100 100

460 24.6 39.1 51.9 100 100 100

470 25.1 40.1 52.7 100 100 100

480 25.7 41.2 53.5 100 100 100

490 26.2 42.3 54.5 100 100 100

500 26.8 43.4 56.8 100 100 100

510 27.3 44.1 57.5 100 100 100

520 27.9 44.8 58.2 100 100 100

530 28.3 45.7 58.9 100 100 100

540 28.7 46.4 60.7 100 100 100

550 29.4 47 61.5 100 100 100

560 29.9 48.1 62.7 100 100 100

580 30.4 50.2 64.5 100 100 100

600 32.1 52.3 67.9 100 100 100

610 32.8 53.1 68.8 100 100 100

650 35.4 56.1 73.1 100 100 100

700 38.1 60.5 78.4 100 100 100

750 41.3 64.2 84.9 100 100 100

800 44.7 68.8 92.5 100 100 100

850 47.2 73.1 98.6 100 100 100

865 48.3 74.5 100 100 100 100

900 50.8 77.4 100 100 100 100

950 54.3 82.2 100 100 100 100

1000 57 86.9 100 100 100 100

96

1100 62.6 98.5 100 100 100 100

1130 64.5 100 100 100 100 100

1200 68.9 100 100 100 100 100

1300 73.5 100 100 100 100 100

1400 79.2 100 100 100 100 100

1500 84.7 100 100 100 100 100

1600 89.8 100 100 100 100 100

1700 94.3 100 100 100 100 100

1800 99.1 100 100 100 100 100

1810 100 100 100 100 100 100

1900 100 100 100 100 100 100

97

APPENDIX E

OPROFILE RESULTS

98

TABLE 3. OProfile Summary—UDP

UDP

CPS j 300 600 1000

opensips 22.5 24.59 25.56 25.83

libc 21.84 21.25 21.16 L.35

tm 9.29 10.19 . 0.95 11.4

TABLE 4. OProfile Results Normalized—UDP

UDP

CPS 90 300 600 1000

opensips 1.08 4.1803 8.20476 14.7231

libc 1.04832 3.6125 6.79236 12.1695

tm 0.44592 1.7323 3.51495 6.498

TABLE 5. OProfile Summary—TCP Single Socket

TCP Mono

CPS 90 200 400 600 800

opensips 24.7 25.33 25.56 26.36 27.03

libc 17.23 16.91 21.16 18.02 17.47

tm 8.1 8.12 10.95 8.85 9.22

TABLE 6. OProfile Results Normalized-TCP Single Socket

TCP Mono

CPS 90 200 400 600 800

opensips •947 4.91402 8.79264 13.78628 18.59664

libc 1.74023 3.28054 7.27904 2446 ~.,;:i936

tm 181 1.57528 668 •i i.-2855 o -4336

99

TABLE 7 OProfile Summary—TCP Multiple Socket

CPS 90 200 400 600 800

opensips 28.24 29.02 29.57 29.75 29.97

libc 14.9 14.82 14.98 15.31 17.03

tm 7.39 7.39 7.9 8.05 7.22

TABLE 8. OProfile Results Normalized—TCP Multiple Socket

TCP Multi

CPS 90 200 400 600 800

opensips 3.64296 7.28402 13.69091 20.20025 27.72225

libc 1.9221 3.71982 6.93574 10.39549 15.75275

tm 0.95331 1.85489 3.6577 5.46595 6.6785

TABLE 9. OProfile Summary—TLS Local Client

TLS-Local-Ciient

CPS 40 135

libcryptc 48.62 48.63 49.21

opensips 14 14.92 5.03

libssl 3.06 3.3 3.35

libc 7.74 7.94 7.93

100

TABLE 10. OProfile Results Normalized—TLS Local Client

TLS-Local-Client

CPS 40 90 135

Libcrypto 14 05118 31.51224 49.21

Opensips 4 046 9.66816 15.03

Libssl 0.88434 2.1384 3.35

Libc 2.23686 ~ .4512 7.93

TABLE 11. OProfile Summary—TLS-Local-Client-Session Reuse

TLS-Local-Client-

SessionReuse

CPS 90 180 270

libcrypto 17.67 18.73 18.79

opensips 22.33 23.18 23.64

libssl 2.82 3.05 5 . „

libc 11.12 11.1 11.18

TABLE 12. OProfile Results Normalized -TLS Local Client Session Reuse

TLS-Loca CI ient-Ses; sionReuse

CPS 90 180 270

libcrypto 4.43517 10.73229 15.74602

opensips 5.60483 13.28214 19.81032

libssl 0.70782 1.74765 1 5978

libc 2.79112 6.3603 9.36884

101

TABLE 13. OProfile Summary-TLS Local Mutual

TLS-Local-Mutual

CPS 30 60 \

libcrypto 58.22 58.83 3.21

opensips 9.34 10.1 10.23

libssl 2.06 2.13 2.15

libc 4.74 4.91 4.96

TABLE 14. OProfile Results Normalized—TLS Local Mutual

TLS-Local-Mutua!

CPS 30 60 90

libcrypto 16.76736 36.00396 54.23636

opensips 2.68992 6.1812 9.37068

libssl 0.59328 1.30356 1 9694

libc 1 36512 3.00492 4.54336

TABLE 15. OProfile Results Normalized—90cps Load

TestCase UC

TC

3HC
TCP

Multi

90
TLS

Loc

Clie

cp

al-
nt

iS

TLS-Local-

Client-Sessioi

Reuse

"^"TLS-

Local-

Mutual

ibcrypto C) 0 0 31.51224 4.435 17 54.23636

ooensios ;*s ! 2.4947 3.64296 9.56816 5.604; 83 9.37068

UDSSi

LibC

c

1 04832

> 0

: 1.74023

0

1.9221

2.1384

5.14512

0.707:

2.791

82 1.9694

12 4.54336

Tm 0.44592 : 0.8181 0.95331 0 0 0

Kerne: 2.22576 1 ! 5.04697 6.38163 16.33608 ,.56H 06 21.1138

102

Given below is the output of opreport showing the profiling information for the
case of TLS-Local-Client with a CPS load of 90.

debian:/var# opreport -exclude-dependent ~threshold=0.1
CPU: P4 / Xeon, speed 2793.37 MHz (estimated)
Counted GLOBALPOWEREVENTS events (time during which processor is not stopped) with a unit mask of 0x01 (mandatory)
count 100000
GLOB ALPO WERE... |
samples| %|

263995 48.6188 libciypto.so.0.9.8
111293 20.4963 no-vmlinux
76032 14.0025 opensips
42025 7.7396 libc-2.7.so
16629 3.0625 libssl.so.0.9.8
13488 2.4840 tm.so
5088 0.9370 oprofiled
2917 0.5372 syslogd
1443 0.2658 acc.so
898 0.1654 Xorg
744 0.1370 libglib-2.0.so.0.1600.6
725 0.1335 maxfwd.so
669 0.1232 libpthread-2.7.so
590 0.1087 libgobject-2.0.so.0.1600.6
562 0.1035 rr.so

debian:/var# opreport ~demangle=smart —symbols /usr/local/sbin/opensips
CPU: P4 / Xeon, speed 2793.37 MHz (estimated)
Counted GLOBAL POWER EVENTS events (time during which processor is not stopped) with a unit mask of 0x01 (mandatory)
count 100000
samples % image name symbol name
10340 13.2907 opensips fmmalloc
7045 9.0554 opensips tcpconn_new
4845 6.2276 opensips parse_via
4419 5.6800 opensips fm_free
4161 5.3484 opensips tcpmainloop
3629 4.6646 opensips sermalloc
3279 4.2147 opensips ser_free
2420 3.1106 opensips parseto
2333 2.9988 opensips tcp_read_headers
1898 2.4396 opensips do_action
1621 2.0836 opensips fm_realloc
1360 1.7481 opensips receivemsg
1324 1.7018 opensips parseheaders
1266 1.6273 opensips tcp_send
1177 1.5129 opensips gethdrfield
1168 1.5013 opensips parseuri
1093 1.4049 opensips eval_expr
1081 1.3895 opensips processlumps
1062 1.3651 opensips parse_first_line
990 1.2725 opensips forwardreply
822 1.0566 [vdso] (tgid: 12018 range:0xb7f71000-0xb7f72000) (no symbols)
815 1.0476 opensips tcp_receive_loop
802 1.0309 opensips lumps_len
759 0.9756 opensips tcp_read_req
726 0.9332 opensips handle_io
697 0.8959 opensips parse_hname2
623 0.8008 opensips handleserchild
612 0.7866 opensips build_req_buf_from_sip_req
519 0.6671 opensips parse_cseq
510 0.6555 [vdso] (tgid: 12022 range:0xb7f71000-0xb7f72000) (no symbols)
491 0.6311 opensips .pit
477 0.6131 opensips receive_fd
475 0.6105 opensips check_ip_address
413 0.5309 [vdso] (tgid:12019 range:0xb7f71000-0xb7f72000) (no symbols)

103

401
389
367
355
335
330
323
321
307
288
268
268
267
261
259
244
239
231
230
214
211
207
203
186
185
178
175
173
169
168
164
161
154
146
134
134
134
133
130
123
121
112
104
101
95
85
85
85
83
80
78
77
74
74
72
69
67
65
62
61
61
61
59
58
57
57

0.5167 opensips
0.5154 opensips
0.5000 opensips
0.4717 opensips
0.4563 opensips
0.4306 opensips
0.4242 opensips
0.4152 opensips
0.4126 opensips
0.3946 opensips
0.3702 opensips
0.3445 opensips
0.3445 opensips
0.3432 opensips
0.3355 opensips
0.3329 opensips
0.3136 opensips
0.3072 opensips
0.2969 opensips
0.2956 opensips
0.2751 opensips
0.2712 opensips
0.2661 opensips
0.2609 opensips
0.2391 opensips
0.2378 opensips
0.2288 opensips
0.2249 opensips
0.2224 opensips
0.2172 opensips
0.2159 opensips
0.2108 opensips
0.2069 opensips
0.1979 opensips
0.1877 opensips
0.1722 opensips
0.1722 opensips
0.1722 opensips
0.1710 opensips
0.1671 opensips
0.1581 opensips
0.1555 opensips
0.1440 opensips
0.1337 opensips
0.1298 opensips
0.1221 opensips
0.1093 opensips
0.1093 opensips
0.1093 opensips
0.1067 opensips
0.1028 opensips
0.1003 opensips
0.0990 opensips
0.0951 opensips
0.0951 opensips
0.0925 opensips
0.0887 opensips
0.0861 opensips
0.0835 opensips
0.0797 opensips
0.0784 opensips
0.0784 opensips
0.0784 opensips
0.0758 opensips
0.0746 opensips
0.0733 opensips
0.0733 opensips

tls_read
branchbuilder
parse_msg
handle_io
build_res_buf_from_sip_req
parsemethod
clean_hdr_field
tlsblockingwrite
run_action_list
tls_update_fd
free_lump_list
getstatvarfromnumcode
parsecontentlength
tls_fix_read_conn
exec_pre_req_cb
pv_printf
get_ticks
grep_sock_info
free_sip_msg
anchorlump
del_flaged_lumps
eat_line
corejhash
sendall
resetavps
viabuilder
tlsaccept
forward_request
free_hdr_field_lst
idbuilder
free_via_list
build_res_buf_from_sip_res
resetsflag
get_send_socket
setavplist
exec_post_req_cb
hostentshmcpy
tcpconndestroy
str2s
_shm_resize
tls_tcpconn_init
parse_from_header
handle_tcp_child
handle_new_connect
runtoproute
exec_pre_rpl_cb
check_against_blacklist
iowatchdel
parsesipmsguri
receivedtest
verifycallback
send2child
fixupgetsvalue
free_to
io_watch_add
pvge^specvalue
get_branch
set_ruri
del_lump
tcp_addr_hash
eirortext
printip
reset_bl_markers
start_timer_processes
sendfd
init_err_info
ser realloc

104

53
52
51
50
50
48
47
45
38
37
34
32
31
27
26
25
25
24
22
22
21
20
19
19
11
9
7
6
5
4
3
2
2

0.0707 opensips clear_branches
0.0707 opensips insert_cond_lump_after
0.0681 opensips insert_new_lump_after
0.0668 opensips adjust_clen
0.0656 opensips pv_get_xuri_attr
0.0643 opensips check_transaction_quadruple
0.0643 opensips tls_find_server_domain
0.0617 opensips tcpconn_add
0.0604 opensips pv_get_ruri
0.0578 opensips insert_cond_lump_before
0.0488 opensips insert_new_lump_before
0.0476 opensips exec_post_rpl_cb
0.0437 opensips insertsubstlumpafter
0.0411 opensips getbOflags
0.0398 opensips tls_dump_cert_info
0.0347 opensips release_tcpconn
0.0334 opensips check_self
0.0321 opensips check_self_op
0.0321 opensips tlsclose
0.0308 opensips init sock opt
0.0283 opensips pv_get_ruri_attr
0.0283 opensips tls_print_errstack
0.0270 opensips tls_tcpconn_clean
0.0257 opensips setflag
0.0244 opensips free_cseq
0.0244 opensips get_authorized_cred
0.0141 opensips recvall
0.0116 opensips setbOflags
0.0090 [vdso] (tgid: 12020 range:0xb7f71000-0xb7f72000) (no symbols)
0.0077 [vdso] (tgid.12016 range:0xb7f71000-0xb7f72000) (no symbols)
0.0064 [vdso] (tgid: 12021 range:0xb7f71000-0xb7f72000) (no symbols)
0.0051 [vdso] (tgid: 12015 range:0xb7f71000-0xb7f72000) (no symbols)
0.0039 opensips setbflag
0.0026 opensips delete_expired_routine
0.0026 opensips set_ruri_q

105

REFERENCES

106

REFERENCES

[1] H. Schulzrinne, and J. Rosenberg, "A Comparison of SIP and H.323 for
Internet Telephony," 1998; http://www.cs.columbia.edu/~hgs/papers/
Schu9807_Comparison.pdf.

[2] EC. Cha. HK. Choi, and SJ. Cho, "Evaluation of Security Protocols for the Session
Initiation Protocol," Proceedings of 16th International Conference on Computer
Communications and Networks, August 2007; http://ieeexplore.
ieee.org/xpl/freeabs_all.jsp?arnumber=4317885.

[3] E. Nahum, J. Tracey, and C. Wright, "Evaluating SIP Proxy Server Performance,"
ACM, June 2007; http://www.research.ibm.eom/people/n/nahum/
papers/nossdav07-sip-perf.pdf.

[4] S. Salsano, L. Veltri, and D. Papalilo, " SIP Security Issues: The SIP Authentication
Procedure and its Processing Load," IEEE Network, December 2002;
http://ieeexplore.ieee.org/ xpl/freeabs_all.jsp?arnumber=1081764.

[5] C. Shen, E. Nahum, H. Schulzrinne, and C. Wright, "The Impact of TLS on SIP
Server Performance," IPTComm 2010, 2-3 August, 2010 Munich, Germany;
http ://www. cs. Columbia. edu/~hgs/papers/Shen1008_TLS .pdf.

[6] IETF Network Working Group, "SIP: Session Initiation Protocol," 2002;
http://www. ietf.org/rfc/rfc3261 .txt.

[7] M. Collier, "Basic Vulnerability Issues for SIP Security," March 2005;
http://download.securelogix.com/library/SIP_Security030105.pdf.

[8] A. Steffen, D. Kaufimann, and A. Strieker, "SIP Security," 2004;
http://security.hsr.ch/docs/DFN_SIP.pdf.

[9] Dialogic, Inc., "SIP signaling over TLS," 2010; http://excelsupport.dialogic.com/
imgpubs/webhelp/sipovertlsov.htm.

[10] Microsoft, Inc., "Understanding Internet Protocol Security," January 2005; http://
technet.microsoft. com/en-us/library/cc739674(WS.10).aspx.

107

http://ieeexplore
http://www
http://download.securelogix.com/library/SIP_Security030105.pdf
http://security.hsr.ch/docs/DFN_SIP.pdf

[11] Sipp.sourceforge.net, "SIPp open source test tool," October 2010;
http ://sipp. sourceforge.net.

[12] H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle, "SIPstone - Benchmarking
SIP Server Performance," April 2002; http://www.cs.columbia.edu/~library/TR-
repository/reports/reports-2002/cucs-005-02.pdf.

[13] Opensips.org, "OpenSIPS Server," April 2012; http://opensips.org.

[14] Opensips.svn.sourceforge.net, "OpenSIPS Installation Notes," March 2012; http://
www. opensips. org/Resources/Install.

[15] Opensips.org, "OpenSIPS - TLS Support," March 2012;
http://www.opensips.org/html/docs/tutorials/tls-1 Ax.html.

[16] Oprofile.sourceforge.net, "OProfile - A System Profiler for Linux," March 2012;
http://oprofile.sourceforge.net.

[17] Oprofile.sourceforge.net, "OProfile Manual - Getting Started" March 2012;
http://oprofile.sourceforge.net/doc/ overview.html#getting-started.

108

http://opensips.org
http://oprofile.sourceforge.net

