
Unregister Attacks in SIP

Anat Bremler-Barr Ronit Halachmi-Bekel
Interdisciplinary Center Herzliya

Email: {bremler,halachmi.ronit}@idc.ac.il

Jussi Kangasharju
Darmstadt University of Technology
jussi@tk.informatik.tu-darmstadt.de

Abstract

In this paper we present the unregister attack, a new
kind of a denial of service attack on SIP servers. In
this attack, the attacker sends a spoofed “unregister”
message to a SIP server and cancels the registration
of the victim at that server. This prevents the victim
user from receiving any calls. We have tested common
implementations of SIP servers and show that the un-
register attack is easily performed on SIP servers which
do not use authentication. Even on SIP servers with
authentication, an attacker able to sniff the traffic be-
tween the client and server can still successfully attack
common servers. We show that the root causes behind
this vulnerability are either buggy implementations, or
the SIP specification RFC which does not require suffi-
cient security from the implementations.

We present a solution, the SIP One-Way Hash
Function Algorithm (SOHA), motivated by the one-
time password mechanism [6]. SOHA prevents the un-
register attack in all situations. The algorithm is easy
to deploy since it requires only a minor modification,
namely adding one header field into the SIP messages.
Furthermore, the algorithm is fully backwards compat-
ible and requires no additional configuration from the
user or the server.

1 Introduction

Voice over IP (VoIP) technology is changing the
world of telephony. Instead of using the traditional,
dedicated telephone network, VoIP services route all of
their traffic over the commodity Internet. One of the
main benefits of this is that since all the traffic passes
through the Internet, the operators can offer highly
price-competitive calls to their customers. However,
VoIP services also suffer from the weaknesses of the
Internet infrastructure. VoIP devices are easier to at-
tack than traditional phones, which are connected to a
dedicated network over dedicated lines. Attackers can

use any of the usual attacks on Internet against VoIP
devices. These attacks are easy and cheap to perform
because VoIP devices are connected to the commodity
Internet. People are used to voice calls having high reli-
ability and high quality. A VoIP service that is open to
many attacks might not be able to meet with these ex-
pectations, hence it is important to analyze the weak-
nesses in VoIP infrastructures and develop appropriate
counter-measures.

In this paper, we present a new attack on a partic-
ular VoIP infrastructure, namely the unregister attack
against SIP servers. The unregister attack is a denial
of service attack, where a single packet sent by the at-
tacker is enough. We show that in many scenarios this
one packet is enough to prevent the victim from receiv-
ing calls. The victim in this case could be a single user,
or a company. Moreover, the attacker can also divert
the victim’s calls to any third party, including the at-
tacker itself. We also show that the victim would not
receive any notification that she is under attack; from
her point of view she appears able to receive calls, even
though in reality this is not the case.

The unregister attack is based on spoofing an unreg-
ister message in the Session Initiation Protocol (SIP).
SIP is a signaling protocol for Internet conferencing,
telephony, presence, events notification, and instant
messaging, and it is the de-facto signaling protocol for
most VoIP implementations. The user can receive calls
only if she is registered at the SIP server that respon-
sible for her phone number. By spoofing an unregister
message to this server, the attacker can effectively dis-
connect the user from the network.

In Table 1, we summarize the different scenarios of
possible unregister attacks according to two main fac-
tors. The first factor is if the server uses authentica-
tion. The second factor is if the attacker has capabil-
ities to sniff the traffic between the source and desti-
nation. Sniffing traffic by an attacker can be done in
many of the deployed wireless networks.

We tested different server implementations (section
4), and found out that it is possible to launch unregis-

Attack without Traffic knowledge Attack with Traffic Knowledge

Server with no
Authentication

Problem Implementation bug No covered by RFC
Solution Implement the RFC correctly (CSeq,Call-ID) Our suggested algorithm SOHA

Server with
Authentication

Problem Not possible to attack Unregister Implementation bug
Solution No problem Do correct challenge check

Table 1. Summary of possible unregister attacks in the different environments

ter attacks due to bugs in the implementation of SIP
in the server, or due to weak security recommendations
in the RFC [10]. Moreover, the RFC does not provide
any solution to the case where the server does not use
authentication and the attacker can sniff the traffic.
We suggest a solution (in section 5) , the SIP One-
way Hash Function Algorithm (SOHA), which protects
against spoofed unregister messages and is based on a
similar technique of the one-time password mechanism
[6, 7]. The algorithm is easy to deploy, fully backwards
compatible, and does not require any prior configura-
tion between the server and the client.

2 Background

SIP is a text-based signaling protocol used for im-
plementing initialization, modification and termination
of services that use multimedia elements like calls, in-
stant messaging, video and presence information. SIP
is a client-server protocol. Each client is registered at
a server which is responsible to route the requests to
the client and the requests sent from it. The client is
not aware of the location of other clients it is trying to
contact; the client knows only the location of the server
it is registered at.

SIP can work over UDP or TCP, although it is more
commonly found over UDP. Although the signaling of
the call goes through the server, the media usually
goes directly between the endpoints. Each endpoint
publishes to the sip server the information required to
send and receive media like its IP address, port and
supported codecs.

There are two types of SIP servers: stateless and
stateful. The stateless server does not save any in-
formation after a request or a response has been pro-
cessed. This means that all the information remains
in the packet. The stateful server creates a new trans-
action for each request it received. In both cases, the
server is vulnerable to unregister attacks, since any SIP
server, including stateless servers, must store the reg-
istration information.

SIP packets are composed of header fields [10], some
of them mandatory and some optional, that together
supply all needed information for the requested ac-

Client
192 .168 .0.1

Server
215.142.131 .30

Register (Request)
Request line: REGISTER sip:215.142.131.30 SIP/2.0
Via: SIP/2.0/UDP 192.168.0.1:5060;rport;branch=z9hG4bKE51328EBC4CC4C8DA47540AF463BB9AB
From: 1000 <sip:1000@215.142.131.30>;tag=3278324239
To: 1000 <sip:1000@215.142.131.30>
Call-ID: 3210BC3D54BC4AE48FA8CEC6A1BC3CFD@215.142.131.30
CSeq: 26788 REGISTER
Expires: 1800

OK (Response)
Status line: SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.0.1:5060;rport=5060;branch=z9hG4bKE51328EBC4CC4C8DA47540AF463BB9AB;
From: 1000 <sip:1000@215.142.131.30>;tag=3278324239
To: 1000 <sip:1000@215.142.131.30>;tag=68d238da7d1832978b1a894dbad8a35e.f6b8
Call-ID: 3210BC3D54BC4AE48FA8CEC6A1BC3CFD@215.142.131.30
CSeq: 26788 REGISTER

Figure 1. Illustration of the registration flow

tion. We mention below only some of the fields that
are required to understand our work: Request-line
- holds the Request-URI (Uniform Resource Identi-
fier), an identifier in the form of an e-mail address that
indicates to which user this request stands for. To -
specifies the recipient of a request using a display name
and URI. From - specifies the sender of a request us-
ing a display name and a URI. Call-ID - is a unique
identifier to all registrations of the same user for call
creation and tear down. The Call-ID can be a long
string (the length is not fixed), for example 32 charac-
ters, composed of numbers, letters and other charac-
ters. CSeq - holds a number and the method of the
message. The number is incremented by one for every
REGISTER message using the same Call-ID. Proxy-
Authenticate - is an indication to the endpoint that
the server requires authentication. Expiry - indicates
how long (in seconds) the user’s record will be valid
for.

Our paper focuses on the registration process. The
main aim of registration is to store a record in the
server with the client information. When the endpoint
starts, it sends a registration request. The request con-
tains information about the IP address, phone num-
ber, name and an expiration value. If the server does
not require authentication, it accepts the registration
and sends a confirmation message (OK). Otherwise,

2

the server will ask the user to identify using a chal-
lenge/response method. The client will have to answer
the challenge by activating some hash function (for ex-
ample, MD5) on the challenge using a password sup-
plied to him before. The server verifies the response
and if the response is as accepted the server will accept
the packet (or packets).

The user’s registration will be valid for the period
time given in the expiry field. After the first registra-
tion, the user will send periodical registration requests
according to the configured expiry value or the expiry
value received from the server. Figure 1 illustrates the
registration using server that does not support authen-
tication.

The SIP server should hold up-to-date information
about its clients. Therefore, when an endpoint discon-
nects, the server should remove its record. Endpoint
removal can be done in two ways: 1. Wait for the
record to expire according to its last expiry value (the
common default value is 30 minutes). 2. Send an un-
register message – a register message with expiry value
set to zero that will cause an immediate removal.

3 Related Work

The vulnerabilities in VoIP can stem from other pro-
tocols used for VoIP servers, either VoIP-specific (e.g.,
SIP), or general protocol vulnerabilities (e.g., DNS or
TCP). The work in [12] deals with possible DOS and
DDOS attacks in SIP protocol which flood the server
with specific SIP messages or misuse some of SIP fea-
tures, causing the server to consume all its memory or
to use all its CPU resources. In addition, the paper de-
scribes attacks that are based on other protocols used
by SIP like DNS or TCP. The work in [3] covers at-
tacks based on SIP message flows like call tear down or
cancelation of a call. PROTOS [2] is a Test-Suite that
tests implementations of protocols and is available also
for the SIP protocol. The main tests it preforms are im-
plementation glitches such as buffer overflow and some
attacks that use the SIP INVITE message. Recently,
a new set of security tools was released [5]. One of the
tools is an implementation of the unregister attack in
the case of a server without authentication. However,
as far as we are aware, we are the first to provide a
solution to the problem.

4 Unregister Attack

The RFC [10] recommends the server to support
explicit unregister request (i.e., REGISTER message
with expiry time zero). The motivation behind this

recommendation is to allow the clients to update their
location and status on the server in real time. During
the update, the server is able to indicate the caller that
the callee is currently unavailable and avoid sending
unnecessary packets. Moreover, the server can save its
own resources by releasing information about discon-
nected users.

However, as we show in this section, this mechanism
opens new attack possibilities. The basic idea is that
the attacker spoofs an unregister message and thus re-
moves the user from the server and prevents her from
receiving calls. Not only does the spoofed message dis-
connect the user from the server, but the user does not
get any notification from the server so she will think she
is still connected. In some cases an attacker can even
spoof a subsequent REGISTER message, such that all
the calls to the victim will be routed to the attacker or
to any third party.

As we have found, the root cause of this problem is
either an incorrect implementation of the RFC or that
the requirements in the RFC are not secure enough
concerning the unregistering of users.

4.1 Methodology

We tested the unregister attack as follows. We regis-
tered a client with different servers in different config-
uration (with and without authentication). We then
have an attacker try to unregister the client at the
server. After the attack, we try to call the victim from
a third client. We repeated the test several times for
each configuration to get conclusive results.

We checked three commonly used SIP servers from
three different vendors. Two of them were configured
in our lab without authentication (their default config-
uration), and one server was configured with authenti-
cation and was a server in production.

The clients were soft phones. The attacker was a
small program written in C using raw sockets. The
location of the attacker varied between a machine on
the same LAN as the victim to locations in different
networks. We did not observe any effect on the results
caused by the location of the attacker.

In their default configuration, most servers are not
configured to use authentication. Some possible ex-
planations for this could be: (i) Having authentication
requires account management on the server side, thus
increasing the effort and complexity of managing the
server. (ii) Using authentication reduces the through-
put of the server. For example [11] shows that a server
with authentication handled 56% - 70% less calls than
the server without authentication. (iii) Authentication
brings new possibilities for attacking the server. For

3

example, [12] shows examples of DDOS attacks based
on the current SIP authentication mechanism which
consume all the memory and all the CPU of the server.

In many cases, authentication is used, since the
server needs to know who the users are. This is re-
quired for example to do billing and accounting, since
many VoIP services which use SIP are not free. To our
knowledge, there are no published studies about which
percentage of SIP servers use authentication and which
do not. Hence, in this paper we consider both cases.

We consider two different scenarios in addition to
the two kinds of servers. In one scenario, the attacker
is assumed to be able to sniff the traffic between the
victim and the server and in the other scenario sniffing
is not possible.

The case of an attacker able to sniff packets between
the client and server is motivated by the proliferation
of wireless networks, where any client is able to see
all the packets sent by other clients near her. If the
wireless network is using encryption, the attacker must
first crack the encryption before she can attack the
victim. Not all wireless networks use encrypted traffic,
and even when encryption is used, common protocols
like WEP have been shown to be quite vulnerable to
even small scale attacks. WPA-based wireless networks
are more secure, but can also be broken by brute-force
tools such as Cowpatty[1].

Even though many networks are encrypted, many
wireless networks use no encryption at all. Examples
of such networks are hot spots in public places, like cof-
fee shops, hotels, and airports, where the configuration
needed for encryption (i.e., giving out encryption keys
or passwords) is not feasible. Furthermore, not all wire-
less cards support all encryption mechanisms, meaning
that a public access point has to follow the capabilities
of the “lowest common denominator”. Also, consider a
wired network in a company where an employee is sniff-
ing the internal traffic in order to harm the company
or attack people inside. Even though many companies
take active measures against such attacks, it is still a
possibility in some cases.

4.2 Unregister Problem

The ease of spoofing an unregister attack stems from
being able to run SIP over UDP, which does not require
a handshake before actually sending the data.1

The weaknesses we show below can be categorized
in two groups. The first group concerns implemen-
tation errors of SIP servers or oversights in the SIP
RFC [10] which allow non-secure implementations.

1Note, that in case SIP was run solely over TCP, no spoofing
is possible.

Many of the issues identified below are stated in the
RFC as “SHOULD”, but we believe they should be
made “MUST”, in order to protect against the unreg-
ister attack. Some of the problems in this group are
simply implementation bugs of the SIP servers. The
second group concerns problems where the RFC pro-
poses no solution. In this case, the problems only ap-
pear when the attacker can sniff the traffic between the
client and the server (see Table 1).
Unregister Attack Without Traffic Knowledge
on a Server with No Authentication: The Call-
Id and CSeq headers in the unregister message should
correspond to the same headers in the original regis-
ter message. However, none of the servers we checked
actually implement this check.

We succeeded to unregister the client easily from
the server by sending a REGISTER message with zero
expiry time and random values for the Call-ID and
CSeq headers. Moreover, we succeeded in spoofing
a fake registration message, posing as the legitimate
client, with the name and phone number of the victim.

To perform this attack, we need only basic public in-
formation (i.e., victim’s phone number and name alias)
and basic information that can be retrieved by send-
ing traffic to the server and capturing its response (i.e.,
client’s IP address). The IP address can also be cap-
tured by establishing a call to the client, since the IP
address is typically contained in the media description
(done by SDP). Even if the user is behind a NAT or a
VoIP-aware firewall and the attacker is in different net-
work from the victim, there are still some fields indicat-
ing the victim’s real IP address that are not changed in
the packet (e.g., Via or Call-Id header). Some servers
hide this information, and in this case spoofing the
packet will be impossible without knowing the IP ad-
dress of the user.

One possible solution to this attack would simply be
to have the server check the Call-ID and CSeq head-
ers. We believe the RFC recommendation regarding
the Call-Id header should be changed from “SHOULD”
to “MUST”, which forces the server to check the header
field. Strict checking of the CSeq-header, which is
mandatory according to the RFC, could also prevent
this attack. However, we believe Call-Id is the better
choice, since the string in the Call-Id-header is much
longer compared to the CSeq header, which is simply
a sequence number. Even though it should be random,
we have discovered that many implementations are rel-
atively weak, and that the CSeq numbers are relatively
easy to predict.
Unregister Attack Without Traffic Knowledge
on a Server With Authentication: This attack is
not possible. For every packet the server receives, it

4

sends a ”proxy authentication required” message with
a nonce (a string) in it and expects a reply that contains
some calculation of the nonce with a password given in
advance.
Unregister Attack With Traffic Knowledge on
a Server With No Authentication: In this case,
the RFC does not suggest any prevention mechanism
to prevent unregister attack. Implementing the RFC
properly will not help because the attacker can capture
the Call-Id- and CSeq-headers and hence can spoof the
packet with all the required fields. In Section 5 we
describe our solution to this attack.
Unregister Attack With Traffic Knowledge on
a Server With Authentication: Surprisingly, even
though the server uses authentication, we succeeded to
unregister a client without knowing the password. This
is because we were able to sniff the traffic between the
client and the server. Although the authentication pro-
cess itself is secure, we were able to capture both the
challenge sent by the server and, more importantly, the
response sent by the client. With the server using au-
thentication, it is enough for the attacker to capture
the last REGISTER-message sent by the client and
take out the authorization string. If we re-used the
same authorization string, we were successful in unreg-
istering the victim from the server. In other words,
we did a “replay attack” and the server which received
the re-used authorization string canceled the existing
registration without sending a new challenge.

This problem is not SIP-specific, as it seems to im-
ply a bug in the server. Although the RFC does not
address the re-use of the responses in the authentica-
tion, we expected that the server would not allow us to
re-use a reply to a nonce and would decline our spoofed
packet. Note that since the attacker is assumed to be
able to capture all the traffic between the client and
server, even Call-Id- and CSeq-headers would not pro-
tect against this attack. The problem can only be fixed
by a correct implementation of the authentication pro-
cedure in the server.

5 SOHA algorithm

We now present our SIP One-way Hash Function Al-
gorithm (SOHA), a solution for the situation where the
attacker can capture all traffic between the client and
server and the server does not use any authentication.
As discussed above, the SIP RFC provides no protec-
tion against attacks in this scenario. SOHA will also
protect against attacks in the other three scenarios, but
in those cases, a correct implementation of the RFC,
as well as a reformulation of some of the requirements,
are sufficient as solutions.

The SOHA algorithm is similar to the one-time pass-
word mechanism [7, 6]. It is based on a “first come,
first get”-rule, meaning that the first user to register a
name and phone number is then considered to be their
legitimate owner. The SOHA algorithm does not re-
place the authentication mechanism of SIP and there-
fore does not verify the identity of the user. Without
authentication, we cannot protect against an attack
where the attacker is able to spoof a register message
before the legitimate user.2 With our solution, how-
ever, we ensure that a correctly registered user cannot
be un-registered by the attacker.

Our solution is based on a one-way hash function.
The function is known to all and does not require any
secret information for its operation. Hence, this solu-
tion is very light-weight and easy to deploy without
any need of special configuration. The basic character-
istic of a one-way hash function is that when given an
input, it is easy to compute the output but when given
an output it is very hard to find the original input.

In our solution, we add a header field,3 called X-
Hash-Authenticate to SIP messages. For example,
when using the function SHA-1 [4] this header will be
160 bits long for every message the client sends to the
server (registration, removal, call initiation and so on).
Other common hash functions are MD4 [8], MD5 [9].
Figure 2 shows the details steps of our SOHA algo-
rithms. In the first registration, the client chooses a
random number x.4 The client puts in the X-Hash-
Authenticate-header a number which is equal to apply-
ing the chosen hash function h over x for n times (i.e.,
h(h(...h(x)))). The client can choose n as it wishes, but
it should be large enough. Ideally, n is larger than the
number of packets sent between the client and server
during the time that the client is connected.

The server stores, for each client, the last value of
the X-Hash-Authenticate-header it has received. In the
next message, the client will send a value in this header
which is equal to applying h over x for n−1 times. The
idea is that the server can easily apply h over this value
and the result should be identical to the value stored on
the server from the previous header. Since the attacker
cannot reverse the hash function h, she cannot find
the next (i.e., previous) value, even if she manages to
capture traffic between the client and server.

When n gets closer to zero, the client will send
two headers in the next message. One is the X-Hash-

2The real owner will notice that someone has stolen his ac-
count, and can request the server owner to delete the entries
manually.

3The SIP RFC allowed you to define your own header fields.
There are actually no restrictions about the names, but the usual
convention is to use a prefix X- in the new header fields.

4If using SHA-1, x is recommended to be a 1024 bit number

5

3. User sends REGISTER message with
z value in X-HASH-AUTHENTICATE field

1. User chooses a randon number x
2. User calculates z = h(h(...(h(x))..) n times

4. Server creates a record for user 1000
and saves z

6. User calculates z’ = h(h...h(x))…) n-1 times

7. User sends sip packet with the z’ value in
X-HASH-AUTHENTICATE field

8. Server applies h function on z’ and compares
it to z: If equal, the server accepts the packet
and updates z value to hold z’ value, otherwise it
rejects the packet.

User 1000 proxy
5. Server replies with OK and adds
X-SOHA field

10. When n is close to 0 or upon user’s choice, the
user resets z value by adding 2 fields to the packet:
X-HASH-AUTHENTICATE with the corresponding z
value, X-HASH-RESET with new value (calculated
from new n and new x)

9. Repeating steps 6-8: For every packet the user
calculates new X-HASH-AUTHENTICATION field. It
decreases by 1 the number of times X is hashed
each time.

Figure 2. The steps of SOHA algorithm

Authenticate which contains the next hash value, and
one is X-Hash-Reset, which contains a new hash value,
obtained by picking a new random number x′ and ap-
plying the hash function h for some number n′ times.
When the server receives the message with both of
these headers, it resets its stored hash value to the one
given in the X-Hash-Reset header field.

Since SOHA only adds a header field to SIP mes-
sages, it is fully backwards compatible with existing
SIP implementations. In order to give the client feed-
back about whether the server supports SOHA, we pro-
pose that the server should add a header (X-SOHA) in
its replies, so that a client is able to tell the difference
between a SOHA-enabled server and a legacy server.

Alternative solution to SOHA is to solve the regis-
tration problem by using private and public keys in the
client as follows. In the first packet (the registration)
the client puts her public key in the message to the
server. In the following messages, the client signs the
data with her private key. The server can verify the
signature by using the public key it has received in the
first packet. The main advantage is that the signature
makes the packets tamper-proof 5. The main draw-
back of this solution that it is more complicated to the
client and server since we need one signature opera-
tion for each packet. In the SOHA solution, the server
needs to do one hash operation per packet, but hash
functions are typically cheaper to compute than signa-
tures. On the client side, we can prepare all the X-
Hash-Authenticate-headers in advance. Furthermore,

5In some cases a firewall or NAT may change parts of the SIP
messages for security reasons . A special care should be used so
the signature be only on part of the packets that are not touched
by those systems.

public keys are typically larger than hash values.

6 Conclusion and Future Work

In the paper we have examined the unregister pro-
cess in SIP protocol and found some weaknesses that
can be abused by an attacker. In our future work we
plan to investigate if other attacks are possible on SIP
infrastructure by spoofing packets. In our preliminary
tests, we found out that attacker can send spoof BYE
message to an active call, and to cancel the call after
call initiation. The attack is possible only when the
attacker can sniff the traffic between the client and the
server. We believe that our SOHA algorithm can solve
also this attack scenarios.

7 Acknowledgment

The authors would like to thank deeply Zvi Gut-
terman. Zvi has pointed us to the private-public key
solution and to the corresponding between our SOHA
solution to the one time key password RFC.

References

[1] Cowpatty. http://sourceforge.net/projects/cowpatty//.
[2] Protos. http://www.ee.oulu.fi/research/ouspg/protos/-

testing/c07/sip/index.html.
[3] Snocer. http://www.snocer.org.
[4] D. Eastlake and P. Jones. Sha1 rfc 3174.

http://www.faqs.org/rfcs/rfc3174.html.
[5] D. Endler and M. Collier. Hacking exposed VoIP.

http://www.hackingvoip.com/index.php.
[6] N. Haller, C. Metz, P. Nesser, and M. Straw.

A one time password system rfc 2289.
http://www.faqs.org/rfcs/rfc2289.html.

[7] L. Lamport. Password authentication with inse-
cure communication. Communications of the ACM,
24:770–772, 1981.

[8] R. Rivest. Md4 rfc 1320.
http://www.faqs.org/rfcs/rfc1320.html.

[9] R. Rivest. Md5 rfc 1321.
http://www.faqs.org/rfcs/rfc1321.html.

[10] J. Rosenberg, H. Schulzrinne, G. Camar-
illo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. Sip rfc 3261.
http://www.faqs.org/rfcs/rfc3261.html.

[11] S. Salsano, L. Veltri, and D. Papalilo. IDMaps:the
sip authentication procedure and its processing load.
IEEE Network, 16:38–44, 2002.

[12] D. Sisalem and J. kuthan. Denial of service attacks and
sip infrastructure. In first workshop on VoIP Security
in Dallas, 2004.

6

