
Protocol Conformance Testing a SIP Registrar: an Industrial Application of
Formal Methods∗

Bernhard K. Aichernig1 Bernhard Peischl2 Martin Weiglhofer2 Franz Wotawa1 †

1Institute for Software Technology
Technische Universität Graz

8010 Graz, Austria
{aichernig, wotawa}@ist.tugraz.at

2Competence Network Softnet Austria
Institute for Software Technology

Technische Universität Graz
8010 Graz, Austria

{peischl, weiglhofer}@ist.tugraz.at

Abstract

Various research prototypes and a well-founded theory
of model based testing (MBT) suggests the application of
MBT to real-world problems. In this article we report
on applying the well-known TGV tool for protocol confor-
mance testing of a Session Initiation Protocol (SIP) server.
Particularly, we discuss the performed abstractions along
with corresponding rationales. Furthermore, we show how
to use structural and fault-based techniques for test purpose
design. We present first empirical results obtained from ap-
plying our test cases to a commercial implementation and
to a popular open source implementation of a SIP Registrar.
Notably, in both implementations our input output labeled
transition system model proved successful in revealing se-
vere violations of the protocol.

1. Introduction

Today’s software and software-enabled systems are be-
coming increasingly complex, distributed and highly re-
active. Due to this, the quality requirements in terms of
the software product’s functional correctness are a major
concern. Achieving functional correctness w.r.t. a given
specification includes establishing appropriate software en-
gineering methods, verification-, and validation techniques.
Software testing, if carried out systematically and well-
founded, is nowadays considered as an important task dur-
ing the software life-cycle. However, in a practical setting,

∗The research herein is partially conducted within the competence net-
work Softnet Austria (www.soft-net.at) and funded by the Austrian Fed-
eral Ministry of Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsfrderungsgesellschaft mbH. (SFG), and the city of Vienna in
terms of the center for innovation and technology (ZIT).

†Authors are listed in alphabetical order.

designing appropriate test cases is regarded as a difficult,
tedious and thus rather expensive task.

The area of specification-based testing has made con-
siderable advances in the recent years and various research
prototypes are available today (e.g., [21, 22]). Case studies
report on successful application of concrete techniques to
industrial sized applications [7, 13].

This article focuses on protocol conformance testing of
a session initiation protocol (SIP) Registrar in the context
of a commercial voice-over IP (VoIP) server. Due to the
well-founded theory behind testing of input output labeled
transition systems (IOLTS) [21], the ability of this theory to
be used with incomplete specification and due to the avail-
ability of mature research prototypes, we decided to use
IOLTSs. For the generation of protocol conformance tests
we rely on the TGV [12] tool, which is part of the CADP
toolbox [8]. TGV uses LOTOS as its primary input language.
However, any other input language that provides IOLTS se-
mantics can be applied alike.

This article contributes to the field of testing reactive sys-
tems in several aspects: We discuss critical issues regarding
(problem-tailored) abstractions and, unlike to the majority
of conducted case studies, provide rationales for these ab-
stractions. Moreover, we outline how to obtain reasonable
test purposes. Rather than relying on a single strategy, we
use two different test purpose design strategies. First, we
design test purposes by targeting structural coverage on our
protocol formalization. Second, we applied the fault-based
approach presented in [1], and report on scalability issues
in applying this strategy to our industrial application. To
overcome these intricacies we propose a novel extension to
fault-based test purpose design. Moreover, we present an
empirical evaluation and report on the typical errors found.

This paper continues as follows: in Section 2 we briefly
introduce the input output conformance relation. In Section
3 we describe the SIP Registrar, which we use for the em-

Fifth IEEE International Conference on Software Engineering and Formal Methods

0-7695-2884-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SEFM.2007.29

215

Fifth IEEE International Conference on Software Engineering and Formal Methods

0-7695-2884-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SEFM.2007.29

215

Fifth IEEE International Conference on Software Engineering and Formal Methods

0-7695-2884-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SEFM.2007.29

223

Fifth IEEE International Conference on Software Engineering and Formal Methods

0-7695-2884-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SEFM.2007.29

215

pirical evaluation. A classification system of abstractions,
a coarse overview of our formal model and details about
our abstractions are presented in Section 4. In Section 5
we discuss structured test purpose design and show how to
apply fault-based test purpose generation to specifications
with huge state spaces. In Section 6 we present empirical
results and in Section 7 we discuss related work. Finally, in
Section 8, we present our conclusions.

2. Preliminaries

TGV generates test cases in order to test input output con-
formance (ioco) of an implementation with respect to an
IOLTS model. Thus, we briefly review the ioco relation.

2.1. Input Output Conformance

In this section we introduce the models for test case gen-
eration and explain how they are used to describe specifica-
tions, implementations, test cases and test purposes. For a
detailed discussion of the testing theory we refer to [21].

Definition 1 An IOLTS is a labeled transition system (LTS)
M = (QM , AM ,→M , qM

0) with QM a finite set of states,
AM a finite alphabet (the labels) partitioned into three dis-
joint sets AM = AM

I ∪ AM
O ∪ {τ} where AM

I and AM
O are

input and output alphabets and τ 6∈ AM
I ∪AM

O is an unob-
servable, internal action, →M⊆ QM × AM × QM is the
transition relation and qM

0 ∈ QM is the initial state.

We use the following classical notations of LTSs for
IOLTSs. Let q, q′, qi ∈ QM , Q ⊆ QM , a(i) ∈ AM

I ∪ AM
O

and σ ∈ (AM
I ∪AM

O)∗. Then q
a→M q′ =df (q, a, q′) ∈→M

and q
a→M=df ∃q′ : (q, a, q′) ∈→M , and q

a

6→M=df 6∃q′ :
(q, a, q′) ∈→M . q

ε⇒ q′ =df ((q = q′) ∨ (q τ→M

q1 ∧ · · · ∧ qn−1
τ→M q′)) and q

a⇒ q′ =df ∃q1, q2 : q
ε⇒M

q1
a→M q2

ε⇒M q′ which generalizes to q
a1...an⇒ q′ =df

∃q0, . . . , qn : q = q0
a1⇒M q1 . . . qn−1

an⇒M qn = q′. We
denote q afterM σ =df {q′| q

σ⇒M q′} and Q afterM σ =df⋃
q∈Q(q afterM σ). We define OutM (q) =df {a ∈

AM
O | q

a→M} and OutM (Q) =df

⋃
q∈Q(OutM (q)). We

will not always distinguish between an IOLTS and its initial
state and write M ⇒M instead of qM

0 ⇒M . We will omit
the subscript M (and superscript M) when it is clear from
the context.

Commonly the symbol δ is used to represent quiescence.
A quiescent state is a state, that has no edge labeled with
an output or an internal action. Thus, q

δ−→ q means, that
q is a quiescent state. An IOLTS M is called strongly re-
sponsive if it always eventually enters a quiescent state.
Note, that strongly responsive labelled transition systems
do not have infinite loops labelled with the internal action

τ . We say, an IOLTS M is weak input enabled if it accepts
either an internal action or all input actions in all states:
∀a ∈ AM

I ,∀q ∈ QM : q
a=⇒. An IOLTS is determinis-

tic if for any trace there is at most one successor state, i.e.,
∀q ∈ QM ,∀σ ∈

(
AM

I ∪AM
O

)∗ : |q afterMσ| ≤ 1, where
|X| denotes the cardinality of the set X .

To define the input output conformance relation we need
the suspension automaton, which makes quiescence observ-
able by considering δ as an output.

Definition 2 The suspension automaton of an IOLTS M =(
QM , AM ,→M , qM

0

)
is an IOLTS ∆(M) = (QM , A∆(M),

→∆(M), q
M
0) where A∆(M) = AM ∪{δ} with δ ∈ A

∆(M)
O .

The transition relation →∆(M) is obtained from →M by

adding loops q
δ→ q for each quiescent state. The traces of

∆(S) are called the suspension traces of S and are denoted
by Straces(S).

For the ioco relation, we assume that the behavior of an
implementation can be expressed by an IOLTS.

Definition 3 The ioco relation says, that an implemen-
tation under test (IUT) conforms to a specification
(S), iff the outputs of the IUT are outputs of S af-
ter an arbitrary suspension trace of S. Let IUT =(
QIUT , AIUT ,→IUT , qIUT

0

)
be weakly input enabled with

AIUT = AIUT
I ∪AIUT

O ∪{τ} and S =
(
QS , AS ,→S , qS

0

)
be strongly responsive with AS = AS

I ∪AS
O ∪ {τ}. The al-

phabets of the IUT and S are compatible, i.e., AS
I ⊆ AIUT

I ,
and AS

O ⊆ AIUT
O . Then the ioco relation is defined as fol-

lows:

IUT ioco S =df ∀σ ∈ Straces(S) :
OutIUT (∆(IUT) afterIUT σ) ⊆ OutS(∆(S) afterSσ).

If V ⊆ AM then hide V in M =df (Q,AM \ V,→
, hide V in qM

0) where Q = {hide V in q|q ∈ QM} and
→ is the minimal set satisfying the following interference
rules (a ∈ AM ∪ τ):

q
a→ q′, a 6∈ V ` hide V in q

a→ hide V in q′

q
a→ q′, a ∈ V ` hide V in q

τ→ hide V in q′

2.2. Test Purposes

While formal models are descriptions of the system un-
der test, a test purpose describes the test objectives for a set
of tests. Test purposes can be seen as a formal specification
of a test case. Tools like SAMSTAG [9], TGV [12] and Mi-
crosoft’s XRT [10] use test purposes for test generation. The
formal notation of test purposes for TGV is given by:

Definition 4 (Test purpose) Given a specification S in
form of an IOLTS, a test purpose is a deterministic IOLTS

216216224216

TP = (QTP , ATP ,→TP , qTP
0) equipped with two sets

of trap states, AcceptTP which defines pass verdicts and
RefuseTP which allows to limit the exploration of the
graph S. Furthermore, ATP = AS and TP is complete
(∀q ∈ QTP , a ∈ ATP : q

a→TP).

According to [12] test synthesis within TGV is conducted
as follows. Given a test purpose TP and a specification S
TGV calculates the synchronous product SP = S × TP .
Afterwards, the visible behavior of SP is extracted by
adding suspension labels and applying determinization to
SP , which leads to SPV IS . The determinization removes
internal actions τ from the synchronous product. SPV IS

is equipped with AcceptV IS and RefuseV IS sink states.
TGV derives a complete test graph from SPV IS by invert-
ing outputs and inputs. States where an input is possible are
completed for all other inputs and the verdicts pass, inconc
(inconclusive) and fail are assigned to the states.

2.3. Test Graphs and Test Cases

In the ioco testing framework a test case is modeled as
an IOLTS that synchronizes with the model of the IUT.

Definition 5 A test case is a deterministic IOLTS TC =(
QTC , ATC ,→TC , qTC

0

)
equipped with three sets of trap

states Pass ⊂ QTC , Fail ⊂ QTC , and Inconc ⊂ QTC

characterizing verdicts. A test case has to satisfy following
properties:

1. A test case only contains states from SPV IS and ver-
dict states: QTC ⊆ QV IS ∪ Pass ∪ Inconc ∪ Fail,
and qTC

0 = qV IS
0 .

2. TC mirrors image of actions and considers all pos-
sible outputs of the IUT: ATC = ATC

I ∪ ATC
O with

ATC
I ⊆ AIUT

O ∪ {δ} and ATC
O ⊆ AV IS

I .

3. From each state a verdict must be reachable: ∀q ∈
QTC ,∃σ ∈ ATC∗

,∃q′ ∈ Pass ∪ Inconc ∪ Fail :
q

σ⇒TC q′.

4. States in fail and inconc are only directly reachable
by inputs: ∀(q, a, q′) ∈→TC : (q′ ∈ Inconc∪Fail ⇒
a ∈ ATC

I).

5. A test case is input complete in all states where an in-
put is possible: ∀q ∈ QTC : (∃a ∈ ATC

I , q
a→TC⇒

∀b ∈ ATC
I , q

b→TC).

6. TC is controllable, i.e., no choice between two out-
puts or between inputs and outputs: ∀q ∈ QTC ,∀a ∈
ATC

O : q
a→TC ⇒ ∀b ∈ ATC \ {a} : q 6 b→TC .

A test graph generated by TGV contains all test cases
corresponding to a test purpose. Except for controllability
the test graph already satisfies the properties of a test case.
A test suite is a set of test cases.

Figure 1. SIP registration example.

3. SIP Registrar

The Session Initiation Protocol (SIP) [17] handles com-
munication sessions between two end points. The focus of
SIP is the signaling part of a communication session inde-
pendent of the media type between two end points. Essen-
tially, SIP provides communication mechanisms for user
management and for session management. User manage-
ment comprises the determination of the location of the end
system and the determination of the availability of the user.
Session management includes the establishment of sessions,
transfer of sessions, termination of sessions, and modifica-
tion of session parameters. The Registrar is responsible for
maintaining location information of users in a SIP network.

SIP is a text based protocol, that uses a request/response
transaction model. A message consists of a start-line, a
message-header and a message-body. The start-line indi-
cates the request method or the type of response. In its basic
version SIP defines six different request methods. The main
method for the Registrar, which is the REGISTER method,
associates a user address with an end point. The message-
header of a SIP message contains information like the orig-
inator, the recipient, and the content-type of the message.
A REGISTER messages may contain CONTACT header
fields which are used to modify stored user location infor-
mation. In the case of the SIP Registrar the message bodies
are usually empty.

An example of a registration process is shown in Fig-
ure 1. In this example, Bob tries to register his current de-
vice as end point for his address Bob@home.com. Because
the server needs authentication, it returns “401 Unautho-
rized”. This message contains a digest which must be used
to re-send the register request. The second request is ac-
cepted by the Registrar and answered with “200 OK”.

4. Formal Specification and Level of Abstrac-
tion

The level of abstraction is determined by the objectives
of the model. The aim of our formal specification is pro-
tocol conformance testing. This specification objective re-
quires that abstractions do not omit details which are essen-

217217225217

tial for testing. Especially in the context of an industrial
application, the level of abstraction is a crucial property of
a formal model. If abstractions discard important details,
the error detection capability of the formal model decreases
significantly. On the other hand, if the model reflects all de-
tails from the concrete world there might be a huge number
of possible (redundant) test cases or even the generation of
test cases becomes infeasible.

4.1. Classification of Abstractions

According to [15, 16] we distinguish 5 classes of ab-
stractions: functional, data, communication, temporal, and
structural abstractions. Functional abstraction focuses on
the functional part of the specification. This class of ab-
stractions comprises the omission of behavior that is not re-
quired by the objectives of the model. Data abstraction sub-
sumes the mapping from concrete to abstract values. Data
abstraction includes the elimination of data values that are
not needed within the functional part of the specification.

Communication abstraction maps complex interactions
to a more abstract level, e.g., the formal model uses one
message to abstract a handshake scenario (several mes-
sages) of the real world. Temporal abstraction deals with the
reduction of timing dependencies within the formal speci-
fication. For example, a certain model specifies only the
ordering of events, but abstracts from discrete time values.
Structural abstraction combines different real world aspects
into logical units within the model.

In terms of a sixth category we propose to extend the
classification of abstractions by adding environmental as-
sumptions. This specific category subsumes assumptions
about the test environment simplifying the formal model.
For example, the assumption that test messages are deliv-
ered reliably and in the sent order falls into that category.

4.2. Abstractions for the SIP Registrar

We derived the formal specification from a textual doc-
ument, namely the RFC 3261 [17], which specifies the Ses-
sion Initiation Protocol. Textual descriptions typically suf-
fer from ambiguity. Especially the particular keywords of
an RFC, e.g., MAY and SHOULD [3], introduce some imple-
mentation freedom. To be able to check any implementa-
tion for conformance with the specification, the model must
reflect optional parts of the specification. That is, tests de-
rived from the specification should not reject implementa-
tions that do not implement optional parts. Implementations
should be marked as erroneous only if an optional feature is
implemented wrong.

As illustrated in Figure 2, our Registrar model comprises
two main processes. One process models the server trans-
action that is used to handle incoming and outgoing mes-

Figure 2. Main structure of the Registrar
specification.

Table 1. Abstractions for the specification of
the SIP Registrar.

id type description
1 func-

tional
Our formal model of the Registrar does never terminate
with a server error.

2 func-
tional

Our specification never forwards REGISTER messages
to other SIP Registrars.

3 func-
tional

While the authentication handshake is in our model, the
calculation of authentication credentials is not modelled.

4 data REGISTER messages do not contain any REQUIRES
header fields.

5 data The CALL-ID is abstracted to the range [0, 1].
6 data We limit the integer part of the CSEQ header to [0, 1].

The method part is not in the formal model.
7 data The range [0, 232−1] of the EXPIRES header field can be

divided into three partitions where we use only boundary
values of each partition.

8 data Our model distinguishes three different users.
9 data Our formal model three different CONTACT values: *,

any addr1, and any addr2.
10 data The TO and FROM header fields are omitted in our ab-

stract REGISTER messages.
11 temp-

oral
Our specification does not use any timers. We only focus
on the ordering of events.

12 env.
ass.

We assume that the communication channel is reliable
and delivers messages in the sent order.

13 env.
ass.

For every test case, the Registrar starts from a well
known initial state.

sages (serverTransactionInterface). The other process con-
tains the logic for handling register requests (registrarCore).
The registrarCore process uses two global variables which
hold information about authorized users and about the con-
tact information of the users. The process processRegister
is invoked for every incoming messages. It uses the set of
configured users, cfg, to determine if the user is allowed
to modify the contact information. The set of registered
contacts, reg, is updated according to the contact informa-
tion given by the REGISTER message. The formal model
communicates with the environment through the two gates
(ports) pin and pout. A detailed discussion of the specifica-
tion, including the full LOTOS source, can be found in [23].

218218226218

Table 1 lists the abstractions of our SIP Registrar model.
We abstract from general server errors (Abstraction 1) be-
cause of the loose informal specification of server errors
within the RFC. Server errors may occur any time, when
the Registrar encounters an internal error. For testing gen-
eral server errors we would need a high knowledge about
the implementation internals. Especially we need to know
how to enforce server errors during test execution.

Abstraction 2 omits specification details about forward-
ing requests. Thus, we do not generate tests for this feature.
We also skipped the REQUIRES header field in the formal
specification in order to limit the number of possible request
messages (Abstraction 4).

Abstracting from the calculation of authentication cre-
dentials (Abstraction 3) does not impose any limitation if
the credentials are calculated and inserted correctly into test
messages during test execution.

Abstractions 5-8 are based on the ideas of equivalence
partitioning and boundary value analysis [14], which are
strategies from white-box testing. For example, Abstraction
8 uses the fact, that the Registrar relevant part of the RFC
only distinguishes users that (1) are known by the proxy and
allowed to modify contact information, (2) that are known
by the proxy but are not allowed to modify contact informa-
tion, and (3) users that are not known by the proxy. Thus,
we only need three different users, one of each group.

Abstraction 9 limits the different CONTACT header field
values. We allow the two addresses “any addr1” and
“any addr2”, respectively. These two elements are replaced
during test execution with valid contact addresses. Accord-
ing to the RFC, the asterisk is used for “delete” requests.

Abstraction 2 causes the header fields, TO and FROM,
to contain redundant information. So they can be omitted
from our formal REGISTER messages (Abstraction 10).

As TGV does not support real-time testing, we need to
abstract from concrete timer events (Abstraction 11).

Assumption 12 is ensured during test execution by run-
ning the test execution framework and the implementation
under test on the same computer. A reset of the system
under test before running a single test guarantees that As-
sumption 13 holds for every test.

5. Finding Test Purposes

TGV uses test purposes to specify the test objective for
a certain test suite. By the use of these test purposes, TGV
allows the generation of test cases without constructing the
labeled transition system for the whole specification. Test
purpose design may become rather complex. For example,
in [6] the authors tried to detect mutated versions of an im-
plementation. Even after ten hours of test purpose design,
they did not manage to come up with a set of test purposes
that detects all faulty mutants.

As our experience indicates, in practice, under presence
of a mature test process, we encounter different test-design
strategies. Among others, test cases are designed on basis
of structural coverage criteria on the source code, for exam-
ple, decision/condition coverage [14]. Another popular test
case design strategy relies on fault models. Thus, test engi-
neers or developers often anticipate defects relying on their
domain knowledge, their intuition, or on errors previously
made [2].

Conceptually, we thus propose to employ these two
strategies for the design of reasonable test purposes. Thus,
we rely on both, on test purposes from the specification’s
structural properties and on test purposes from the antici-
pated fault models. This two strategies, which have been
proved successful for test case design, may also bring con-
siderable benefits for test purpose design.

5.1. Structural Test Purpose Design

In the case of the SIP Registrar we used decision/con-
dition (DC) coverage on our formal model. Thus, we de-
signed our test purposes such that the generated test cases
cover the LOTOS guards within the behavioral part of our
specification in terms of DC coverage. In order to avoid test
cases that detect the same errors, test purposes should be
orthogonal, i.e., the number of edges from the specification
that are selected by several test purposes should be minimal.

Typically TGV is rather efficient on test purposes, that
select only a small set of edges in states that are not close to
the accept and the refuse states, than on test purposes that
allow many edges in that states. For large specifications, it
appears to be a reasonable strategy to have many edges that
lead to refuse states.

5.2. Fault-based Test Purpose Design

Applying the idea of fault-based test case design to the
development of test purposes leads to the approach pre-
sented in [1].

Basically, the idea is to prevent the implementation un-
der test to conform to a faulty specification. Therefor the
authors of [1] use mutation operators in order to generate
faulty mutants from the original specification. They gen-
erate the IOLTS Sτ for the original specification and the
IOLTS SM

τ for every mutant M . Afterwards Sτ and SM
τ

are minimized to S and SM , respectively. An equivalence
check gives a discriminating sequence c if there is an ob-
servable difference between S and SM . This sequence c,
possibly extended by one more valid transition, is used as
test purpose tp. The use of test purpose tp on S gives a test
case that fails if the implementation conforms to the faulty
specification SM .

219219227219

This approach has been applied successfully for testing
the Apache HTTP server where it revealed an unexpected
behavior of the server. However, currently this approach
cannot be applied to models with huge state spaces, since
this technique requires the construction of the complete
IOLTS. For industrial-sized applications this raises severe
scalability issues: For example, during the construction of
the model for our SIP Registrar specification, the CADP
toolbox runs out of memory (2 GB) after 11 days. Hence,
the equivalence check between the original and the mutated
IOLTS model cannot be performed.

5.2.1 Coping with Large Specifications

Since we are unable to translate large LOTOS models into
IOLTSs, it is necessary to extract a slice from the specifica-
tion that includes the relevant parts only. The relevant part
for our equivalence check are the places where the fault has
been introduced in the mutant. Fortunately, we know where
the specification has been mutated. Hence, the key idea is
to mark the place of mutation in the LOTOS specification
with additional labels (α, β). The slices can be calculated
by using TGV and a special test purpose that only selects
(accepts) α-labeled transitions and refuses β-labeled ones.
The result of applying these slicing-via-test-purpose tech-
nique are two test processes (graphs), one for the original
specification, and one for the mutation. Finally, in contrast
to [1] the CADP-bisimulation check is done on the two test
processes that reflect the relevant behaviour of their models.
Hence, the size of the model does not matter any more since
the equivalence check is performed on the test processes.

An example serves to illustrate this technique. Figure 3
illustrates the application of the event swap mutation oper-
ator to a LOTOS specification. The order of the two events
g2 and g1 in Line 3 has been changed from g2; g1; (orig-
inal) to g1; g2; (mutant). Both versions of the specifica-
tion have been annotated with α and β. Note, that α and β
are not in the alphabet of the original specification L, i.e.,
{α, β} 6⊆ AL. The labeled transition systems described by
the specification and the mutant are depicted in Figure 4.

By the use of a test purpose, that accepts traces that end
in α, but refuses traces that contain β we extract a test graph
that includes the fault induced by the specific mutation. Fig-
ure 5 illustrates the used test purpose and the extracted test
graph. Note, that this figure only shows the test graph of the
mutant. The test graph for the original specification looks
similar, except that it has the correct ordering of g1 and g2.

Now we hide α and β in the test graphs, i.e., we trans-
form α and β to internal events (τ). Calculating the dis-
criminating sequence (using CADP-Bisimulator) between
the two test graphs leads to g1; g2. This is our new test
purpose which is used on the original specification.

Formally, we generate a test purpose for a specification

1 p r o c e s s o r i g i n a l [g1 , g2 , g3 , α ,β] : e x i t
2 g1 ; (
3 g2 ; (g1 ; α ; e x i t [] g2 ; e x i t)
4 []
5 β ; g3 ; (g1 ; e x i t [] g3 ; e x i t)
6)
7 endproc

1 p r o c e s s mutan t [g1 , g2 , g3 , α ,β] : e x i t
2 g1 ; (
3 g1 ; (g2 ; α ; e x i t [] g2 ; e x i t)
4 []
5 β ; g3 ; (g1 ; e x i t [] g3 ; e x i t)
6)
7 endproc

Figure 3. Applying the event swap operator to
a LOTOS process.

Figure 4. LTS representation of the original
and the mutated specification.

Figure 5. Test purpose for the extraction of
marked traces and the resulting test graph.

L =
(
QL, AL,→L, qL

0

)
as follows:

1. Select a mutation operator Om.

2. Use the knowledge where Om changes the specifica-
tion to generate L′ by inserting markers {α, β} 6⊆ AL

into the formal (LOTOS) specification L.

3. Generate a mutated version of the specification Lm =
Om(L′) by applying Om to L′.

4. Generate two complete test graphs, CTGτ for the
specification and CTGm

τ for the mutant, by the use
of the test purpose from Figure 5 (using CADP-TGV).

220220228220

5. Hide the additional added labels by transforming them
to internal transitions τ (using CADP-Bcg). This leads
to CTG′

τ = hide α, β in CTGτ and to CTGm
τ
′ =

hide α, β in CTGm
τ .

6. Minimize CTG′
τ and CTGm

τ
′ using the Safety Equiv-

alence relation in order to obtain CTG and CTGm

(using CADP-Reductor).

7. Check CTG and CTGm for Strong Bisimulation (us-
ing CADP-Bisimulator). The counterexample c, if any,
gives the new test purpose1. c is extended by a valid
transition (if any) in order to create a valid path which
discovers the injected error.

8. Generate a test case from the new test purpose (using
CADP-TGV).

Note, that a mutation operator might change the specifi-
cation in a way, that α cannot be reached from qLm

0 . In that
case any sequence c of CTG that ends in α is a discriminat-
ing sequence. By hiding α and β in c and possibly adding
one more valid transition, we obtain our new test purpose.

This approach capabilities depend on the insertion strat-
egy of the markers α and β. For our evaluation we use a
strategy that directly inserts α subsequently to the position
of the scheduled mutation. For example, if we use the event
swap operator and swap the events ei, ek then we add α af-
ter the second event. While the mutant contains ek, ei, α
the original specification looks like ei, ek, α. Note, that this
currently restricts our approach to mutations where the in-
troduced fault is observable at the position of the mutation.
That is, a mutation must not effect internal (τ) transitions.

We insert β as first event in every process except pα,
which is the process that contains α. Additionally, we in-
sert β in all branches of pα that do not contain α. This in-
sertion rule arises the problem, that α may not be reachable
anymore. For example, assume that we insert α and β in a
recursive process. The generation of a test graph fails, if the
execution of the block that contains α depends on previous
executions of blocks that contain β.

To overcome that problem we use the test purpose to
stepwise unroll dependencies of marked blocks. If TGV
generates an empty test graph for the test purpose of Fig-
ure 5 and the un-mutated marked specification we extend
the test purpose. The new test purpose, illustrated in Fig-
ure 6, allows one β transition before α. If TGV fails to
produce a test graph with the new test purpose, we again
add one β transition to the test purpose. This procedure is
continued until a test graph can be generated.

As depicted in the next section, first experiments using
this novel technique show promising results.

1The labels of the test processes are marked with INPUT or OUTPUT.
We remove this marks.

Figure 6. Extended test purpose for the ex-
traction of marked traces.

6. Empirical Evaluation

In this section we present our results obtained from ex-
ecuting the generated test cases against a commercial SIP
Registrar and against the open source Registrar OpenSER.

For test purposes designed according to the structural ap-
proach of Section 5.1, we extract the test cases from the
complete test process (graph), that is generated by TGV. A
detailed discussion of our extraction algorithm can be found
in [24]. In the case of fault-based test purposes we use a
single test case generated by TGV for every test purpose,
because every test case derived from such a test purpose re-
veals the fault.

Independently of the used test purpose design approach,
the produced test cases are abstract test cases. The transi-
tions of an abstract test case describe stimuli and expected
responses of the implementation under test in an abstract
manner. During test execution stimuli are refined to con-
crete protocol messages, while system responses are trans-
formed to an abstract representation. Details of our test ex-
ecution framework can be found in [24].

6.1. SIP Registrar Specification

In cooperation with the industry partner’s domain ex-
perts we developed a formal specification covering the full
functionality of a SIP Registrar. This LOTOS specification
consists of appr. 3KLOC (net.), 20 data types (contributing
to net. 2.5KLOC), and 10 processes. Note, that the Regis-
trar determines response messages through evaluation of the
request data fields rather than using different request mes-
sages. Thus, our specification heavily uses the concept of
abstract data types. The behavioral part of the specification
comprises 38 decisions with an average of 1.3 conditions
per decision. At maximum there are three conditions in one
decision.

A structured review of this specification considerably in-
creased our confidence in the formalization. Particularly,
the performed abstractions can be considered as thoroughly
reviewed w.r.t. the model’s fault detection capabilities as
the industry partner’s domain experts required rationale for

221221229221

Table 2. Test generation time.
Test purpose no.tc tgv [sec] min [sec] extr. [sec]
not found 880 12.7 0.4 13.7
interval too brief 384 12.3 0.6 4.5
invalid request 1328 12.7 1.0 19.3
unauthorized 660 24.1 0.7 9.7
register ok 1392 15.4 0.5 23.2
delete 2000 15404.6 0.7 25.9
Total 6644 15482.0 4.2 96.5

Table 3. Test execution results.
Test purpose no.tc commercial OpenSER

pass fail pass fail
not found 880 0 880 880 0
interval too brief 384 0 384 0 384
invalid request 1328 0 1328 1008 320
unauthorized 660 578 82 156 504
register ok 1392 1104 288 1104 288
delete 2000 18 1982 1439 561
Total 6644 1700 4944 4587 2057

critical issues. To our best knowledge, the developed spec-
ification thus represents a correct formalization of the SIP
Registrar.

6.2. Results for Structural Test Purposes

Table 2 lists the number of test cases being generated
(2nd column), the running time of the TGV tool (3rd col-
umn), the time required for minimizing the IOLTS (with
CADP-Bcg) using branching equivalence (4th column), and
the amount of time it takes to apply our test case extraction
(5th column) for those test cases associated with a certain
test purpose (1st column). The different test purposes ad-
dress different parts of the specification, e.g., the test cases
derived by the use of the invalid request test purpose cover
the decisions/conditions of the specification that deal with
invalid request messages.

By relying on our model, TGV creates the majority of
test cases in a reasonable amount of time, however, for the
delete test purpose, we obtain a significant outlier. This spe-
cific test purpose captures scenarios in which a client regis-
ters at the server, but removes its registration subsequently.
Due to the various possibilities of registration scenarios the
test purpose results in a rather complex structure causing
the substantial increase in running time for creating the cor-
responding test graph.

Table 3 outlines the results of executing the obtained test
cases against the commercial and the OpenSER Registrar in
terms of the number of executed (2nd column), passed (3rd
and 5th column), and failed test cases (4th and 6th column).

Our specification proved detailed enough to reveal severe
misbehavior and, as exemplified in terms of the OpenSER
Registrar, general enough to apply it to an arbitrary SIP

Registrar implementation. The high number of failed tests
on both products are due to overlapping test purposes (see
Section 5.1) and overlapping test cases, which cover equiv-
alent faults.

For the commercial SIP Registrar we discovered 9 differ-
ent faults. In the case of the OpenSER Registrar we found
4 discrepancies between the IUT and the specification.

Most of the detected errors (commercial: 6, OpenSER:
2) are regarding different combinations of CONTACT header
fields. For example, the commercial Registrar deletes all
stored contacts for a certain SIP-URI if a message contains a
delete request (EXPIRES: 0; CONTACT: *) combined with a
standard regular contact header (CONTACT: 10.0.0.1). Ac-
cording to the RFC such a request should be rejected with
“Bad Request”.

The RFC specifies, that each stored contact has to record
the CALL-ID value and the CSEQ number of the request
that created the contact information. Stored contact infor-
mation should be removed only if the CALL-ID value of
the delete request differs from the stored CALL-ID or if the
CSEQ value of the delete request is higher than the stored
value. Both tested implementations violate this require-
ment, because they delete stored contact information also
if the CALL-ID numbers and the CSEQ values are equal.

Another detected error that causes many failed test cases
is the extension of the requested contact expiration inter-
val. According to the RFC a Registrar may decrease the re-
quested expiration interval, but it is not allowed to increase
the requested interval. Both implementations possible in-
crease a requested interval. This error causes test cases,
generated by the interval too brief test purpose, to fail. Be-
cause our test purposes overlap this misbehavior is also de-
tected by test cases of the register ok, of the delete, and of
the unauthorized test suite.

We detected two errors, where the commercial SIP Reg-
istrar does not respond. The Registrar does not reject un-
known users with “404 Not Found” if authentication is
turned off. Because of this single error all test cases of
the not found test suite fail. Furthermore, the commercial
implementation does not reject messages with malformed
CONTACT header fields correctly. Thus all tests of the in-
valid request test suite fail on the commercial Registrar.

6.3. Results for Fault-Based Test Purposes

Due to the size of the Registrar specification and the huge
number of possible mutants, we need to automate our fault-
based test purpose generation to obtain results for all mu-
tation operators of [1]. However, we randomly chose three
mutation operators (event insert operator (eio), event swap
operator (eso), missing condition operator (mco)) and ap-
plied our approach manually.

Table 4 lists the details of our fault-based test purpose

222222230222

generation. The table shows the number of possible mu-
tants, i.e., mutants that can be generated by the mutation
operator (2nd column) and the number of generated mutants
(3rd column), i.e., mutants not influencing τ transitions (see
Section 5.2.1). Note, that we encountered only one mutant
for the event swap operator, where the fault is not visible
at the position of the mutation. Additionally, we list for
how many mutants we are able to generate test processes
using our approach (4th column). The 5th column shows
the number of equivalent mutants, i.e., there is no observ-
able difference between the mutant and the specification.

Using our fault-based test purpose generation approach,
we are able to generate 30, 7, and 32 test purposes out of
35, 9, and 46 mutants within reasonable time (6th column).
7 of the created mutants are equivalent to the original speci-
fication. For the other 21 mutants, TGV runs out of memory
(2 GB) when generating the test graph. By having a closer
look at that 21 mutants, we saw that the mutation affected
parts of our specification where decisions are based on a
certain internal state. The event sequence for establishing
this internal state contains 14 β. Since we run out of mem-
ory every time we allow 12 β before α, we are currently
unable to generate the test processes for that 21 mutants.

Although, the time until TGV runs out of memory (7th
column) is very small compared to the time until CADP-
Caesar runs out of memory when we try to construct the
IOLTS of the specification (11 days). Even if the generation
of a test graph fails, because of lack of memory, the average
time is acceptable. Finally, Table 4 lists the time needed by
TGV to generate a test case for a generated test purpose.

Table 5 illustrates the results when executing the
test cases derived from fault-based test purposes against
OpenSER and against the commercial SIP Registrar. This
table shows the number of test cases (2nd column), the
number of passed, failed and inconclusive test cases for
OpenSER (3rd, 4th and 5th column) and for the commer-
cial Registrar (6th, 7th and 8th column). The tests were
executed against the two implementations by having the au-
thorization feature turned off (2nd-4th row) and by having
the authorization turned on (5th-7th row).

These additional test cases revealed an additional error
in the commercial SIP Registrar, which has not been de-
tected by our test cases from structural test purposes. The
implementation considers a message as a retransmission of
a previous message although the BRANCH parameter fields
differ. This behavior violates the RFC.

7. Related Research

Various testing techniques have been applied to SIP
[25, 18]. While the applied techniques deal with security
aspects and performance issues, to our best knowledge none
of them focuses on protocol conformance testing.

Table 4. Test generation time.
Operator No. Mutants Avg. Time [sec]

poss. appl. ok eqv. ok ∞ tgv
eio 35 35 30 0 169 5696 3
eso 10 9 7 4 215 5564 5
mco 46 46 32 3 236 5374 1
Total 91 90 69 7 217 5465 2

Table 5. Test execution results.
Operator no. commercial OpenSER

tc pass fail inc. pass fail inc.
eio 30 26 4 0 26 4 0
eso 3 2 1 0 3 0 0
mco 29 26 3 0 26 3 0
eio auth. 30 15 12 3 20 5 5
eso auth. 3 0 2 1 1 0 2
mco auth. 29 20 9 0 27 2 0
Total 124 89 31 4 103 14 7

Modelling SIP using SDL or UML has been subject to
publication previously [4, 19, 20]. In difference to our for-
malization, the presented models are based on the outdated
RFC 2543 [11]. The presented formalizations are not tai-
lored to any special purpose and deal with the session man-
agement part of SIP. In difference to that, our model is based
on the currently valid RFC 3261 and targets the user man-
agement part of SIP. Furthermore, the aim of our specifica-
tion is protocol conformance testing.

There exist various case studies on using TGV for auto-
matic test generation. For example, the authors of [6] used
TGV for test generation and TORX for test execution. Tests
were generated by the use of manually-designed test pur-
poses and by the use of randomly-generated test purposes.
The test cases were evaluated on 24 ioco-incorrect mutants.
Kahlouche et al. present in [13] the application of TGV to
the cache coherency protocol, while the authors of [7] pre-
sented the application of TGV to the DREX protocol. The
latter work compares the tests produced by TGV to hand-
written tests. However, none of these case studies discusses
test purpose design in detail. Previous publications do not
present abstractions within their formal model and provide
rationales for these abstractions. Furthermore, these case
studies do not consider mutation testing.

8. Conclusion

In this article we point out various abstractions per-
formed for developing an appropriate formal model. Un-
like to other articles reporting on successful application of
specification-based testing, we provide rationales for the
chosen abstractions. Our industrial sized problem from the
telecommunications area pursues two different strategies
for test purpose design. One strategy relies on a structural

223223231223

coverage criteria whereas a second one exploits the knowl-
edge on faults in terms of fault models. Particularly for the
fault-based test purpose design, we encountered scalability
problems and thus we propose a novel technique for fault-
based test purpose design and also discuss first experiments
on our real world application. In addition, we discuss the
error detected on both, an open-source and an commercial
SIP Registrar. Notably, our derived test cases detect severe
failures in both implementations. Using two different test
purpose design strategies proved to be successful, since the
fault-based method reveals an additional error that we miss
with our structural designed test purposes.

However, our approach needs further evaluation. We
need to automate the generation of mutants for LOTOS spec-
ifications in order to evaluate our approach for all mutation
operators. Furthermore, we need to evaluate other marking
strategies for α and β.

Our current formalization of the SIP Registrar makes
heavy use of abstract data types. Thus, we need to evaluate
the efficiency of our test purpose design approaches when
using symbolic test generation techniques. Especially the
use of STG [5], which uses symbolic transition systems in-
stead of labeled transition systems, appears to be a promis-
ing alternative to TGV, at least for our data dependent Reg-
istrar specification.

References

[1] B. K. Aichernig and C. C. Delgado. From faults via test pur-
poses to test cases: On the fault-based testing of concurrent
systems. In FASE, volume 3922 of LNCS, pages 324–338.
Springer, 2006.

[2] A. Beer and R. Rammler. Case studies on experience-based
testing. Technical report, Software Competence Center Ha-
genberg, Siemens PSE, Competence Network Softnet Aus-
tria, To appear.

[3] S. Bradner. Key words for use in RFCs to indicate require-
ment levels. RFC 2119, IETF, 1997.

[4] K. Y. Chan and G. v. Bochmann. Modeling IETF session
initiation protocol and its services in SDL. In LNCS, volume
2708, pages 352–373. Springer, 2003.

[5] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: A
symbolic test generation tool. In TACAS, volume 2280 of
LNCS, pages 470–475. Springer, 2002.

[6] L. du Bousquet, S. Ramangalahy, S. Simon, C. Viho, A. Be-
linfante, and R. G. de Vries. Formal test automation: The
conference protocol with TGV/TORX. In TestCom, volume
176 of IFIP Conference Proceedings, pages 221–228, 2000.

[7] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experi-
ment in automatic generation of test suites for protocols with
verification technology. Science of Computer Programming,
29(1-2):123–146, 1997.

[8] H. Garavel, F. Lang, and R. Mateescu. An overview of
CADP 2001. European Association for Software Science
and Technology (EASST) Newsletter, 4:13–24, 2002.

[9] J. Grabowski, D. Hogrefe, and R. Nahm. Test case genera-
tion with test purpose specification by MSC’s. In SDL’93,
the 6th SDL Forum, pages 253–266. Elsevier Science, 1993.

[10] W. Grieskamp, N. Tillmann, C. Campbell, W. Schulte, and
M. Veanes. Action machines — towards a framework for
model composition, exploration and conformance testing
based on symbolic computation. In QSIC, pages 72–79,
2005.

[11] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg.
SIP: Session initiation protocol. RFC 2543, IETF, 1999.

[12] C. Jard and T. Jéron. TGV: theory, principles and algo-
rithms. International Journal on Software Tools for Tech-
nology Transfer (STTT), 7(4):297–315, 2005.

[13] H. Kahlouche, C. Viho, and M. Zendri. An industrial exper-
iment in automatic generation of executable test suites for a
cache coherency protocol. In IWTCS, pages 211–226, 1998.

[14] G. J. Myers. The Art of Software Testing. John Wiley &
Sons, Inc., 1979.

[15] W. Prenninger and A. Pretschner. Abstractions for model-
based testing. In Proceedings Test and Analysis of
Component-based Systems (TACoS’04), pages 59–71, 2004.

[16] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel,
M. Baumgartner, B.Sostawa, R. Zölch, and T. Stauner. One
evaluation of model-based testing and its automation. In
ICSE, pages 392 – 401, 2005.

[17] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP:
Session initiation protocol. RFC 3261, IETF, 2002.

[18] H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle.
SIPstone - benchmarking SIP server performance. Technical
report, Columbia University, Ubiquity, 2002.

[19] G. Stojsic, R. Radovic, and S. Srbljic. Formal definition of
SIP end systems behavior. EUROCON, Trends in Commu-
nications, 2:293–296, 2001.

[20] G. Stojsic, R. Radovic, and S. Srbljic. Formal definition of
SIP proxy behavior. EUROCON Trends in Communications,
2:289 – 292, 2001.

[21] J. Tretmans. Test generation with inputs, outputs and repeti-
tive quiescence. Software - Concepts and Tools, 17(3):103–
120, 1996.

[22] J. Tretmans and E. Brinksma. Torx: Automated model based
testing. In A. Hartman and K. Dussa-Zieger, editors, Pro-
ceedings of the First European Conference on Model-Driven
Software Engineering, pages 13–25, Nurnburg, Germany,
2003.

[23] M. Weiglhofer. A LOTOS formalization of SIP. Techni-
cal Report SNA-TR-2006-1P1, Competence Network Soft-
net Austria, December 2006.

[24] M. Weiglhofer. Conformance testing of a session initiation
protocol server. Technical Report SNA-TR-2006-1P2, Com-
petence Network Softnet Austria, To appear.

[25] C. Wieser, M. Laakso, and H. Schulzrinne. SIP robustness
testing for large-scale use. In SOQUA/TECOS, volume 58
of LNI, pages 165–178, 2004.

224224232224

