
Methodology for SIP Infrastructure Performance Testing

Miroslav Voznak, Jan Rozhon
Department of Telecommunications

VSB – Technical University of Ostrava
17. listopadu 15, Ostrava

Czech Republic
miroslav.voznak@vsb.cz, jan.rozhon@vsb.cz

Abstract: - This paper deals with a testing method suitable for SIP infrastructure. The performance testing is an issue of
research and no standardized methodology has been adopted yet. We present the main ideas of the methodology that
allows for testing the keystone of SIP based infrastructure – the SIP Server – in both SIP Proxy and B2BUA (Back to
Back User Agent) configurations. Our methodology has its foundations in the work of the IT Company Transnexus and
these foundations have been enhanced with the ideas reflecting the nature of the SIP protocol. In addition, the entirely
new methodology for benchmarking the SIP server in the B2BUA configuration has been introduced. This method
utilizes one of the attributes of the B2BUA – the flow of media passing through the B2BUA – and measures the
effectiveness of codec translation, which relates to the performance measured in cases without codec translation. Our
approach offers the complex method for testing SIP infrastructure, which has been verified experimentally. The out-
coming results are the part of this paper together with appropriate comments and conclusions.

Key-Words: - Asterisk; B2BUA; codec translation; Opensips; Performance testing; SIP Proxy

1 Introduction
The whole topic of SIP infrastructure performance
testing is under development and there are no unified
recommendations as how to perform the tests and what
to pay attention to. Moreover, the proprietary solutions
offer huge comprehensibility of testing scenarios but
they do not use generally recognized means and ways to
perform the testing, so the results may not be
compatible. Many issues in this area have been solved
by Transnexus. Their white papers [1] and general
approach to the testing has significantly inspired our
research because it is based on open source solutions and
allows us to integrate basic thoughts mentioned in the
IETF draft [2]. This RFC draft focuses on methodology
for benchmarking SIP environment. Considering this
information, it is obvious that there is a big gap in the
area of SIP infrastructure performance testing and
benchmarking. This gap and its elimination is the main
motivation for our research. Simple SIP infrastructure
performance testing configured in both B2BUA and SIP
Proxy modes and the examples of the output results are
the main contribution of this paper.
 In this paper the current state of development of the
SIP infrastructure performance testing will be described.
In addition, new methodology for SIP benchmarking
will be presented and verified experimentally. The
results obtained in the experiment will then be analyzed
and commented. From this output of our paper the
optimal and maximal load of the SIP server can be
determined, which is useful mainly in small and medium
business VoIP installations.

2 State of the art
As mentioned in the introduction, there are some
proprietary solutions for SIP testing, the main advantage
of which is a huge comprehensibility of testing
scenarios. However, in the real world, there are also
disadvantages, such as high price and possible
incompatibility of the results, as each company focuses
on a different main area of interest. On the other hand,
the IETF has published several drafts which have the
methodology and the metrics of SIP infrastructure
testing as their main topic of concern, see [2], [3] and
[4]. These drafts try to define the basic terms for SIP
benchmarking as well as the times, the measuring of
which is important to gain the relevant results. Given the
early stage of development of these drafts, there are no
software or hardware means for SIP benchmarking that
would utilize these drafts yet. Halfway to creating a
suitable and generally applicable testing method is the
Transnexus’ SIP benchmarking model which can serve
as an inspiration [1], [5]. This company created a useful
SIP infrastructure testing method using an open source
traffic generator SIPp. In order to develop a method
which would reflect the main thoughts of the IETF drafts
it is useful to modify the Transnexus’ procedure to better
reflect the nature of SIP protocol from the SIP
transactions and dialogs point of view and the results
will be sufficient to determine the effectiveness of a
system, the highest load which it can handle as well as
the dynamically changing characteristics of a system,
which is crucial for assessing whether the SIP server can
be operated in given environments.

WSEAS TRANSACTIONS on COMPUTERS Miroslav Voznak, Jan Rozhon

ISSN: 1109-2750 1012 Issue 9, Volume 9, September 2010

3 Methodology
Although Transnexus’ benchmarking model served as an
inspiration in the early phase of the development of our
methodology it lacks the effort for standardization. They
measure times between transmission and reception of
some key messages (e.g. Invite, 100 Trying, 180
Ringing), however their approach does not look at these
messages as the part of the SIP transaction. This results
in outputs from which the user is unable to read more
complex attributes of the system. To be more specific,
you can learn how quickly the SIP server is able to
respond to your message, but you cannot learn how
quickly it can process it and resend it to the destination.
Our approach on the other hand makes this possible, so it
is not the issue to recognize the “real world” parameters
of the SIP server such as Call Setup Length (later
described as SRD).
 From the practical point of view Transnexus’ model
is rather too complex. As the commercial subject,
Transnexus has focused on creating the model that
would utilize some of their commercial products, which
led them to use their management and billing platform,
which required two more separate computers. Moreover,
the testing scenarios they created utilize several different
end locations for the simulation of call rejection, no
route issue, no device problem and so on. This again
increases the complexity of the test platform due to the
need of more physical machines. From mentioned it is
clear that this model is unsuitable for practice. From our
point of view it is beneficial to create the testing
platform that would be as simple as possible, which
would make it easier to deploy in any practical
environment. This is why we decided not to use any
other special hardware and to simulate the end location
for calls just by the listening UASs, which is made
possible by the fact that we want to evaluate the ability
of the SIP server to successfully connect calling and
called party.
 In order to perform SIP testing, we simulate both
ends of the SIP dialogue to test the main part of the SIP
infrastructure, the SIP server. The SIP server represents
a set of servers always involving SIP Registrar and SIP
Proxy or B2BUA (Back to Back User Agent). The latter
is the most used solution in enterprise environment, for
both SMEs (Small and Medium sized Enterprise) and
LEs (Large Enterprise). Fig. 1 depicts test hardware
configuration for testing the SIP Proxy and B2BUA.
This is a general configuration which does not reflect all
the aspects of test platform used for our measurements.
Firstly, we used both physical and virtual computers to
simulate SIP traffic. The results with both configurations
were almost identical allowing future user of this
methodology to decide for topology that would be best
for him according to available hardware.

Fig. 1. Test Bed Diagram for B2BUA and SIP Proxy
Configuration.

 The only condition required for testing SIP server
successfully and comparably is the interconnecting
device (or system). Basically, this can be any device or
network capable of routing of SIP messages among SIP
traffic generators, SIP server and SIP traffic recipients,
but to make the results of measurements comparable
with those taken in different network, we would be
required to use the exact same topology, which may be
the issue. This is why it is advantageous to use as simple
topology as possible to reduce additional costs and work
caused by the need of some special topology. So, the
most flexible variant is to use the single switch, which is
undoubtedly a commonplace in all modern SIP
installations.
 Secondly, the number of devices used for the testing
may vary due to the performance of the SIP server. The
more the SIP server is efficient the more devices are
needed to test its performance especially on the UAC
side. Due to the software limitations of the SIP traffic
generator (SIPp) one computer in UAC mode is capable
of creating 200 simultaneous calls with media (for
testing B2BUA) and about 220 calls per second without
media (for testing SIP Proxy) no matter what the

WSEAS TRANSACTIONS on COMPUTERS Miroslav Voznak, Jan Rozhon

ISSN: 1109-2750 1013 Issue 9, Volume 9, September 2010

hardware configuration of the PC running SIPp instance
is. Therefore we need to estimate the SIP server
performance to determine the number of computers
(physical or virtual) needed for test, which makes the
virtualization the more viable option. Number of UASs
is not affected by the SIP server’s performance that
much, however it is necessary to force the SIP server to
decide between different paths to UAS, therefore there
have to be at least two computers in UAS mode in the
test topology.
 As well as the topology the test scenario should be as
simple as possible mainly to reduce the complexity of
the test and except of that also because it is not possible
to test the SIP Proxy (and B2BUA as well) in all the
possible configurations. Thus it is useful to focus on
basic default configuration and perform the tests with it.
The output results then carry the information about the
“best case scenario” according to which we can decide
about the SIP server’s performance and compare it with
its rivals.

A. Measured parameters

As mentioned in the Introduction we use the parameters
defined in IETF draft for all our measurements. But
except of them we use the hardware utilization
parameters as well. Let’s now take a look at the
locations, where these groups of parameters are
measured.
 First group is measured at UAC and includes the call
statistics such as number of (un)successful calls and
durations of the message exchanges. RTP samples for
analysis are captured here as well.
 Second group – the hardware utilization parameters –
is measured directly on the SIP server. At this place CPU
and memory utilization and network traffic is measured.
The complete list of all measured parameters includes:

• CPU utilization.
• Memory utilization.
• Number of (un)successful calls.
• Registration Request Delay – time between first

Register method and its related 200 OK response [2].
• Session Request Delay (SRD), the time between first

Invite method and related 180 Ringing message [2].
• Mean Jitter a Maximum RTP Packet Delay.

Fig. 2 shows the meaning of the RRD and SRD delays in
more detail.

B. Limit definition in results analysis

The previously defined parameters do not suffice to
assess the SIP server’s performance. To be able to
determine the SIP server’s performance from the
collected data we need to define the limit values for each

category of the measured parameters. This definition
must come out from the features of the SIP protocol and
generally recognized convention from IP and classic
telephony.

Fig. 2. Registration Request Delay and Session Request
Delay in SIP Dialog.

From the hardware utilization characteristics the CPU
utilization plays the main role in performance analysis of
the SIP server. This conclusion is logical because of the
importance of CPU in the computer architecture and the
CPU oriented operations of the general SIP server
architecture.
 In general, the CPU utilization characteristic is
limited by the maximal CPU performance, which is
100%, but this boundary can be reached rarely. To be
more specific, due to the time intervals between
particular measurements of the CPU utilization can
cause that short peak in CPU utilization characteristic is
not registered. However, during this peak delays and call
quality impairments can occur. To reflect this
imperfection of our methodology, performance boundary
under 100% should be anticipated. Actual value of the
CPU performance boundary may vary, though.
Therefore we search the CPU utilization characteristic
for the first point where maximum CPU utilization is
reached. This point is then the maximum number of
calls, which the SIP server can handle from the hardware
performance point of view.
 The limit definition for the SIP delay characteristics
RRD and SRD comes from the nature of the SIP
protocol. When the call is set up the delays between

WSEAS TRANSACTIONS on COMPUTERS Miroslav Voznak, Jan Rozhon

ISSN: 1109-2750 1014 Issue 9, Volume 9, September 2010

messages should not exceed several hundreds of
milliseconds and although these limitations are tied up
with the travel of the SIP message from one end of call
to another, it can be used for our purposes as well,
because of the similarities that come from the need to set
up a call quickly enough not to bother the user with
noticeable delays.
 From this, we can estimate that the quality boundary
for RRD and SRD is somewhere around 300
milliseconds. However, this value may vary in
accordance to the need of each one particular user.
Generally, we can say that limit from the SIP
transactions point of view is reached, when SRD and
RRD characteristics start increasing rapidly. This
boundary will give us a slight space as the potential
reserve.
 The quality of speech is vulnerable to great delays
between consecutive RTP packets. It is affected by the
jitter as well, but the jitter issue can be eliminated by the
sufficient Jitter buffer on the receiving side, therefore
maximum packet delay is the key characteristic in RTP
stream analysis. From the theory of IP telephony the
delays between packets should be in the tens of
milliseconds, therefore and because of the similar
reasons mentioned with SRD and RRD, we decided to
set this boundary to approximately 90 milliseconds.
 All the delay characteristics use similar analogy with
the theoretical values for end-to-end delays, that is why
their definition could not be exact and these parameters
may vary in different environments. To eliminate
different interpretation of the same results and to
simplify the delays analysis, we use as the quality
boundary for all the delay characteristics the point,
where the particular characteristic change its “almost
constant” trend to rapid increase. This approach gives us
correct results, which was tested experimentally, and the
methodology of the analysis is much simplier.

C. SIP Proxy testing

In basic configuration of the SIP Proxy we are able to
measure just the SIP and utilization parameters. RTP
stream does not flow through SIP Proxy and thus it does
not represent the load for it. This is why we do not have
to think about the call length because no matter how
long the call is the hardware utilization is the same, so
the only appropriate metric for measuring SIP Proxy is
the number of calls generated per second (or any other
time interval).
 Each measurement on SIP Proxy consists of several
steps. Every single step takes about 16 minutes, this
means that for 15 minutes, 10-second long calls are to be
generated at a user-defined call rate. Then there is a 10-
second period when the unfinished calls are terminated.
This repeats for every single step of the call rate. Every
call consists of a standard SIP dialogue and pause

instead of media. Because the load is not constant but
increases slowly at the beginning of the test (first 10
seconds) and decreases at the end of it (last 10 seconds),
the results taken after this starting period and before the
ending one are the only ones which are going to be
considered valid. To allow additional changes in time
interval setting in the scenario and to strengthen the
consistency of the method we decided to use the data
collected during the middle 10 minutes of each step. All
the parameters named in the previous subsection are
measured except those related with RTP stream.
 The 10 second long time interval that was mentioned
several times came from the compromise between
reasonable call length and the need for generating as
much of the calls per second as possible. It allows for
decent performance and does not require huge database
of subscribers. This interval can be changed but cannot
exceed 2.5 minutes that allow for collecting the valid
data.
 SRD is measured although this scenario cannot be
considered as end-to-end (this condition is defined in
draft [2]). We decided to measure it because the load on
the UASs is minimal even for high call rates, which
makes the delays created by the UASs both minimal and
almost constant. Therefore we can use this parameter to
decide about the SIP Proxy’s performance, because the
delays created by it are the only variable making the
collected data useful. This is the only deviation of our
method from the draft [2].

D. B2BUA testing

Unlike SIP Proxy for this type of SIP server the RTP
stream presents the highest load on the SIP server
therefore the number of simultaneous calls must be used
as a metric. This is the main difference between the
B2BUA and SIP Proxy testing scenarios. Second not so
important difference (from the methodology point of
view) is that in this configuration we are to measure
effectiveness of codec translation because in this
scenario performance of the B2BUA is not affected only
by its setting but also by UAC and UAS configurations.
The test routine will then be repeated for each case of
different codec setting.
 The method of the test is however almost the same,
the only issue we face is the new metric together with
the need for revising the time interval for a single call.
The new metric is an issue when the SIP traffic
generator cannot be ordered to create certain number of
simultaneous calls. In this case it is necessary to
calculate the number of calls generated per second. This
can be done by this equation:

 R SC C T= ⋅ (1)

WSEAS TRANSACTIONS on COMPUTERS Miroslav Voznak, Jan Rozhon

ISSN: 1109-2750 1015 Issue 9, Volume 9, September 2010

CR is the desired Call Rate, CS is the number of
simultaneous Calls we want to generate and T is Time
interval defining how long the call (media) should be.
Time interval used for B2BUA in our measurements was
set to 60 seconds because most calls have this length, but
again this parameter can be changed. To perform the
testing of RTP streams we use a special computer, which
allows us to use more sophisticated tools for capturing
the network traffic without the RTP and SIP parts of the
tests influencing each other. Because we focus on testing
effectiveness and speed of codec translation we were, at
this point, able to determine the maximum load which
the SIP server can handle from the SIP or RTP point of
view. However, these results would only be valid for a
single machine/platform and that is why we add one
more step to the data analysis. The same procedure of
testing as mentioned above is performed on a machine
configured to allow media to only pass through the SIP
server. The results taken during this test serve as a basis
to which we relate all the other results. The relation is
expressed in (2) as a performance ratio. The performance
rating factor PRF is a ratio of any previously mentioned
parameter measured in codec translation case (PCT) with
a certain number of simultaneous calls to the value of the
same parameter (P) taken in case without codec
translation and the same load.

 100CT
RF

P
P

P
= ⋅ (2)

 This step allows us to compare the results from
hardware and platform independently.

4 Experiment
To simulate both UACs and UASs, we are going to use
the SIP performance testing tool called SIPp [6]. This
open source utility can simulate many concurrent SIP
calls. Moreover it allows measuring important times
such as those defined in the IETF draft [2]. SIPp
performs the calls which follow user-defined scenarios
in xml language. This xml scenarios are distributed on
every computer and SIPp is invoked by using bash script
and SSH. One of the computers works as a SSH client
and controls the whole test by sending orders to other
computers (SSH servers) via SSH. The message call
flows exchanged between related UAC and UAS SIPp
instances are depicted in the Fig. 3. As a B2BUA we use
Asterisk PBX and as SIP Proxy we deploy Opensips.
 The key values of hardware utilization on the SIP
server are measured by System Activity Reporter (SAR)
every 10 seconds and 60 times, i.e. during the middle 10
minutes of the test when the generated load is constant.
 The media for B2BUA testing consist of a 60-second
long music song recorded in G711u pcap file, which is

used by UAC. UASs are configured to use G711u-law,
G711A-law, G726-32 and GSM codecs. The Asterisk
PBX performs the codec translation. RTP streams can be
captured and analyzed with Wireshark. Wireshark offers
very complex means for RTP analysis [7]. However, the
generation of RTP streams on the client side consumes a
lot of CPU power, this means that we have to limit the
number of calls generated by a single machine, which
leads us to multiply the number of PCs running the UAC
scheme. The total number of the computers can be
decided according to an estimated maximum load on a
SIP server. Since in our case the SIP server is a PC with
merely a dual-core processor, the total number of
simultaneous calls will not exceed one thousand [8].
Each PC with our hardware configuration can generate
around 200 simultaneous calls. This is why the number
of clients should equal or exceed four. In our case, four
is just enough to perform the test of B2BUA. UASs can
handle much higher load, and this is why there will be
just two of them.

Fig. 3. Flow of messages in tests on B2BUA and SIP
Proxy.

WSEAS TRANSACTIONS on COMPUTERS Miroslav Voznak, Jan Rozhon

ISSN: 1109-2750 1016 Issue 9, Volume 9, September 2010

 Since the media are not required for testing the SIP
Proxy, the scenario places a 10 second long pause
instead of them. During this time period no SIP
messages and no media is transmitted. Due to the much
higher performance of the SIP Proxy in comparison with
B2BUA we can estimate that our machine is able to
handle around 2 500 calls generated per second, which
forces us to use at least 12 computers as UAC. Two
UASs are sufficient though. The entire process of
performance testing needs multiple computers to
generate SIP traffic. To be able to successfully perform a
test, the whole process must be automated. Therefore all
the computers are being given orders by a Main UAC
via SSH. On the Main UAC the bash script is invoked to
deal with this task. In the first step, main UAC counts
the number of calls that each computer should generate
per one second period. Then it orders the UASs to
register and starts listening on UDP port 5060. Secondly,
SIPp on all UACs is invoked to generate traffic. As the
last step, SAR is invoked. This is done after 2,5 minutes
to ensure the stable load has been reached already. The
results contain CPU, memory and network statistics, and
are stored in a file data_callrate.sar in binary format.
As mentioned in the methodology the hardware
configuration of the computers running SIPp is not too
important, even five years old hardware is up to the task,
but the configuration of the SIP server is crucial. For our
measurements we used SIP server with these attributes:
• CPU – AMD Athlon 64 X2 5200+
• RAM – 4GB DDR2 (3.5 GB used due to x86

system)
• Debian 5.0 x86
• Asterisk PbX v.1.6.2
• Opensips v.1.6.0

 All the devices are connected to a gigabit switch
when SIP Proxy is tested and to 100 megabit switch
when B2BUA is tested. The switches can differ because
there is no actual need or reason to compare the results
of SIP Proxy and B2BUA, since their operation is
completely different.

5 Results
The data collected during the whole test of SIP Proxy or
B2BUA are in text format (binary data can be
converted), so the data analysis can easily be done by
any spreadsheet application, but for the correct
interpretation of the data we have to perform a series of
the same measurements to ensure that the effect of
random events such as data packet scheduling techniques
is marginal. The actual data then can be determined as
the average of the collected data or the multitude of
measurements can just serve to reveal the flawed data,
which then can be replaced by the interpolated values.

A. B2BUA

For each category, there are two different charts. The
first one shows the results for the case without codec
translation and is colored in blue. The second shows the
normalized values (acquired by inserting the collected
data to equation (2)) of the cases with a codec translation
and is colored in three different colors.

1) Mean CPU Utilization

Fig. 4. Mean CPU utilization for case without codec
translation (G.711u-G.711u) and its related Normalized

Values for cases with codec translation.

 First chart shows a simple relation between the
number of concurrent calls passing through the B2BUA
and its CPU utilization. The second chart shows that (as
expected) codec translation from G711u to G711A
consumes about 20% more CPU power than a simple
G711u case without translation. On the other hand, the
most demanding is the G726-32bit codec. The lowest
load returns the most interesting information. With the
load of 60 calls, the differences in CPU power
consumption for GSM and G726 are the highest

WSEAS TRANSACTIONS on COMPUTERS Miroslav Voznak, Jan Rozhon

ISSN: 1109-2750 1017 Issue 9, Volume 9, September 2010

compared to the one without codec translation. With
higher loads it starts decreasing rapidly.

2) RRD and SRD Delays

Fig. 5. Mean CPU utilization for case without codec

translation (G.711u-G.711u) and its related Normalized
Values for cases with codec translation.

Charts on Fig. 5 clearly illustrate that the call is set up
even quicker when there is a codec translation in use and

the load is under 240 simultaneous calls. Then, as the
CPU utilization increases, the delays get very long. The
last G711A value for both charts is so low due to a rapid
increase of delays for G711u to G711u case between
600-660 simultaneous calls. The fluctuations in charts
with normalized values are caused by the random events
during the measurements with and without codec
translation. Because we relate these values in a single
equation, the variances get more distinctive, however
this does not affect the final decision about the B2BUA
performance from the SIP point of view.

3) Mean Jitter and Maximum RTP Packet Delay

Fig. 6. Mean Jitter and Maximum Packet Delay and
related Normalized Jitter.

 Normalized values of mean jitter and maximum
packet delay confirmed expected outcome as the values
related to a small load are very similar to the main values
from the case without codec translation. Peaks in the
area of the medium load are caused by the volatile nature
of the parameters and have no effect on final decision
about the B2BUA’s performance. A very rapid decrease
of both normalized values for G711A is caused by the
increase of the main values from non-translation case

WSEAS TRANSACTIONS on COMPUTERS Miroslav Voznak, Jan Rozhon

ISSN: 1109-2750 1018 Issue 9, Volume 9, September 2010

and by the significant number of unsuccessful calls in
this scenario.

Fig. 7. Normalized Maximum Packet Delay.

B. SIP Proxy

The situation is much simpler than with the B2BUA.
The only output from our measurements is raw data
describing the ability of the SIP Proxy to handle
increasing number of calls generated per second, but all
the representatives of the SER architecture allow user to
set the number of listening subprocesses and this number
should (in theory) affect the performance of the SIP
Proxy as well. Therefore all the measurements were
performed with the number of UDP listeners to the
values of 4 and 16.

1) Mean CPU Utilization

The results are not surprising except of the peak that
appeared when 600 calls per second were generated.
This data is not flawed, because the similar peak in the
same area was measured many times, therefore it is
much likely caused by the call handling mechanism of
the SIP Proxy. From both charts it is obvious, that
increased number of UDP listeners does not have the
positive effect on the SIP Proxy’s performance. On the
contrary, the CPU utilization with 16 listeners is
comparable with the performance of the SIP Proxy
subprocessed to 4 listeners with the load of about 150
calls higher. This may be caused by the insufficient
performance of the CPU, which cannot handle increased
number of processes in real time and causes delays. The
limiting factor for this measurement was the CPU
utilization, however increased performance can be
reached if other than MySQL database is used, because
database itself consumed 17% of the CPU power.
Unfortunately, when we performed the measurements,
no working database module was released for Opensips
except of MySQL due to the transition between two
major releases.

Fig. 8. Mean CPU Utilization (SIP Proxy – 4 UDP
listeners).

Fig. 9. Mean CPU Utilization (SIP Proxy – 16 UDP

listeners).

2) RRD and SRD

Fig. 10. RRD and SRD (SIP Proxy – 4 UDP listeners).

WSEAS TRANSACTIONS on COMPUTERS Miroslav Voznak, Jan Rozhon

ISSN: 1109-2750 1019 Issue 9, Volume 9, September 2010

Fig. 11. RRD and SRD (SIP Proxy – 16 UDP listeners).

From the SIP perspective, the situation is similar to one
that came out from CPU utilization statistics. Again, the
number of subprocesses has negative influence on the
overall performance of the SIP Proxy. RRD and SRD
delays are about 2-3 times higher when the number of
subprocesses is set to 16. Moreover, the huge leap in
both characteristics (RRD and SRD) appears about 200
calls earlier. From the perspective of the two presented
parameters (CPU utilization and delays) it is obvious
that low cost processor should operate small number of
processes to achieve best performance.

C. Successful and unsuccessful calls

In the Methodology section we discussed the number of
(un)successful calls as a parameter that would help us
determining the SIP server’s performance, however no
chart containing this parameter has appeared. In this
subsection we are going to explain this and to do so, we
will present charts of this parameter from SIP Proxy
measurements, on which we will show the role of the
parameter in the process of determining the SIP server’s
performance. Mentioned charts are depicted on Fig. 12
and Fig. 13.
 The parameter IRA describes number of unsuccessful
registrations in percents while ISA describes number of
unsuccessful calls in percent.
 To ensure that these two parameters don’t influence
each other, more precisely that IRA doesn’t affect ISA,
ISA is computed only from total number of successful
registrations not from total number of created calls.
 From both figures we can see the limits for optimal
operation of the SIP Proxy. Since in telecommunications
the number of unsuccessful calls is fairly limited by the
regulations to values around 1% we cannot operate the
system that exceeds this limitation. Therefore the
maximum number of calls per second that measured SIP
Proxy can handle successfully is 1600 and 1400
respectively. This value is however highly correlated

with the values that came from the CPU utilization
measurements. In other words, the IRA and ISA
parameters are highly related to CPU utilization
characteristic and therefore they do not provide new
information about the limits of the SIP server, which
makes them redundant in SIP server performance
analysis. On the other hand, in some special cases these
parameters might be useful and therefore we included
measurements of these parameters to our methodology.

Fig. 12. IRA and ISA (SIP Proxy – 4 UDP listeners).

Fig. 13. IRA and ISA (SIP Proxy – 16 UDP listeners).

6 Conclusion
The method of SIP infrastructure testing and
benchmarking we presented in this paper was designed
for benchmarking SIP based VoIP infrastructure. It
allows determining the maximum load of the system,
shows the dynamically changing characteristics of the
system such as response times and packet delay. It is

WSEAS TRANSACTIONS on COMPUTERS Miroslav Voznak, Jan Rozhon

ISSN: 1109-2750 1020 Issue 9, Volume 9, September 2010

useful to decide which system should be installed in a
particular environment.
From the presented data this can be learned:

• Maximum number of simultaneous calls that

B2BUA can handle in any mentioned configuration.
• Maximum number of calls per second that SIP Proxy

can handle.
• B2BUA’s effectiveness of codec translation.

 Table 1 summarizes some of the knowledge collected
about the SIP server and presents an example of output
of the measurements with our methodology.

Table 1. Example of the measurements output.

B2BUA (G.711u – G.711u)

Criterion
Max. simultaneous

Calls [-]

CPU utilization 660

RRD and SRD 600

Jitter and MPD 600

Total 600

SIP Proxy (4 listeners)

Criterion
Max. Calls per Second

[s-1]

CPU utilization 1600

RRD and SRD 1600

Total 1600

 This information can be acquired by examining the
presented charts and looking for optimum, which can be
simply described as:

• First point where maximum CPU utilization is

reached.
• Last point before significant leap in any delay

characteristic.

 Our designed method could be used in the INDECT
project where a set of SIP servers will be operated. This
benchmarking test is able to ascertain the

Acknowledgement

This research has been supported by the “Optical
Network of National Research and Its New
Applications” (MSM 6383917201) research intent of the
Ministry of Education of the Czech Republic.

References:
[1] Transnexus, Performance Test of Asterisk V1.4 as a

Back to Back User Agent (B2BUA),
http://www.transnexus.com/.

[2] Malas, D., Morton, A. SIP End-to-End
Performance Metrics, IETF, Internet-Draft,
September 2009

[3] Poretsky, S., Gurbani, V., Davids, C., Terminology
for Benchmarking Session Initiation Protocol (SIP)
Networking Devices, IETF, Internet-Draft, February
2010

[4] Poretsky, S., Gurbani, V., Davids, C., Methodology
for Benchmarking SIP Networking Devices, IETF,
Internet-Draft, February 2010

[5] Transnexus, Performance Benchmark Test for
OpenSER and SIP Express Router,
http://www.transnexus.com/.

[6] Narayan S., Kolahi S. S., Waiariki R., Reid M.,
Performance Analysis of Network Operating
Systems. Proceedings of the 2nd WSEAS
International Conference on COMPUTER
ENGINEERING and APPLICATIONS, Acapulco,
Mexico, 2008.

[7] Farsi H., Mozaffarian M. A., Rahmani H.,
Improving Voice Activity Detection Used in ITU-T
G.729.B. Proceedings of the 3rd WSEAS
International Conference on CIRCUITS,
SYSTEMS, SIGNAL and TELE-
COMMUNICATIONS, Ningbo, China, 2009.

[8] Simian C., Georgiev V., On Some Aspects
Regarding Computer Networks’ Performance
Analysis. Proceedings of the 13th WSEAS
International Conference on COMPUTERS,
Rhodos, Greece, 2009.

[9] Voznak, M., Voice over IP. VSB-Technical
University of Ostrava:, 2008.

[10] Voznak, M., Rozhon, J., SIP Infrastructure
Performance Testing, In Proceedings of the 9th
WSEAS International Conference on
TELECOMMUNICATIONS and INFORMATICS
, Catania, Italy, May 29-31, 2010, ISBN 978-954-
92600-2-1.

[11] Nagi-ki F., Fan Y., Kai-hau Y., Balancing
Throughput and Delay Performance by Effective
Shortest Path Routing. Proceedings of the 9th
WSEAS International Conference on APPLIED
INFORMATICS AND COMMUNICATIONS,
Moscow, Russia, 2009.

WSEAS TRANSACTIONS on COMPUTERS Miroslav Voznak, Jan Rozhon

ISSN: 1109-2750 1021 Issue 9, Volume 9, September 2010

