
Hindawi Publishing Corporation
Advances in Multimedia
Volume 2011, Article ID 372591, 21 pages
doi:10.1155/2011/372591

Research Article

A Survey of Open Source Products for
Building a SIP Communication Platform

Pavel Segec and Tatiana Kovacikova

Department of InfoCom Networks, University of Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia

Correspondence should be addressed to Tatiana Kovacikova, tatiana.kovacikova@fri.uniza.sk

Received 29 July 2011; Revised 31 October 2011; Accepted 15 November 2011

Academic Editor: T. Turletti

Copyright © 2011 P. Segec and T. Kovacikova. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The Session Initiation Protocol (SIP) is a multimedia signalling protocol that has evolved into a widely adopted communication
standard. The integration of SIP into existing IP networks has fostered IP networks becoming a convergence platform for both real-
time and non-real-time multimedia communications. This converged platform integrates data, voice, video, presence, messaging,
and conference services into a single network that offers new communication experiences for users. The open source community
has contributed to SIP adoption through the development of open source software for both SIP clients and servers. In this paper, we
provide a survey on open SIP systems that can be built using publically available software. We identify SIP features for service deve-
lopment and programming, services and applications of a SIP-converged platform, and the most important technologies support-
ing SIP functionalities. We propose an advanced converged IP communication platform that uses SIP for service delivery. The plat-
form supports audio and video calls, along with media services such as audio conferences, voicemail, presence, and instant messag-
ing. Using SIP Application Programming Interfaces (APIs), the platform allows the deployment of advanced integrated services.
The platform is implemented with open source software. Architecture components run on standardized hardware with no need for
special purpose investments.

1. Introduction

The success of the IP network model with its many attractive
services has started a process of network convergence based
on IP technology. Thanks to this convergence, the patterns
of communication among people have been changing. New
IP networking technologies and their evolution have resulted
in a communication platform which is able to provide many
services and applications. Multimedia technologies have
become standardized, and many advanced communication
platforms are available, especially for Voice over IP (VoIP).
Setting up your own multimedia platform with audio and
video telephony, audio conferencing, presence, and messag-
ing has never been easier. In addition, these new multimedia
technologies offer new opportunities for creation of inno-
vative and attractive services. Individual services may be in-
tegrated with running real-time and non-real-time services,
thus providing a converged unified communication environ-
ment with an arbitrary combination of services, applications,
devices, and networks.

The Session Initiation Protocol (SIP) [1] provides an
open multimedia signalling protocol. It is considered as a key
protocol for network convergence. SIP facilitates building
converged IP communication networks that integrate and
cooperate with existing telecommunication networks and
equipments. SIP technology is still evolving, but the core spe-
cifications have been fully standardized, adopted, and widely
implemented. There are many commercial products and
communication platforms on the market that are SIP based,
including those from Cisco, Microsoft, Avaya, and Radvision.
SIP also brings the internet approach to multimedia real-
time communication; thus, SIP communication may be seen
as just another IP service, running on standard hardware
and standard operating systems and middleware. Thanks to
this approach, there are many high-performance and high-
quality software products available provided under some
form of open source or free software licenses. These products
together with the appropriate software packages can be used
to create a rich multimedia converged network.



2 Advances in Multimedia

In this paper, we identify key protocols, technologies, and
services and we propose an advanced converged IP commu-
nication platform using SIP for service delivery. This plat-
form is based on SIP and open supplementary communica-
tion protocols implemented as open source software. The
platform integrates individual open source packages to sup-
port audio and video calls along with media services such as
audio conference, voicemail, presence, and instant messag-
ing. Using SIP Application Programming Interfaces (APIs),
the platform facilitates development and deployment of ad-
vanced integrated services such as click2call and web-initia-
ted conferences. A NAT traversal solution is also provided. All
architecture components run on standardized hardware with
no need for special purpose investments. The proposed plat-
form is not a simple SIP PBX, it is rather a powerful, flexible,
and easily extendable open source communication platform
that is exploitable in many ways.

This paper does not provide exhaustive comparison of
components’ features or a complete design guide. It serves for
better understanding of required technologies and features
which can be incorporated to converged SIP communication
platform. The platform facilitates building your own test-
beds that can be used for education and research at universi-
ties and high schools.

In Section 2, SIP features for service development and
programming are highlighted. Services and applications of
a SIP-converged platform are introduced in Section 3. In
Section 4, the most important technologies supporting SIP
functionalities are identified. A proposed SIP-converged plat-
form together with its logical components and appropriate
open source products are described in Section 5. Finally, con-
clusions are provided in Section 6.

2. Creating SIP Services

One of major benefits of SIP is its ability to be used for crea-
tion of new communication services. There are a number of
approaches for creating SIP services which may extend plat-
form functionalities. An overview of these approaches is pro-
vided below.

2.1. SIP Baseline Protocol Mechanism. Unlike classic tele-
phones in PSTN/ISDN, SIP endpoints are not dumb termi-
nals. Therefore, many services which were implemented in
telecommunication networks or in a PBX environment can
be provided using SIP baseline functions in SIP servers and/
or SIP endpoints. A range of services is not specified by the
IETF, unlike the traditional telecommunication world. A few
Best Current Practice RFCs exist describing the deployment
of some services, such as call forwarding, call hold, Music on
hold, and so forth call parking, Call pickup.

2.2. New Methods and Headers. SIP has been designed to be
easily extensible; thus, new features and services can be imp-
lemented by defining new SIP methods or SIP headers. These
new methods or headers do not need to be supported by all
SIP servers. If a SIP proxy receives a request with an unknown
method or header, it will proxy the request. The new methods

have already been defined (INFO, PRACK, PUBLISH, SUB-
SCRIBY, NOTIFY, MESSAGE, REFER, UPDATE) as exten-
sions of the baseline SIP specification. These new methods
provide services such as presence, instant messaging, and in-
terworking with telecommunication networks.

2.3. Programming SIP Services Using Dedicated Tools. SIP
services can be implemented by service logic that is created
and implemented in the SIP architecture. In general, any pro-
gramming language can be used. The logic is used to process
a specific SIP signalling message flows to react to special con-
ditions due to special events. These events can be triggered
by receiving a specific SIP message, or a SIP header value, or
an argument of a specific message [2]. A couple of interfaces
have been defined, including Call Processing Language—SIP
CPL [3], a Common Gateway Interface—SIP CGI [4], SIP
Servlets [5], and Java API for Integrated Networks—JAIN
APIs [6]. Using programming APIs for the development of
SIP communication services and applications is very similar
to IT application development. Programming APIs are usu-
ally provided by SIP application servers.

3. Advanced SIP Applications and Services

This section surveys services and applications providing an
important part of the SIP-converged communication plat-
form.

3.1. SIP Instant Messaging and Presence (SIMPLE). The ins-
tant messaging (IM) service together with the presence ser-
vice has become dominant together with the basic VoIP
service. It has been predicated that these services will be as
that of “a dial tone” of the twenty-first century [7]. Due to
many proprietary IM services, there was an effort in IETF to
standardize presence and IM services. Currently, two IETF
working groups (WG) are specialized on IM and presence
services: Extensible Messaging and Presence Protocol WG
(xmpp wg) [8] and SIP for Instant Messaging and Presence
Leveraging Extensions (simple wg) [9]. This has led to the
definition of two protocols that can be used for IM and pres-
ence services: XMPP protocol (a successor of a very popular,
but still proprietary jabber protocol) and SIMPLE (SIP for
Instant Messaging and Presence Leveraging Extensions).

SIMPLE is an umbrella covering more than ten RFCs
concerning presence and messaging. SIMPLE covers two ser-
vices, presence and IM, which are logically coupled together.
IM is defined as a fast (close to real-time) exchange of
short text messages between participants. There are two IM
solutions for SIP page mode and a session mode [10, 11].
Page mode IM, defined in RFC 3428 [12], uses a newly de-
fined SIP method for text communication—MESSAGE. The
MESSAGE method is delivered directly to participants, with-
out certain SIP session (no session dialog is established), see
Figure 1. The session mode assumes that the IM message
exchange is a part of a session which is established by some
means (such as rendezvous protocol). For session type of
IM implementation, SIP may be the Message Session Relay



Advances in Multimedia 3

SIP serverUA UA

MESSAGE MESSAGE

200 OK 200 OK

Figure 1: Page mode IM.

Protocol (MSRP) [13, 14]. MSRP is a text-based connection-
oriented instant message transport protocol which trans-
ports arbitrary (binary) content on a peer-to-peer basis.
MSRP is not a standalone protocol, but it uses its own mes-
sages (SEND and REPORT) for communication.

SIP presence is a service, where the availability and will-
ingness of an user can be communicated. Initially, only two
states were provided—online and offline. Nowadays, pres-
ence is a feature-rich service that provides many kinds of
information and capabilities. The presence server inside the
SIMPLE architecture uses an event notification framework
[15]. The event notification framework extends the main SIP
specification allowing a SIP user agent to request notification
from remote nodes indicating that certain events have occur-
red. It also uses a general instant messaging and presence
(IMP) framework defined in [10, 11]. The event notification
extension standardizes two new SIP methods, SUBSCRIBE,
NOTIFY, and a couple of new headers [15]. The event noti-
fication framework for SIP presence notification specified in
RFC 3856 [16] defines the “end-to-end” model of SIP pre-
sence. The model was not very powerful; therefore, the pres-
ence framework was extended to allow actively push presence
information to the network with a new SIP method PUB-
LISH [17]. This model of SIP presence is called the “agent-
based” or centralized model. However, to provide typical IM
services such as buddy lists, SIP messengers implementing
SIMPLE have adopted the XML Configuration Access Pro-
tocol (XCAP) family of protocols. XCAP allows a client to
read, write, and modify application configuration data stored
in XML format on a server [18]; here, this information is
presence information.

To implement the complete SIMPLE standards (see
Figure 2) is a complex task, and there are few implementa-
tions yet. Many SIP software vendors, due to the complexity
of the SIMPLE framework, are implementing the simpler and
more feature rich XMPP protocol into their products.

3.2. Media Application and Services. In a SIP network, there
is a need for available advanced media processing func-
tionalities. These functionalities enable us to build interes-
ting applications such as unified messaging and unified
communication. Media functions include announcement,
message recording, service interaction, media mixing, and
multi party communication [19]. Media processing is usually
provided by media servers. Voicemail, audio conferencing,
and interactive voice response (IVR) are the most popular

services using media functions. For communication with
media servers, as defined in RFC 6230, SIP is used [20]. RFC
6230 describes a framework which is applicable for an archi-
tecture with distributed application logic and media process-
ing.

Voicemail is a service which allows sending, storing, and
retrieving audio messages, just like an answering machine
does. Implementations may differ, but usually each SIP user
is associated with a voice mailbox, so that when this user is
called and does not answer (because he is busy or offline),
then the caller is redirected to a voicemail system and is
instructed to leave a message for the callee. When learning
that he has voicemail message, for example, by SIP event
package, then the callee can contact their voicemail server to
retrieve the message. The voicemail service is based on a
standard SIP unified resource identifier (URI) addressing
scheme [21]. Voicemail system is a very common service in
IP PBX solutions.

A conferencing service is another very popular service,
which can be integrated into the SIP-converged platform. A
conference is a service supporting multisite communications
with many participants, policy-based management, manage-
ment of resources, and notification. Several models of SIP
conferencing have been identified [22]. These models include
centralized, end-point mixing, full mesh, and multicast SIP
natively supports multicast communication; hence, this is a
good choice for conferencing. Unfortunately, multicasting is
often infeasible due to the lack of a multicast infrastructure.
Therefore, the centralized model, based upon a star topology
with point-to-point signalling and central media mixing, is
frequently used [23]. Additional details of SIP conferencing
and high level requirements are provided in RFC 4353 and
RFC 4254 [22, 24].

SIP IVR is an application based on SIP that provides
automated call interactions with humans based on dual-tone
multi-frequency (DTMF) tone commands. IVR provides
many possibilities [25] and is often used in an enterprise
environment. Recently, RFC 6231 has been published [26].
RFC 6231 defines a media control channel framework for
interactive voice response (IVR). This framework also defines
dialog management request elements for preparing, starting,
and terminating dialog interactions as well as associated res-
ponses and notifications to satisfy IVR requirements.

4. Supplementary Network Technologies

In this section, a survey of key supplementary network tech-
nologies needed by SIP architecture is provided.

4.1. Domain Name Server (DNS). SIP is tightly coupled with
the domain name server (DNS). SIP utilizes DNS in many
different ways. SIP addressing is based on SIP entities being
identified by SIP uniform resource identifiers (URIs) [27].
SIP URI consists of a user name (or service name) and
a host name, separated by “@.” There are identified three
types of SIP URIs, an address of record (AOR), a fully quali-
fied domain name (FQDN), and a globally routable user
agent (UA) URI. SIP client resolves a SIP URI into an IP
address, port, and transport protocol of the next hop entity



4 Advances in Multimedia

SIP server with
SIMPLE and XCAP

JankoMarienka

SIMPLE
(SUBSCRIBE, NOTIFY)

SIMPLE
(PUBLISH)

XCAP
(HTTP: GET, PUT, DELETE)

Figure 2: SIMPLE with XCAP architecture.

Selection of the transport protocol is especially interesting,
because SIP can run over a variety of transport protocols,
including TCP, UDP, SCTP, TLS over TCP, TLS over SCTP,
SCTP over IPsec. The DNS resolving process occurs in dif-
ferent SIP entities (i.e., servers and endpoints) during one
session. For a simplified topology and some SIP PBX imple-
mentations, a standard DNS A record may be sufficient. The
A record provides a mapping between a name and one or
more IP addresses. However, using only A records is not a re-
commended practice, because it does not support environ-
ments with different transport protocols, port numbers, and
servers. The recommended DNS deployment for SIP infras-
tructures uses the DNS service record (DNS SRV) [28] or
the naming authority pointer (NAPTR) DNS resource record
[29]. The NAPTR RR allows clients to distinguish which
protocol should be used to talk to the mapped resource. The
SRV RR allows administrators to configure several servers for
a single SIP domain and to find out the correct port number.

RFC 3263 [30] provides guidelines of how the SIP end-
points locate the appropriate SIP server. According to guide-
lines, the SIP endpoint should first use a NAPTR RR to iden-
tify which transport protocol should be used for communica-
tion with the respective SIP server. The name of a SIP server
is identified by a domain name extracted from a SIP URI. The
NAPTR RR allows a domain to advertise different servers for
the various transport protocols. The NAPTR RR structure
specifies the order and preference fields, which allow the SIP
domain to define the preferred transport protocol and its
backup solutions. Once a resolving process has finished, the
SIP endpoint knows which transport protocols are supported
and which server on which port provides the service (SRV).
In the second step, the endpoint resolves the SRV records to
find A/AAAA names. The structure of SRV RR allows to build
a service with front end load balancing. Finally, the endpoint
queries for an A or AAAA record to learn appropriate IPv4 or
IPv6 addresses. Now, the endpoint has the information (see
Figure 3) required to connect with the correct SIP server.

DNS may be used not only for learning Registrar/Proxy
server IP address(es), but also addresses for a media server,
ENUM mapping, or STUN/TURN/ICE server. Companies
that are planning to implement SIP into their IP infrastruc-
ture should have their own DNS server into which they can
configure the appropriate resource records. If the company
wishes to interact with others, then it should have its own
DNS server with registered domain(s).

4.2. NAT Traversal. Originally, main principles of SIP did not
reflect security, an important issue of modern IP networks.

However, with the global availability of IP networks, security
has started to be more and more considered. Many security
devices, either the lightweight ones such as NATs or heavy
ones such as firewalls, have appeared on the market. RFC
3235 [31] has been produced to make application protocol
design more NAT friendly. Unfortunately, SIP violates most
of the recommendations, because being an application layer
protocol, it works with L3 IP addresses inside its application
messages (SIP and SDP). Therefore, implementation of SIP
signalling and media capabilities into a secured network is
not a straightforward task. Security devices such as NATs
and firewalls in a network invoke some complications for
SIP. Two problems have been identified—those related to sig-
nalling flows and those related to media flows. The problem
with signalling flows has been partially solved with the use
of TCP instead of UDP and with the use of “receive” para-
meters of the “Via” header. For NAT traversal, a number of
approaches have been identified. They can be divided into
two groups.

The first group relies on SIP endpoints to detect the pre-
sence of a NAT and to determine its type. These functions
have to be implemented by SIP UAs (clients) and are sup-
ported by special network service servers. These servers help
UAs with NAT detection task. This group of solutions is
called “near-end NAT traversal” and includes solutions such
as STUN, TURN, and ICE. STUN (session traversal utilities
for NAT) is an IETF standardized solution [32] that allows
a SIP UA to detect presence of a NAT and learn the public
IP address and port assigned to this SIP UA during the pro-
cess of NAT-ing. The public IP address and port are then
used inside the SIP and SDP headers instead of device local
private IP address. Unfortunately, STUN does not work in
all situations. For example, STUN does not work over sym-
metric NAT, and STUN has a problem when a SIP endpoint
has more than one IP address. The second solution proposed
by the IETF is TURN (traversal using relay around NAT)
or STUN relay [33]. TURN is a client-server protocol which
allows a SIP UA to learn the public IP address (relayed tran-
sport address) of the TURN server and request it to act as a
relay entity. This address is used for relaying incoming media
packets (see Figure 4). The client may request the TURN ser-
ver from which communication peers will be relayed and
may control how the relaying is done. The client may learn
TURN server’s IP address through DNS SRV records or by
other means. Client may utilize UDP, TCP, or TLS to connect
to the TURN server. The utilization of TURN service can be
protected using authentication. TURN works well with the
UDP protocol; but work is still in progress concerning TCP.



Advances in Multimedia 5

Inspect
NAPTR
records

sip.uniza.sk Inspect
SRV

records

Inspect
A/AAAA
records

Protocol to use Port to use Address to use

Figure 3: How SIP endpoint locates right servers.

SIP UA2SIP UA1
NAT NAT

SIP SIP

RTP RTP

1

2 3

44

PrivatePublicPrivate SIP proxy

TURN server

TURN

Figure 4: TURN principle.

TURN resolves the NAT traversal problem, but introduces
several new “problems.” A TURN server is a central point of
failure; hence should be deployed reliably. Also, the TURN
server must forward all media packets, both incoming and
outgoing; therefore, there are some TURN system perfor-
mance issues that can occur.

Therefore, the third solution, called ICE (interactive con-
nectivity establishment), is recommended. STUN and TURN
are parts of the ICE solution. ICE is specified by the IETF in
RFC 5245 [34] and RFC 5768 [35]. ICE is quite simple; it
allows a SIP UA to collect “candidates of communication”
which are offered to the remote party, hence maximizing
chance of success. ICE negotiation has several phases. First,
a SIP client gathers candidates. During this phase, the SIP
client finds out all addresses that can be used for communi-
cation. There are three types of candidates: a host candidate
who represents clients’ IP addresses, a server reflexive candi-
date for the address that has been resolved from STUN, and
a relayed candidate for the address which has been allocated
from a TURN relay by the client. The client assigns priorities
for particular candidates and sends them to a remote party
to start the offer-answer negotiating process. After receiving
remote peer candidates, client local candidates are paired
with received remote candidates. The client starts to check
the connectivity for each of the candidate pairs. Finally, the
session is established.

The second group of NAT traversal solutions is called
“far-end NAT traversal.” This group considers the SIP UA as
an entity which does need to be concerned about NATs and
firewalls, and it should communicate using local address as
usual. This solution requires a NAT or a firewall devices to
implement a SIP friendly application layer gateway (ALG),
universal plug and play (UPnP), deployment of special devi-

ces at the border between the private and public network
parts to act as a back to back user agent (B2BUA), or the dep-
loyment of special entities which cooperate with a SIP server
in a public internet and that serve as media relay servers
(RTP Proxy/Media proxy). These solutions are typically pro-
prietary, although UPnP seems to be a promising technology
widely supported by many vendors (Microsoft, consumer
electronics vendors) and standardized [36]. However, UPnP
has many security problems, since UPnP does not implement
any security mechanisms and its deployment is considered as
risky.

SIP over NAT solutions help to setup conditions required
for successful outgoing and incoming signalling and media
sessions establishment in situation where a SIP UA is behind
a NAT. NAT devices also introduce a problem for the reverse
traffic—how to reach SIP endpoints, which are behind NAT
for incoming sessions. To solve this issue, RFC 5626 [37] sug-
gests a keep-alive mechanism scheme used to keep NAT tran-
slations of communications between SIP endpoint and its
serving SIP servers (registrar or proxy) opened. This exten-
sion assumes that some NAT translations, as a result of com-
munications initiated by a SIP endpoint with a serving SIP
server (e.g., those made during SIP registration) will be
kept open; hence, this translation will be reused for routing
incoming SIP requests through a NAT to the SIP endpoint.
NAT translations are kept open by transmitting keep-alive
messages, that is, client-to-server “ping” keep-alive and cor-
responding server-to-client “pong” messages [37]. There are
proposed two keep-alive mechanisms: a CRLF keep-alive and
a STUN keep-alive message exchange.

4.3. SIP Security. SIP is an application layer protocol, so it
is exposed to all the IP-network security issues on one hand



6 Advances in Multimedia

and to issues directly related to SIP on the other hand. How-
ever, being an IP stack protocol, SIP may reuse the whole
portfolio of security mechanisms already developed for IP
networks. SIP security threats may be classified into three
categories [38]. The first category is threats which inherit the
classical IP-related threats and vulnerabilities such as replay
attacks, denial of service [39], spoofing, sniffing, and man in
the middle attacks. The second category includes some SIP-
specific vulnerabilities raising from SIP’s nature, including
attacks such as malicious terminate and register requests. The
third category includes vulnerabilities due to the complexity
of SIP applications, servers, or other components, such as
implementation vulnerabilities due to SQL injection or buf-
fer overflow [38]. Protection of a SIP architecture against all
of these security threats is a complex task, as it includes
protection of signalling sessions and protection of media
streams.

To protect signalling sessions, SIP provides several built-
in security mechanisms, for example, authentication, data
integrity, and confidentiality. They include a challenge-
based authentication mechanism, e-mail-like secure MIME
(S/MIME) mechanism, and a secured SIP schema (SIPS)
with transport layer security (TLS) [1]. SIP authentication
is based on authentication mechanisms of HTTP, where an
originator of a request may be challenged to provide assur-
ance of its identity. There are two versions of HTTP authenti-
cation: HTTP basic and HTTP digest authentication. HTTP
basic authentication is not supported by SIP version 2 since it
sends a password as a clear text. HTTP digest authentication
is a challenge-response mechanism which uses cryptographic
hashing (e.g., MD5) of username/password/realm with a
random nonce value. HTTP digest provides some level of
replay attack protection with nonce value, which is valid for
some period of time only and which contains a “quality of
protection (qop)” parameter. Using HTTP digest authenti-
cation is a minimal required protection mechanism but is
contingent on the use of strong passwords. In a SIP-based
network, the HTTP digest mechanism usually takes place
between the UA and SIP server (proxy, registrar, UAS) and
is used for client authentication and authorization. Using
HTTP digest, the user ensures validity of its credentials.
However, security of vital SIP headers (as Contact, To, From)
is provided. To provide integrity protection and confidential-
ity for SIP signalling, S/MIME and TLS may be used.

The S/MIME provides a consistent way for sending and
receiving secure data among users based on mechanisms
such as authentication, message integrity, and data confiden-
tiality (encryption). S/MIME uses certificates which assert
that the holder is identified by an end-user address. These
certificates are associated with the keys that are used to sign
or encrypt bodies of SIP messages. Key exchange mechanism
can be either public or private. RFC 3261 specifies the Triple
Data Encryption Standard (3DES) cipher suite with SHA1
(Secure Hash Algorithm) signature algorithm as mandatory
for S/MIME implementation. RFC 3853 [40] updates the
guidance for S/MIME with the Advanced Encryption Stan-
dard (AES) as an encryption algorithm, RSA (Rivest, Shamir
and Adleman) as a digital signature algorithm, and SHA1 as
a digest algorithm [40]. Compared to 3DES, AES is faster

mechanism with lower memory requirements, which makes
it suitable for mobile devices, for example. AES is also requi-
red for using TLS in SIP, as it unifies the cipher suite require-
ments and simplifies SIP security implementation. SMIME
provides end-to-end confidentiality for the SIP message body
and, partially, confidentiality for the SIP headers, integrity
protection for the body and identity authentication for a sen-
der of the message [41]. Currently S/MIME is not widely
deployed in SIP, mainly due to problematic certificate distri-
bution. RFC 6072 [42] addresses this problem as it proposes
a way to discover the certificates of other users and mech-
anisms of certification retrieval and certification manage-
ment. It uses a “credential service” combined with SIP iden-
tity specification (RFC 4474) which is used to manage user’s
private and public certificates and which allow SIP users
to store, update, and retrieve their certificates with a SIP
PUBLISH message. Using credential service SIP UAs may
subscribe to other SIP UA certificate that is delivered to the
subscribing UA using SIP NOTIFY message. Thanks to SIP
identity specification, SIP users are allowed to use certificates
that are not signed by any well-known certification authority
while still strongly binding the user’s identity to the certifi-
cate.

Another option for secure SIP signalling communication
is to use TLS (transport layer security) [43] at the transport
layer. TLS has been already used in a SIP secure (SIPS)
schema. TLS provides confidentiality, integrity, and replay
attack protection services. The TLS protocol is composed of
two layers. The upper layer consists from TLS Handshake
Protocols and application data protocol entities to whom
security services are offered. The TLS Handshake Protocols
are the Handshake Protocol used for peer authentication and
key exchange, the Alert Protocol used for error condition sig-
naling, and the Change Cipher Protocol used for notification
of new cipher and keys usage. The bottom layer, called a TLS
Record Protocol, is located on top of the transport protocol
(TCP, SCTP). The TLS Record Protocol takes a message from
upper layer entities, then it does segmentation, and applies
desired processing such as compression, MAC calculation,
and encryption. Finally, it encapsulates it and sends over
TLS connection to a receiving party, which applies rev-
erse processing over a received message. Inside the SIP archi-
tecture, TLS may be used on the hop-by-hop basis (between
UA and SIP servers or SIP servers itself), with the credibi-
lity of SIP entities provided by a signed certificate. The
deployment usually uses one unencrypted channel on the
port 5060 and the secure one on the port 5061. TLS runs
over connection-oriented protocols such as TCP or SCTP as
it relies on their reliable transport features. Currently, there
are only few SIP clients which smoothly support TLS. TLS
cannot be used with UDP because the lost or reordering of
datagrams breaks TLS handshaking and TLS record layer
functionalities. When UDP is preferred as a transport pro-
tocol, the datagram TLS (DTLS) is used. DTLS, standardized
in RFC 4347 [44], enables communication privacy for data-
gram protocols. DTLS is based on the TLS protocol, and it
provides equivalent security guarantees.

Finally, at the network layer, the IPSec may be used to
secure SIP communication. IPSec consists from three main



Advances in Multimedia 7

components: a data plane component, policy component,
and signalling component. Data plane components enable
transport protection. There are two security mechanisms
available, authentication header (AH) and encapsulating sec-
urity payload (ESP). AH provides services such as integrity
protection and data origin authentication, with optional
replay protection. ESP provides the same services as AH. In
addition, it provides confidentiality. The AH and ESP may
use various cryptographic algorithms. A policy component
defines security associations (SA) as a set of IPSec rules. SA
defines sets of parameters on which IPSec neighbours have
to agree. As parameters, packet matching criteria, mode of
operation, type of security protocols, cryptographic algo-
rithms, integrity algorithms, and keys have to be used with a
particular packet flow exchanged among IPSec neighbours. A
signalling component provides IPSec neighbours’ authenti-
cation, SA parameters negotiation, and the key exchange pro-
cedures. As a signalling protocol, the Internet Key Exchange
(IKE) protocol is used. IPsec may operate in two modes, a
transport mode and a tunnel mode. The establishment of
IPSec tunnel has two phases. During phase 1 (IKE Phase 1),
the IKE protocol is used to negotiate IKE SA parameters used
with its own key management exchange procedures. During
phase 2 (IKE Phase 2), IPSec SA parameters themselves are
negotiated. IPSec is supported by an underlying operating
system, while the integration to a SIP application is not usu-
ally required. IPSec works for all, UDP-, TCP-, and SCTP
based SIP signalling. Since SIP routing entities on the sig-
nalling path read, add, or change the information in SIP
headers, IPSec for SIP is usually applied on the hop by hop
basis. IPSec may also be used to protect the RTP media on
the end-to-end basis without the active involvement of SIP
UAs.

It is expected that a secured communication architecture
secures not only signalling messages but also the media traf-
fic. To protect media streams, with the Real-time transport
protocol (RTP) [45] as a dominant bearer, a new RTP media
profile (RTP/SAVP) has been proposed—the Secure real-
time Transport Protocol (SRTP) [46]. SRTP is an efficient
security protocol with low computational cost, memory and
bandwidth requirements with good interoperability results.
SRTP offers confidentiality, integrity, replay attack protec-
tion, and data origin authentication for RTP and RTCP
traffic [46]. Confidentiality is achieved by encrypting the
RTP payload. RTP defines the AES and NULL encryption
methods. The NULL method is used when no encryption is
desired. The AES is the default encryption method operable
in two modes, segmented integer counter mode and f-8
mode. The authentication algorithm protects the integrity
of an entire original RTP packet. Authentication ensures
that the packet was neither modified nor inserted along
the path. HMAC/SHA1 is used as the mandatory message
authentication algorithm. It is recommended to use a 10-byte
authentication tag for an RTP stream protection, but, to
reduce the overhead of small sizes VoIP packet, a 4-byte
authentication tag may be used. If used, authentication
operation is performed after encryption to protect the entire
RTP packet. SRTP uses two types of keys: session keys and
master keys. All session keys used for authentication and

encryption can be derived from a single master key. SRTP
standard does not define how the master key is exchanged. It
is responsible of a key exchange protocol. Currently, several
key exchange protocols are available, for example, the SDP
Security Descriptions (SDES) protocol [47], Multimedia In-
ternet KEYing (MIKEY) [48], Datagram TLS (DTLS) [49],
and ZRTP protocol [50]. SRTP extends the original RTP
header with two fields, an optional master key identifier
(MKI) and a recommended authentication tag. SRTP MKI
identifies which master key was used to derive the current
session keys used for encryption and/or message authentica-
tion. The authentication tag is used to carry the message aut-
hentication data.

The DNS service plays an important role in SIP networks.
In general, a DNS service has heavy negative effects on the
operation of SIP and IP networks. DNSSEC extensions to
DNS are used to resolve DNS security problems. DNSSEC,
originally defined in RFC 2535 [51], was designed to verify
the authenticity and integrity of query results from a signed
zone. It uses a public key (asymmetric) cryptography and
a special set of DNS RR to enable a DNSSEC aware client
(resolver) to be sure that a validated response is the one in-
tended by the owner of the requested domain name. This
helps to avoid a situation when a server tries to redirect the
client to a malicious server. However, DNSSEC works per-
fectly only if the entire DNS hierarchy is signed. This cannot
be expected in the near future, because the root zone has
been signed recently, in July 2010. Currently, a DNNSEC im-
plementation strategy expects a chain of isolated islands of
DNS security interconnected through delegation points.

A secured SIP communication environment is a complex
task which can be achieved by implementing various security
mechanisms at different levels of a communication stack.
Security cannot be guaranteed with a single mechanism or
protocol. To improve security of a SIP architecture, the com-
bination of mechanisms mentioned above have to be used
(see Figure 5).

4.4. High Availability. SIP technology is used frequently
now. SIP communication systems, especially large-scale ones,
have to minimize service unavailability due to software or
hardware failures. Thus, the high availability (HA) is an im-
portant feature of an communication architecture. To avoid
a single point of failure, backup components together with
suitable failover mechanisms have to be implemented. HA is
not a specific technology, but a goal that should be achieved.
SIP HA concerns the uninterrupted availability of core SIP
network components that provide SIP services despite of link
outages, device failures, or attacks.

From a SIP network architecture point of view, there
have been several design approaches identified to achieve
high availability of SIP network components [52]. The first
approach is based on combination of static lists or DNS SRV
(service record). The second approach uses hardware-or-
software based load balance mechanisms. The third approach
utilizes an advanced failover intelligence in redundant
devices. All of these approaches provide network resilience
through redundant design deployment, where typically



8 Advances in Multimedia

Proxy/registrar Proxy/registrarUAC

HTTP basic
authentication

HTTP digest
authentication

TLS IPSec

S/MIME

Application
layer

Transport
layer

Network
layer

Security
mechanisms

Figure 5: SIP security mechanisms.

a backup system is deployed which is capable of providing
the service in case of failure of a master or primary system.

4.4.1. Static Lists. This approach utilizes feature of SIP clients
that can be configured with a static list of alternative SIP
servers. The client makes attempts to contact a primary ser-
ver, and if it fails to respond, then the client contacts the
backup server. However, this SIP UA feature is not widely
supported.

DNS-based HA. DNS-based HA is a quite simple solution
for utilizing primary and secondary SIP servers, whereas the
HA mechanism DNS service with correctly configured SRV
records is used. DNS NAPTR and SRV records allow the ope-
rator to adjust the weight and priority of individual records
associated with the primary and secondary servers and to
control the DNS resolving process. The DNS server handles
SIP client requests and provides DNS responses, which pro-
vide also the information about the assigned weights and
priorities. The SIP client then chooses which SIP server to
contact. This solution requires SIP clients that support DNS
SRV, support for DNS A records resolving is not sufficient.
DNS-based HA is simple; however, there are issues that arise
from some DNS service features, such as caching of DNS
resolving answers, slower reaction, and adoption to failure
changes.

4.4.2. Load Balancing. SIP load balancing is a mechanism
for distributing SIP traffic to multiple SIP servers in order
to achieve optimal performance scalability, to avoid over-
load, and to support HA of services. Hardware-based load
balancing solutions are implemented in commercial prod-
ucts. Software-based solutions use a special purpose server
whose main task is to dispatch the traffic to the next hop
SIP server. These traffic dispatchers (load balancers) may use
different selection mechanisms, such as round-robin (RR)
scheme. Another approach uses weighted or adaptive bal-
ancing schemes, in which requests are distributed propor-
tionally, following the assigned weights. Implementing traf-
fic dispatchers should consider some kind of sanity check

mechanisms, which control the accessibility of server. If a
failure occurs, it should stop dispatching SIP messages to the
unavailable server.

The third approach supposes some intelligence at the de-
vices that are protected. The Virtual Router Redundancy Pro-
tocol (VRRP), standardized in RFC 2338 [53], provides the
election process, where one device is elected to be active and
the other to be standby. When using VRRP heartbeat mes-
sages, an active server is monitored by a standby server. When
the active server fails, a standby server takes the role of the
active one. Both servers have the same virtual IP address,
but the different real IP addresses. VRRP is a standardized
mechanism suitable for a pair of redundant (1 + 1) servers.
VRRP has an open source implementation called VRRPd. As
an alternative to VRRPd, the open source linux implementa-
tion of the CARP (Common Address Redundancy Protocol)
(UCARP) can be used. CARP is an open source alternative
of the Cisco proprietary HSRP, which is mainly imple-
mented for BSD (Berkeley Software Distribution). Opera-
tion mechanisms are very similar to those of VRRP. However,
VRRP and CARP have some implementation limitations; the
standby backup server must decide correctly when the active
server does not work. When the active server is “dead,” the
failover mechanism must make sure that a “dead” device will
not receive any further messages. This is a challenging task,
which needs actualization of the different network informa-
tion, such as LAN switching tables, ARP tables, and DNS
caches. Another issue is how to replicate the stateful SIP
knowledge from a previously active server to the standby ser-
ver. This has not been considered in the specification. Thus,
VRRP and CARP are usually suitable for layer 3 connectivity
checking.

There are other software-based solutions which allow to
monitor the availability of each other. The Linux HA project
[54] is one of them. The Linux HA project provides a
high-availability (clustering) solution for Linux, FreeBSD,
OpenBSD, Solaris, and Mac OS X. The project’s main soft-
ware is Heartbeat, a GPL-licensed portable cluster manage-
ment program for HA clustering, which is actually available



Advances in Multimedia 9

in version 3.0.4. Heartbeat is a daemon that provides com-
munication and membership cluster infrastructure services.
Heartbeat provides the information about presence or disap-
pearance of a peer process on other machines of a cluster. On
the top of a heartbeat infrastructure, the Pacemaker cluster
resource manager has to be deployed. Pacemaker is an open
source HA resource manager suitable for both small and
large clusters [55]. Pacemaker starts and stops services that
a cluster makes HA. There are also alternatively solutions,
for example, the Open Telecom Platform (OTP) developed
by Ericsson and the open source OpenSAF service HA that
can be used. However, there is still an open question on ser-
ver’s synchronization. A Distributed Replicated Block Device
(DRBD) can be used for it. DRBD is a software-based, repli-
cated storage mechanism mirroring a content of block
devices, such as hard disks, partitions, and logical volumes
between hosts in a cluster in real time. DRBD can be seen as
a network-based raid system. However, it does not replicate
dynamic states, which are usually kept in the RAM. Usually,
DBRD is used for synchronizing database servers in a clus-
ter. Therefore, some mechanisms that keep the SIP state
information among several SIP servers synchronized are re-
quired. This can be achieved with an entity which replicates
SIP messages.

Our testing of individual mechanisms simulating hard-
ware failures declares that the average time of unavailability
with UCARP was 3,75, with VRRPd 4,12 seconds, for heart-
beat 4,49 seconds and for heartbeat with the pacemaker 5,7
seconds. Optimization of configuration parameters allows to
decrease the time of failover to 2,25 seconds only for heart-
beat. For simulation of software failure with heartbeat and
pacemaker, the following results have been obtained: 4,75
seconds for pacemaker with standard settings and 2,73 sec-
onds for optimized configuration.

5. Proposed SIP Communication Platform

In this section, we identify key components of a SIP-based
converged platform, which meet the requirements described
above. The platform can deliver SIP services such as voice
and video over IP, voicemail, conferencing, instant messaging
with presence, and it allows designing, implementing, and
deploying new integrated services. The platform supports
near-end and far-end NAT traversal for signalling and media
flows. The communication platform is based on IETF stan-
dards and uses open source software [56] components.

5.1. Features and Services Offered by the Platform. The plat-
form provides the following services:

(i) audio and video calls,

(ii) media services such as audio conferencing, voicemail,
and IVR,

(iii) IM and presence based on SIMPLE,

(iv) it allows programming new services through standar-
dized APIs of applications servers or developing new
modules and services using other means (such as pro-
prietary APIs),

(v) NAT traversal solutions allowing connections for/to
users located behind a NAT,

(vi) interconnectivity with other IP multimedia systems
(Skinny, H.323) or messaging platforms (XMPP),

(vii) registry and lookup service used to register and locate
SIP services,

(viii) multiple SIP devices per SIP account with parallel
forking.

The platform may be redundant, since it should reuse the
HA mechanisms or underlying layered redundant network
design. However, redundancy requires additional invest-
ments necessary for redundant servers and network compo-
nents. It is highly recommended that deployment includes
DNS server. The platform enables the interconnection with
other types of communications networks (such as GSM or
PSTN/ISDN), but additional investments in a specialized
hardware is required (e.g., network interfaces cards, routers
with telecommunication network interfaces). The platform
can be interconnected with other IP communication plat-
forms like H.323 or IMS (e.g., OpenIMS). From the security
point of view, the platform uses digest authentication and
credentials are stored in a database server. These credentials
should be used for different purposes (registration, call ad-
mission, IM, presence, routing, etc.). SIP components may
provide some protection mechanisms against DoS attacks
(blacklist, filters), but security should include network infra-
structure (such as firewalls and perimeter routers with white-
lists). The platform may provide signalling and media flow
protection using TLS and SRTP for clients whose support it.
It can be easily extended with load-balancing techniques. The
platform provides IPv4 and IPv6 connectivity.

5.2. Components of the Platform. The platform consists of
a number of different software components interoperating
together to provide the required services and features. These
software components are assumed to run on a standard PC
or server computer (no specialized hardware). The following
components have been identified (see Figure 6).

5.2.1. SIP Endpoints (Applications or Clients). SIP clients ena-
ble their users to access platform services. The endpoints
should at least provide HTTP digest authentication, audio
or video calls, presence, and messaging based on SIMPLE.
Advanced SIP endpoints may use TLS and SRTP security fea-
tures, contact management through XCAP, and direct voice-
mail access. The client may use STUN NAT.

5.2.2. SIP Server. The SIP server provides the functionalities
of a SIP registrar and a SIP proxy server. A SIP server acting
as the SIP registrar allows registration and authentication
of clients with HTTP digest authentication schema at
least. Credentials together with location data (IP addresses
and ports) are stored in a database. Different database types
should be supported. The SIP server acting as the SIP proxy
should allow fast and powerful SIP signalling processing and
provide flexible configuration of SIP signalling processing,
which helps to integrate other server entities, such as applica-
tion, media servers, and gateways where SIP communication



10 Advances in Multimedia

SIP server HA
(registrar/

Proxy)

Location
server/DB

Media server
(voicemail,

conferencing, IVR)
Application

server

DNS
server

Media
relay

server

STUN/TURN/
ICE server

gateway
signaling/media/

IM

Addressing Signaling NAT traversal solutions

Services Interconnection

Web
server

Backend

NAT/FW

IP net
internet

SIP communication platform

IM and
presence

server

XCAP
server

SIMPLE

Figure 6: Identified platform components.

interface is used. If more flexible call handling is required, the
extendibility of main functionalities of the SIP server should
be supported (such as SIP API and programming language).
The SIP server should support different network layer pro-
tocols (IPv4 and IPv6), different transport protocols (UDP,
TCP, SCTP for inter-SIP proxy connectivity), and security
protocols (TLS for a hop by hop connectivity). For testing
purposes, the self-signed certificates may be used. For pro-
duction deployments, certificates of the well-know authority
have to be used. The SIP server should support DNS lookups
as defined in RFC 3263 [30]. The SIP server should support
generation of call detail records.

5.2.3. Media Server. A media server provides functions re-
quired for media services processing, such as playing annou-
ncements, voicemail recording, voicemail storage, voicemail
access and play out, media mixing, media transcoding, and
audio conferencing. The media server should support self
service provisioning and customization. The media server
should support different network, transport, and security
protocols, which can be used by clients to access to platform
services. Provisioning voicemail account should be integra-
ted within the SIP server account management functions.

5.2.4. SIP Presence and IM Server. These servers are part
of a SIMPLE architecture and provide centralized solution
for handling presence states of users and instant messaging
delivery as it has been defined in the SIPMLE framework.
For the platform, we use centralized presence solution, rather
than a peer-to-peer presence one.

5.2.5. XCAP Server. An XCAP server is part of SIP presence
solutions and allows a client to read, write, and modify pre-
sence data (such as buddy list) stored in XML format on a

server and to synchronize with multiple presence UAs. The
XCAP server is also used for handling presence authorization
policies. The access to the XCAP server is over HTTP and
should be realized through a SIP client interface (have to be
implemented) or through a user personal HTTP interface.

5.2.6. Application Server (AS). A SIP AS is used for providing
SIP services and applications development and hosting. The
SIP AS should provide some of the APIs designed for SIP
services development [57]. If required, the SIP AS may act
as a fully operating SIP server, but usually the AS is used
for developing and provisioning value added services such as
click2call, web conferencing, and third party call controller.

5.2.7. Gateway. The purpose of a gateway is to provide inter-
connection to other platforms. There are different types of
gateways depending on required functionality. Our platform
uses software packages that allow deploying a signalling gate-
way for interconnection between SIP and H.323 or SCCP
networks and deployment of an IMP gateway for the inter-
connection of SIMPLE with XMPP. Connection to other
types of network with different communication stacks re-
quires special hardware, such as network interface in the
gateway.

5.2.8. Components of NAT Traversal Solution. NAT traversal
components provide the functions required for correctly
processing signalling and media flows for users behind the
NAT in the both directions. We propose to implement near-
end traversal solutions (client-based) represented by deploy-
ing STUN, TURN servers, and clients that incorporated these
solutions into a SIP client software. Servers have to be placed
in the public part of the network. These servers allow clients
to detect presence of a NAT device together with the type of



Advances in Multimedia 11

NAT. Using near-end NAT solution is limited to a few open
source solutions that are currently available. Therefore, we
propose to implement far-end traversal solution (a server
based). Far-end NAT traversal is implemented by media relay
servers, which in cooperation with the SIP server allow media
streams to bypass the NATs. Using media relay servers does
not require SIP clients to be aware of NAT environment.
Moreover, it works with any type of NAT. The media relay
server should be used as the IPv4 and IPv6 interworking
entity that ensures the interconnectivity of clients using dif-
ferent IP protocols. However, a media relay server has to be
scaled properly for the total volume of media traffic. Thus,
the media server performance for many concurrent media
streams can be solved with the use of multiple servers and
some kind of load balancing mechanism. We also recom-
mend to use far-end NAT solutions in situations where an IP
client with running SIP UA uses several network interfaces
with several IP addresses, but without the possibility to setup
connectivity preferences.

5.2.9. Database Server. The database server is used for stor-
ing client location data, authentication credentials, and per-
sonal certificates (if used). The database is used together with
other components to realize authentication, authorization,
and accounting (AAA) functions. The database in a produc-
tion service has to be secured following adequate best prac-
tices and using IP network infrastructure components (such
as firewalling and access lists), underlying operating sys-
tem means (e.g., IP tables), and the recommended configura-
tion.

5.2.10. DNS Server. The DNS server provides the domain
definitions records, and it supports NAPTR and SRV re-
source records for all of the platform components, enables to
define supported transport protocols and to locate address
of each of the servers. If the platform is going to be
interconnected with the PSTN, then the DNS act as ENUM
mapping server. The DNS may provide a front end load
balancing service. The DNS server should apply DNNSEC
extensions to provide validated DNS responses. However, the
DNSSEC deployment depends on the support of DNSSEC
on authoritative DNS servers or on the extension of DNSSEC
implementation for a particular country.

The list of components provided identifies logical com-
ponents of the advanced SIP communication platform. An
actual real implementation may differ depending on the
specific product selected and design goals for a specific real-
ization of the platform.

5.3. A Survey of Available and Relevant Open Source Products

5.3.1. SIP Clients. As a minimal requirement, an SIP client
should support core SIP functionalities, including audio and
video calls, IM, and presence. Advanced SIP clients should
support XCAP, NAT traversal (otherwise far end NAT feature
of the platform have to be used implemented), support of
some security mechanisms (TLS and SRTP), or multiple
transport protocols. There is a number of SIP software
clients currently available under open source or free license.

The following table (see Table 1) identifies and provides
feature overview of nine open source SIP clients available for
different operating system (OS) platforms such as Microsoft
Windows OS, Android OS, Linux OS, or Mac X OS. We have
analyzed SIP clients that have not been released for more
than two years. However, it has to be mentioned that there
are several SIP clients, which have not been analyzed from
several reasons. A client has not a new release for a couple
years, thus we suppose it has not been evolving (such
as Twinkle, KPhone, miniSIP, and OpenSoftPhone), it is
supposed to be a SIP testing tool (QJSimple), or it imple-
ments only messaging (Pidgin, Empathy). There are six
clients for Microsoft Windows OS, six clients for Linux OS,
four clients for Apple Mac X OS, and two new emerging
clients for Android OS. The clients provide a messenger-like
GUI interface suitable for contacts management, but only
one client supports XCAP to store contacts on a XCAP ser-
ver (Jitsi). The implemented functionalities of the analyzed
clients differ; in general, almost all clients support a broad
spectrum of audio codecs and SIMPLE, at least SIMPLE page
mode instant messaging. The support for video communi-
cation is not widely adopted, and a SIMPLE session mode
supports only one client (Jitsi). Implementation of security
mechanisms has been grown, but still it is not a generic fea-
ture of the available SIP clients. Six out of nine clients have
implemented TLS and only five out of nine clients implement
SRTP with a standardized key exchange mechanism. Only
two clients, Jitsi and Linphone, support IPv6.

The support for basic audio/video sessions and page
mode messaging is smooth. However, the advanced SIP func-
tionalities such as SIMPLE or TLS provide a different level
of standard adoption, and the interoperability of different
clients is poor. Based on the required functionalities and our
experience, we have evaluated the Jitsi communicator (SIP
communicator before) followed by the Blink client as the best
and most featured client for Microsoft Windows, Mac X,
and Linux OSs. For the Android OS, we consider cSipSimple
followed by the SipDroid client as the most appropriate ones,
even though a Jitsi android port is now on the way. The
Jitsi communicator is a feature-rich audio/video and chat
multiprotocol communicator. It was originally developed at
the University of Strasbourg, and it is now provided under
the LGPL open source license. Finally, we can state that it
is very difficult to predict the further development of open
source projects. As an example, the Jitsi communicator has
not been released as a stable version yet.

5.3.2. SIP Servers. The SIP server should support both SIP
registrar and SIP proxy functionalities. The SIP server should
be modular and flexible, allowing powerful SIP call handling.
It should support security mechanisms as TLS and connec-
tivity with different types of authentications servers. The ser-
ver should provide a NAT traversal solution. For SIP servers,
there exist two widely used solutions: Kamailio and Open-
SIPS. Both are successors of the OpenSER project (fork of the
SER project). The SER (SIP Express Router) server known as
the Sip-Router (since 2008) is a SIP proxy, which has num-
erous worldwide implementations and is supported by a
wide open source community of developers, maintainers,



12 Advances in Multimedia

T
a

bl
e

1:
SI

P
cl

ie
n

t
an

al
ys

is
.

SI
P

cl
ie

n
ts

Ji
ts

i
B

lin
k

Li
te

m
ic

ro
SI

P
Sfl

ph
on

e
Q

u
te

C
om

E
ki

ga
Li

n
ph

on
e

SI
P

D
ro

id
C

si
ps

im
pl

e

w
w

w
jit

si
.o

rg
Ic

an
bl

in
k

.c
om

m
ic

ro
si

p
.o

rg
.u

a
sfl

ph
on

e.
or

g
qu

te
co

m
.o

rg
ek

ig
a.

or
g

lin
ph

on
e.

or
g

si
pd

ro
id

.o
rg

co
de

.g
oo

gl
e

.c
om

/p
/

cs
ip

si
m

pl
e

Li
ce

n
se

LG
P

Lv
3

G
P

Lv
3

G
P

L
G

P
Lv

3
G

P
L

G
P

L
G

P
Lv

2
G

P
Lv

3
G

P
L

R
el

ea
se

1.
0-

be
ta

1-
36

89
0.

2.
7

1.
8.

2
0.

9.
13

2.
2.

1
3.

2.
7

3.
4.

3
2.

3
0.

2.
3

D
at

e
4.

10
.2

01
1

25
.5

.2
01

1
15

.1
0.

20
11

5.
4.

20
11

9.
5.

20
11

31
.5

.2
01

0
25

.3
.2

01
1

24
.6

.2
01

1
19

.6
.2

01
1

O
pe

ra
ti

n
g

sy
st

em
W

in
,L

in
u

x,
M

ac
X

W
in

,L
in

u
x,

M
ac

W
in

Li
n

u
x

L
in

u
x,

M
ac

O
S,

W
in

,
Li

n
u

x,
W

in

L
in

u
x,

W
in

,
M

ac
,

A
n

dr
oi

d,
W

eb
O

S

A
n

dr
oi

d
A

n
dr

oi
d

M
u

lt
ip

le
ac

co
u

n
ts

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

A
u

di
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

G
72

2,
G

72
2,

Sp
ee

x,
G

72
2,

iL
B

C
,

G
72

2,
sp

ee
x,

G
.7

22
H

D
,

Sp
ee

x,
G

72
8,

sp
ee

x,
P

C
M

U
,

sp
ee

x,
P

C
M

A
,

G
72

8,
G

SM
,

P
C

M
U

,
P

C
M

U
,

sp
ee

x,
G

SM
,i

L
B

C
,

P
C

M
A

,
G

SM
,

P
C

M
U

,
G

72
6,

P
C

M
U

,
P

C
M

A
,

P
C

M
A

,
G

SM
,i

L
B

C
,

P
C

M
U

,
G

SM
,i

L
B

C
,

P
C

M
U

,
G

.7
22

,
G

72
1s

p
ee

x,
P

C
M

A
,

sp
ee

x,
G

SM
,i

L
B

C
,

P
C

M
U

,
P

C
M

A
SI

L
K

,
P

C
M

A
,c

el
t

L
ic

en
se

d:
G

SM
,

G
.7

22
G

SM
,B

V
16

SI
L

K
,G

.7
22

P
C

M
A

,
G

.7
22

A
M

R
,A

M
R

-
P

C
M

U
,

D
V

I4
W

B
,G

.7
29

P
C

M
A

,c
el

t

V
id

eo
Ye

s
H

26
4,

H
26

3
N

o
N

o
N

o
Ye

s
H

.2
63

Ye
s

Ye
s

Ye
s

N
o

H
26

4,
H

26
4,

H
26

3,
H

26
3,

H
26

3-
H

26
1

19
98

,
th

eo
ra

M
P

E
G

4,
th

eo
ra

D
N

S
SR

V
/N

A
P

T
R

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

—
—

SI
M

P
LE

Ye
s

N
o

Ye
s

N
o

Ye
s

Ye
s

Ye
s

—
Ye

s

IM
Pa

ge
/s

es
si

on
m

od
e

—
Pa

ge
m

od
e

Pa
ge

m
od

e
Pa

ge
m

od
e

Pa
ge

m
od

e
Pa

ge
m

od
e

—
Pa

ge
m

od
e

X
C

A
P

Ye
s

Ye
s

N
o

N
o

N
o

N
o

N
o

—
—

T
LS

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

—
Ye

s
M

ed
ia

en
cr

yp
ti

on
/k

ey
m

an
ag

.

SR
T

P
/Z

R
T

P,
M

IK
E

Y
on

pr
og

re
ss

SR
T

P
SR

T
P

SR
T

P
/Z

R
T

P
SR

T
P

/k
ey

ex
ch

an
ge

ov
er

Ev
er

be
e

N
o

N
o

N
ot

offi
ci

al
ly

co
n

fi
rm

ed
SR

T
P

/Z
R

T
P

N
A

T
N

o
IC

E
ST

U
N

,I
C

E
ST

U
N

—
ST

U
N

ST
U

N
ST

U
N

ST
U

N
,I

C
E



Advances in Multimedia 13

T
a

bl
e

1:
C

on
ti

n
u

ed
.

SI
P

cl
ie

n
ts

Ji
ts

i
B

lin
k

Li
te

m
ic

ro
SI

P
Sfl

ph
on

e
Q

u
te

C
om

E
ki

ga
Li

n
ph

on
e

SI
P

D
ro

id
C

si
ps

im
pl

e

C
om

m
u

n
ic

at
io

n
pr

ot
oc

ol
s

SI
P,

X
M

P
P,

A
IM

/I
C

Q
,

M
SN

,
Ya

h
oo

!

SI
P

SI
P

SI
P,

IA
X

SI
P,

M
SN

,
Y

IM
,A

IM
,

IC
Q

,X
M

P
P

SI
P,

H
.3

23
SI

P
SI

P
SI

P

Tr
an

sp
or

t
pr

ot
oc

ol
s

T
C

P,
T

LS
,

U
D

P
T

C
P,

T
LS

,
U

D
P

T
C

P,
T

LS
,

U
D

P
U

D
P,

T
LS

/S
SL

U
D

P
U

D
P

U
D

P,
T

C
P,

T
L

S
U

D
P,

T
C

P
U

D
P,

T
C

O
,

T
L

S
IP

v4
/I

P
v6

Ye
s/

Ye
s

Ye
s/

N
o

Ye
s/

N
o

Ye
s/

N
o

Ye
s/

N
o

Ye
s/

N
o

Ye
s/

Ye
s

—
—

V
oi

ce
m

ai
l

Ye
s

Ye
s

N
o

Ye
s

—
N

o
N

o
—

—



14 Advances in Multimedia

Table 2: SIP PROXY server analysis.

SIP server Kamailio/SIP router OpenSIPS

www kamailio.org/sip-router.org opensips.org

License GPL

Last release 3.2.0 1.7.0

Operating system Linux Linux

SIP registrar Yes

SIP proxy Yes

B2BUA No Yes

Low-level transaction access Yes

Forking Yes

Modular architecture Yes

NAT traversal Yes Yes

with RTPProxy, Mediaproxy with RTPProxy, Mediaproxy

Keepalive Yes

Authentication and
authorization against database

MySQL, PostgreSQL, SQLLite,
UnixODBC, BerkeleyDB, Oracle,

text files, LDAP, RADIUS,
DIAMETER

MySQL, PostgreSQL,
UnixODBC, BerkeleyDB, Oracle,

text files, LDAP, RADIUS,
DIAMETER

Signalling protocols SIP

Transport protocols UDP, TCP, TLS, SCTP UDP, TCP, TLS, SCTP

IPv4/IPv6 Yes/yes

Administrative web GUI
Yes Yes

SIREMIS OpenSIPS-CP, SerMyAdmin

DNS NAPTR, SRV, ENUM

Multidomain Yes

SIMPLE (presence and IM) Yes

XCAP server
Yes Yes

Embeded With OpenXCAP server

Gateway XMPP, MSN, SMS XMPP, MSN, SMS

Standardized SIP service API CPL, SIP servlet API (with Seas) CPL, SIP servlet API

Other service tools Perl, Lua, Python Perl

Media services No

Carrier class routing Yes

Load balancing Yes

Attack protection
Yes

IP blacklists

and supporters. SER has been developing since 2001 and
released in 2004 under the GPL open source licence. The his-
tory behind its development is a bit complicated and has
led to establishing several viable forked solutions, such as
OpenSER in 2005 (renamed as Kamailio in 2008) and Open-
SIPS in 2008. Currently, developers of Kamailio and SIP-rou-
ter projects are trying to merge these two projects. In a pre-
sent time, Kamailio and SER can be considered identical
(starting from 3.0 releases). The OpenSIPS fork is still going
along its own development way.

Kamailio (former OpenSER) and OpenSIPS are both
very popular and viable SER-based SIP proxy solutions.
Even though the former OpenSER project was separated,
both solutions provide very similar core functionalities (see

Table 2). Both are released under the GPL license and pro-
vide a modular design architecture which is able to handle
thousands of call setups per second, supports similar set of
protocols (TCP, UDP, SCTP), AAA functionalities (MySQL,
PostgreSQL, Oracle, Radius, LDAP), and SNMP monitoring.
Both servers support TLS, which may be used to extend a
trust concept to a multidomain level, where a mutual agree-
ment can establish trusting relationships. Verification data
(certificates and chain of certification authorities) are locally
stored. Both servers support ENUM, least cost routing,
load balancing, and routing fail-over. Both provide a scrip-
ting configuration language which allows flexible SIP routing
configuration. They adopted CPL SIP APIs and support
additional scripting languages to provide application-level



Advances in Multimedia 15

functionalities. Differences are only in new modules devel-
oped after 2008. For example, during 2011 Kamailio
IMS module extensions have been introduced, which allow
to build an IMS testbed with the latest Kamailio SIP server
releases. Both solutions are mature open source implemen-
tations of a SIP server which unifies voice, video, IM, and
presence services in an efficient way.

The OpenSIPS solution can benefit from a support for
an MSRP relay server used in MSRP IM relaying scenarios
of session messaging over NAT. Kamailio can benefit from
all-in-one integrated SIMPLE solutions. There are also other
open source SIP server implementations, but they are still
more in an experimental phase, for example, YXA server and
OpenJSIP. There are also other well-known solutions such as
the Asterisk B2BUA, which provides good media handling
capabilities.

There is a few of widely adopted and supported server
solutions, which provide advanced media services. They are
primarily designed as advanced telephony platforms target-
ing the PBX market. These platforms are usually designed
as standalone solutions which support communication using
audio, video, text, or other form of media. However, from the
architecture point of view, they are not designed as SIP proxy
servers with flexible message routing rules. In our platform,
they play a role as media servers (voicemail, conferencing,
IVR), gateways, or B2BUA entities. Four solutions have been
analyzed: Asterisk, FreeSWITCH, Yate, and SEMS. We pro-
pose to use Asterisk, because it has a high-quality docu-
mentation and a larger community of supporters. From the
experimental point of view, we have to mention solutions,
such as FreeSWITCH, and Yate, which both offer interesting
features (see Table 3).

The use of gateways depends on the deployment scenario.
For interconnection at the signalling level only, Asterisk,
FreeSWITCH and Yate may be used. For interconnecting at
media level, special dedicated hardware had to be used. Aster-
isk supports a broad portfolio of network interface cards, so
it is most suitable as a solution. A dedicated gateway such as
the Cisco ISR router is an alternative solution, which does
not require an additional gateway. For the interconnection
with XMPP, Kamailio/OpenSIPS with XMPP support is pro-
posed.

5.3.3. SIP Presence and IM Server. SIMPLE allows users to
send and receive instant real-time messages and to know the
current availability or status of other users. Actually, there are
only two open source solutions with an integrated support
for SIMPLE presence and IM, Kamailio, and OpenSIPS. The
SIMPLE functionalities have been added after the OpenSER
project fork; thus, the implementation philosophy is differ-
ent. The Kamailio server provides all-in-one solution. The
SIMPLE functionality is integrated with newly developed
presence, messaging, Xcap server and HTTP modules. There
is no need for external applications or dependencies, since
they are now a part of the Kamailio server. However, together
with an xcap client module an external Xcap server may
be used. OpenSIPS integrates SIMPLE functionalities which
are built in presence modules. Xcap server functionalities
are excluded from the main server and it is an OpenSIPS

xcap client module which provides connectivity to an exter-
nal xcap server—the OpenXcap server. The both mentioned
solutions may be used as a standalone SIMPLE server with
Xcap functionalities that may be used either in IETF SIP
architectures, or in IMS testbeds, built on the OpenIMSCore
or Kamailio IMS solutions. Currently, there is no other open
source SIMPLE-integrated solution. To provide presence
only functionalities, the Mobicent Presence Service (MSPS)
may be used [58]. MSPS provides presence functionalities to
SIP-based networks using standards developed by the Inter-
net Engineering Task Force (IETF), the Open Mobile Alliance
(OMA), the 3rd Generation Partnership Project (3GPP),
and the European Telecommunications Standards Institute
(ETSI).

5.3.4. XCAP Server. Two products have been investigated,
the Kamailio SIP server with embedded XCAP/HTTP server
functionality or a standalone OpenXCAP server [59].

5.3.5. Application Server (AS). There is a number of open
source products available; however, selection depends on
which SIP service tools are planned to be used for service
development. Create lightweight services defined by the end
user himself, the CPL API, may be used. Both the Kamailio
and the OpenSIPS servers support it. To develop advanced
services with a powerful service logic, more advanced prog-
ramming API has to be used such as SIP Servlets or JAIN
API. The SIP Servlet API provides more flexibility for deve-
loping services that integrate SIP and HTTP protocols since
a SIP servlet is usually an extension of a HTTP Servlet API.
The JAIN API, on the other hand, provides a robust API
with many protocols supported, including the telecommu-
nications ones. There are several SIP Servlet or JAIN AS im-
plementations such as:

(i) SailFin. Sailfin [60] is a SIP servlet container which
extends a widely used GlassFish open source enter-
prise AS platform developed under the lead of Oracle
and provided under GPLv2 license. The SailFin sup-
ports a SIP Servlet API technology. The documen-
tation is, however, often obsolete or unavailable be-
cause of changing the main project supporter from
Sun to Oracle.

(ii) Mobicents. Mobicents [58] is an open source VoIP
platform certified for JSLEE 1.1 and SIP Servlets1.1
technologies. Mobicents is the SIP AS service plat-
form developed under the lead of RedHat and pro-
vided under GPLv2 license. Mobicents subprojects
are represented by Mobicents SIP Servlets (GPLv2.1),
media server (GPLv2), and SIP presence service
(GPLv2).

(iii) Cipango. Cipango [61] is an extension of SIP Servlets
to the Jetty HTTP Servlet engine. Cipango/Jetty is
then a convergent SIP/HTTP application server com-
pliant with both SIP Servlets 1.1 and HTTP Servlets
2.5 standards.



16 Advances in Multimedia

Table 3: Media server analysis.

Media server Asterisk FreeSwitch Yate SEMS

www Asterisk.org Freeswitch.org Yate.null.ro www.iptel.org/sems

License GPL MPL GPL GPLv2+

Last stable rel. 1.8.2.3 1.0.6 3.3.0 1.4.2

Operating system
Linux, Mac OS X, ∗BSD,

Solaris, Windows
Linux, Mac OS X, ∗BSD,

Solaris, Windows
Linux, Mac OS, FreeBSD,

Windows
Linux

Wrritten in C C/C++ C++ C/C++

Architecture B2BUA B2BUA — —

Modular Yes

NAT traversal No STUN No —

Authentication,
authorization against
database

MySQL, PostgreSQL,
LDAP, Radius

MySQL, PostgreSQL,
LDAP, Radius

MySQL, PostgreSQL,
Radius

Diameter

VoIP signalling protocols
SIP, H,323, SCCP, MGCP,

IAX, GoogleTalk
SIP, H.323, IAX, SCCP

SIP, H.323, MGCP, IAX,
Jingle

SIP

Telephony signalling
protocols

ISDN/SS7, FXS/FXO ISDN/SS7
ISDN/SS7, FXS/FXO,

Sigtran
No

Messaging protocol XMPP SIMPLE, XMPP XMPP/Jabber No

Call encryption SRTP SRTP No SRTP

Transport protocols UDP, TCP, SCTP, TLS UDP, TCP, SCTP, TLS UDP, TCP, SCTP UDP

IPv4/IPv6 Yes/Yes Yes/Yes Yes/— Yes/—

Web GUI Yes Yes — No

SIMPLE No Yes No No

SIP gateway Yes Yes Yes No

Audio codecs

ADPCM, PCMU, PCMA,
G.722, G.722.1, G.722.1

Annex C, G.723.1, G.726,
G.729a, GSM, iLBC,

Linear, LPC-10, Speex

CELT, G.722.1, G.722.1C,
G.722, PCMU, PCMA,
GSM, G.726, AAL2 and

RFC 3551, G.723.1,
G.729AB, AMR, iLBC,
Speex, LPC-10, DVI4,

SILK

GSM, speex, iLBC,
AMR-NB

PCMU, PCMA, GSM,
G.726, iLBCi, speex,

adpcm, L16

Video codecs No
Theora, H.261, H.263,

H.263+, H.263++, H.264,
MP4

No No

Transcoding Yes

IVR and Announc. Yes Ann.

Voice mail Yes Yes — Yes

Audio conference Yes

Call recording Yes Yes — —

IP/PBX features Yes No

CDR Yes —

Fax T.30, T.38 T.30, T.38 — No

Text to speech Yes Yes — No

SIP API No

Programming languages
With CGI any language,

Adhersion

C/C++, Python, Perl, Lua,
Java, JavaScript, Erlang,

Ruby
Python C++, Python, DSM



Advances in Multimedia 17

(iv) WeSIP. WeSIP [62] is a SIP and HTTP converged
application server built on a top of an OpenSER SIP
platform, which adds a J2EE layer to OpenSER, so it
can benefit from the existing OpenSER modules and
features.

There are also solutions which use other means such as
external script invocations (Asterisk, Kamailio/OpenSIPS),
programming languages such as Perl (Kamailio/OpenSIPS),
Lua (Kamailio), Python (Kamailio), Java, or proprietary API
such as Adhearsion [63] for the Asterisk, or proprietary
scripting language (Astrerisk).

5.3.6. NAT Traversal Components. NAT traversal may include
several components. However, only few open source prod-
ucts are available. To deploy STUN, a VOVIDA-based STUN
server can be used. This STUN server is available from several
Linux distribution repositories (Debian, CentOS, RedHat).
Another option is mySTUN package [64]; however, this
package has not been evolving for more than two years. Some
STUN servers are publicly available. To support NAT traver-
sal for TCP, there is Simple Traversal of UDP through NATs
and TCP (STUNT) extension of the Vovida STUN Server
available and called STUN-over-TCP. However, it does not
work well with symmetric NAT. To support it, TURN or ICE
has to be deployed. For TURN implementation, two open
source projects have been identified: TurnServer [65] and
reStund project [66]. The latest release of the TurnServer is
version 0.5 published in June 2011. A free service based on
the NUMB server is provided [67]. For using ICE negotiation
functionalities, ICE extension for a MediaProxy server can be
used. To support the STUN/TURN ICE development, there
are several open source libraries, such as PJNATH (PJSIP
NAT Helper), ReTURN, and ice4j.

To deploy far-end NAT traversal solution, there are two
open source products available, the RTPproxy server [68]
and the MediaProxy server [69]. Deployment of an RTP-
proxy is less time consuming. For communication between
a SIP server and an RTPproxy or MediaProxy, a proprietary
protocol is used. In contrast, the MediaProxy provides addi-
tional functionalities such as TLS support, T.38 fax, RADIUS,
and database server logging. The MediaProxy supports
ICE negotiation by behaving like a TURN relay candidate,
whereas the policy can be controlled from the OpenSIPS
configuration. These solutions are closely coupled with
Kamailio/OpenSIPS projects that support them by the server
modules.

5.3.7. Database Server. The database is used to store users’
credentials. It can be also used for storing CDRs (call detail
records). In addition, it is used as a location server for a SIP
registrar and proxy. There are several open source solutions,
such as MySQL, PostrgeSQL, OpenLDAP, and OpenRadius.
We recommend to use that one that is supported by several
platform components. As the database server, we propose to
use the MySQL server, since it has supported connectivity
with all other platform components. The MySQL is frequ-
ently used database server; moreover, there is a number of
information sources and “how-to” implementation guides.

Table 4: Proposed solutions.

SIP server Kamailio OpenSIPS

Media server
Asterisk/

FreeSWITCH
Asterisk

SIMPLE and XCAP Kamailio
OpenSIPS/
OpenXCAP

NAT traversal RTPproxy MediaProxy

Application server Sailfin Mobicents

Database server MySQL MySQL

Gateway Asterisk Asterisk

IMP XMPP gateway Kamailio Kamailio

DNS server Bind9 Bind9

DHCP server dhcp3-server dhcp3-server

Of course, other solutions can be used, too, but their imple-
mentation is more time consuming.

As a DNS server, we propose to use a standard BIND9
server, since it provides required functionalities, such as
NAPTR/SRV, ENUM, DNSSEC, multidomains, and private
trees or public trees. The BIND9 server is available from
Linux distribution repositories. As an alternative, the Pow-
erDNS server may be used.

5.4. High Availability and Resiliency. Proposed platform
solution can provide high-availability features, which can be
implemented in different ways. First, a properly configured
DNS HA may be used as a front end HA, as we proposed
using a DNS server. The DNS server has to be configured
to response with a list of NAPTR and SRV records with a
predefined order and preference values (NAPTR), respec-
tively, priorities and weights for SRV records. The sec-
ond option includes a deployment of load balancers. The
Kamailio/OpenSIPS server operating as a stateless SIP proxy
together with appropriate modules (dispatcher, carrierroute)
can be used. Alternatively, there is a Mobicents SIP load
balancer available, which is in fact a simple SIP proxy server.
The third option is based on the VRRP protocol [70]. Finally,
a server cluster may be deployed which uses a HeartBeat
framework [54] with an optional support for a distributed
replicated block device (DRBD) [71].

5.5. Proposed Solutions. To popularize SIP technology as a
service provider platform, advanced learning, as well as re-
search and experimentation platform, we did not consider
commercial products, we analyzed only open source compo-
nents. The SIP platform provides a living environment that
can be used for master degree courses lead by our depar-
tment. It also allows an easy access to a SIP technology and
the advanced services. The platform was aimed to be estab-
lished with low costs and based on open source software. The
SIP platform is open and extendible with new services and
communications components.

Having used open source components mentioned above,
we built a laboratory prototype environment which has all
these features. Even though in our research, we use the
Kamailio SIP server (see Table 4, Solution 1), the platform



18 Advances in Multimedia

Ethernet LAN

DNS server

UA1
(SIP client)

UA2
(SIP client)

XEN server (HW + XEN hypervisor)

Media
server

-
Asterisk

SIP
server

-
Kamailio

Virtualized network attached server

ps.sip.uniza.sk Kamailio SIP domain

NAT

DB
-

MySQL

SIMPLE
-

XMPP
Gw-

Kamailio

AS
server

-
Sailfin

SIP
servlet
server

NAT
server

-
STUN

RTPprox

XMPP
server

-
Jabberd

2

Figure 7: Proposed platform.

can be realized by either of the two fully comparable and
alternative solutions and components listed in Table 4.

All the platform components, with a help of Xen server
virtualization technology, are running on a single hardware
server (see Figure 7). As the OS platform, the 64 bit linux
Debian OS release Lenny has been used. Only the XMPP
server runs on Ubuntu 10.10 Maverick. All components are
based on open source software. As a SIP server, a central
part of the Kamailio server is used. The Kamailio SIP server,
thanks to flexible routing and configuration functionalities,
provides a principal SIP routing logic of the architecture.
The Kamailio server acts as a registrar and proxy server of
the platform. As a location server and an authentication cre-
dential storage, the MySQL server is used (Kamailio db mysql
module). Routing logic of the SIP server is configured so
that main call routing functionalities are served by the SIP
Server itself. If a callee is unavailable (offline, busy, long time
ringing), a call is redirected to the media server and a voice-
mail service of a particular user is invoked through IVR. For
this purpose, a real-time integration of the location database
with the Asterisk database has been implemented. A voice
message is then delivered using an email service to an email
box of a callee. A voice message can be also played out using a
predefined voicemail SIP address and a user PIN number. In
addition, the Asterisk server is used to implement an audio
conferencing service. For this, a MeetMe application has
been used. MeetMe supports statically and dynamically crea-
ted conference rooms, password protected conferences, and
conference control mechanisms (e.g., mute). The SIP server

is configured to route SIP addresses of the assigned con-
ference service to Asterisk. Messaging and presence ser-
vices are implemented on a dedicated SIMPLE server with
Xcap functionalities (Kamailio with XCAP) using presence,
presence xml, xcap server, and xhttp Kamailio modules. The
main routing logic of the SIP server is configured to route
corresponding SIMPLE messages to the SIMPLE server. Due
to access protection to the Xcap, authentication credentials
of the user are used. Hence, the integration of the SIMPLE
server with the main location database has been realized. The
SIMPLE server also provides the XMPP gateway functional-
ities (pua xmpp, xmpp, and purple modules), which enable
the integration of two presence and messaging architectures,
SIMPLE and XMPP. For the interconnection scenario, we
have used an xmpp module, the other two have not been fina-
lized yet, or a code bug has been found. The xmpp module
can act in two modes, a component mode and a server mode.
For testing, a dedicated XMPP server has been installed
(Jabberd2). Testing of the implementation showed that the
development of xmpp and pua xmpp Kamailio modules has
not been finalized (a server mode has not worked). As far as
related to testing services, only messaging has been working
without problems. The presence service has not worked
properly between XMPP and SIMPLE (in Kamailio version
3.1.5). As an alternative to an XMPP gateway, the OpenSIPS
server may be used.

However, during testing OpenSIPS XMPP gateway
functionalities (xmpp module), an error code inside the
uri xmpp2sip() function has been found; hence, it was not
possible to utilize correctly module functionalities.



Advances in Multimedia 19

As an example of an integrated SIP/HTTP service, which
illustrates SIP service development opportunities, the plat-
form has been extended with the Sailfin AS. As a fully fea-
tured alternative, a Mobicent AS can also be used. The Sailfin
AS has been used as a SIP servlet development and hosting
platform used for a click2call service. Click2call services are
services which enable a phone call to be established between
two or more involved parties directly from a web page. The
click2call service is a good example of a new approach to
service creation by SIP technology. The click2call service
implements a third party call control entity (3pcc) which is
responsible for call initiation.

To address a NAT traversal problem, the STUN server has
been implemented to a platform. For special cases, the RTP-
proxy media proxy has been implemented. The RTPproxy
can be alternatively used for IPv4/IPv6 interworking scenar-
ios. Finally, the DNS server has been used with properly
defined SIP and XMPP SRV records. The platform is state-
lessly connected to a cisco call manager (CCM) to route calls
through CCM to the Public switched telephone network
(PSTN). For calls routed to PSTN, the Remote Party ID
header has been inserted. The platform supports TLS with
self-signed certificates.

Several testing interconnection scenarios have been per-
formed for implemented services using different SIP clients,
simulating intra- and inter-domain connectivity. The sig-
nalling message exchange has been captured, analyzed, and
evaluated to proof the interconnectivity. For some scenarios,
an IMS client (Boghe) which is able to register to a SIP do-
main and make calls can be used.

In general, the installation of platform components has
been straightforward, accessible directly from respective pac-
kage repositories. Access to special functionalities may re-
quire the package compilation. Configuration of platform
components, especially routing behavior of Kamailio/Open-
SIPS servers requires a deep knowledge of a configuration
scripting syntax. We have considered documentation for rel-
evant modules detailed enough. However, “how-to” guides
publicly available on projects main portals differ. Our per-
sonal view is that the Kamailio project provides more accu-
rate results. On the other side, the two SIP servers are robust
and powerful. Documentation for Asterisk is widely avail-
able, since Asterisk seems to be the most popular IP PBX with
many available extensions and applications. Hence, especially
for lighter solutions, other interesting media servers are
available, for example, the FreeSWITCH, a scalable open
source cross-platform telephony platform.

5.6. Remarks. The two proposed solutions integrate the open
source components that could be utilized to create a high
performance and feature rich platform. Both proposed solu-
tions are fully comparable. These two proposed solutions
consist of a number of independent components which can
be implemented in different ways, with different numbers
of logically and physically deployed servers depending on
a SIP operator strategy and goals. These components are
usually deployed as software packages installed in hosting
servers running Linux. Additionally, there are powerful open
source solutions which integrate many features, for example,

SipXecs and Elastix unified communication (UC) solutions.
They are provided as a package together with a Linux ope-
rating system.

Elastix [72] is an open source project, which has evolved
from the Asterisk and which integrates several open source
products to provide a unified communications solution
available under a GPLv2 license. Elastix includes a number
of communication media and features supported by other
open source products such as a mail server (Postfix), webmail
(Round Cube), CRM (vTigerCRM), IM and presence (Open-
Fire), fax server (Hylafax), SIP VoIP PBX (Asterisk 1.6) with
WebGUI (FreePBX), and a video conference server, all of
them running on the CentOS version of Linux.

SipXecs is a highly scalable enterprise-grade unified com-
munication and collaboration solution provided under
LGPL license. The development of SipXecs is supported by
the open source organization SIPFoundry [73]. SipXecs is
SIP-centric software solution that provides PBX telephony
services integrated with several open source solutions to
deliver an UC package. SipXecs includes a SIP server (SipX),
IM and presence (OpenFire), a gateway to other IM, media
server for conferencing and voicemail (FreeSWITCH), Auto-
mated Contact Distribution (ACD), all of them are manage-
able by a web-based GUI management interface packaged
and shipped running on CentOS linux.

6. Conclusion

The evolution of modern communication technologies offers
new communication possibilities. In this paper, we have ana-
lyzed key protocols, technologies, and services that can be
incorporated into a converged communication platform.
Based on a case study, we have analyzed and proposed an
open SIP-based communication platform that shows the op-
portunities for open source products to accomplish this com-
plex task. Open source products we have tested are of good
quality and are sufficiently supported with documents, im-
plementation guides and other relevant materials. Their
deployment enables to build a flexible, scalable, and powerful
multimedia communication solution, which integrates and
offers many interesting services, such audio and video calls,
conferences, voicemail, presence, and instant messaging.
Using open source products in an academic environment
enables teachers, researchers, and students to keep in touch
with technology innovations.

References

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo et al., SIP: Session
Initiation Protocol, RFC 3261, July 2002.

[2] P. Segeč, “Programming SIP services—the SIP APIs,” Acta Ele-
ctrotechnica et Informatica, vol. 10, no. 4, pp. 39–45, 2010.

[3] J. Lennox and H. Schulzrinne, Call Processing Language
(CPL): A Language for User Control of Internet Telephony
Services, RFC 3880, October 2004.

[4] J. Lennox, H. Schulzrinne, and J. Rosenberg, Common Gate-
way Interface for SIP, RFC 3050, January 2001.

[5] JSR 289 Expert Group, JSR-000289 SIP Servlet 1.1 Final Re-
lease, 2008.



20 Advances in Multimedia

[6] JSR-000032, JAIN SIP API Specification, Maintenance Release,
2006,http://jcp.org/aboutJava/communityprocess/mrel/jsr032/
index.html.

[7] H. Sinnreich and A. Johnston, Internet Communications Using
SIP: Delivering VoIP and Multimedia Services with Session Ini-
tiation Protocol, John Wiley & Sons, New York, NY, USA, 2nd
edition.

[8] http://datatracker.ietf.org/wg/xmpp/charter/.
[9] http://datatracker.ietf.org/wg/simple/charter/.

[10] M. Day, J. Soenberg, and H. Sugano, A Model for Presence and
Instant Messaging, RFC 2778, February 2000.

[11] M. Day, S. Aggarwal, G. Mohr, and J. Vincent, Instant Mes-
saging / Presence Protocol Requirements, RFC 2779, February
2000.

[12] B. Cambell, J. Rosenberg, H. Schulzrinne, C. Huitem, and D.
Gurle, Session Initiation Protocol (SIP) Extension for Instant
Messaging, RFC 3428, December 2002.

[13] B. Cambell, R. Mahy, and C. Jennings, The Message Session
Relay Protocol (MSRP), RFC 4975, September 2007.

[14] C. Jennings, R. Mahy, and A. B. Roach, Relay Extensions for
the Message Session Relay Protocol (MSRP), RFC 4976, Sep-
tember 2007.

[15] A. B. Roach, Session Initiation Protocol (SIP)-Specific Event
Notification, RFC 3265, June 2002.

[16] J. Rosenberg, A Presence Event Package for the Session Initia-
tion Protocol (SIP), RFC 3856, August 2004.

[17] A. Niemi, Session Initiation Protocol (SIP) Extension for Event
State Publication, RFC 3903, October 2004.

[18] J. Rosenberg, The Extensible Markup Language (XML) Con-
figuration Access Protocol (XCAP), RFC 4825, May 2007.

[19] E. Burger, J. van Dke, and A. Spitzer, Basic Network Media
Services with SIP, RFC 4240, December 2005.

[20] C. Boulton, T. Melanchuk, and S. McGlashan, Media Control
Channel Framework, RFC 6230, May 2011.

[21] C. Jennings, F. Audet, and J. Elwell, Session Initiation Protocol
(SIP) URIs for Applications such as Voicemail and Interactive
Voice Response (IVR), RFC 4458, April 2006.

[22] J. Rosenberg, A Framework for Conferencing with the Session
Initiation Protocol (SIP), RFC 4353, February 2006.

[23] M. Barnes, C. Boulton, and O. Leven, A Framework for Cen-
tralized Conferencing, RFC 5239, June 2008.

[24] O. Levin and R. Even, High-Level Requirements for Tightly
Coupled SIP Conferencing, RFC 4245, November 2005.

[25] J. van Meggelen, J. Smith, and L. Madsen, Asterisk: The Future
of Telephony, O’Reilly, 2nd edition.

[26] S. McGlashan, T. Melanchuk, and C. Boulton, An Interactive
Voice Response (IVR) Control Package for the Media Control
Channel Framework, RFC 6231, May 2011.

[27] T. Berners-Lee, R. Fielding, U. C. Irvine, and L. Masinter, Uni-
form Resource Identifiers (URI): Generic Syntax, RFC2396,
August 1998.

[28] A. Gulbrandsen, P. Vixie, and L. Esibov, A DNS RR for speci-
fying the location of services (DNS SRV), RFC 2780, February
2000.

[29] M. Mealling and R. Daniel, The Naming Authority Pointer
(NAPTR) DNS Resource Record, RFC2915, September 2000.

[30] J. Rosenberg and H. Schulzrinne, Session Initiation Protocol
(SIP): Locating SIP Servers, RFC 3263, June 2002.

[31] D. Senie, Network Address Translator (NAT)-Friendly Appli-
cation Design Guidelines, RFC3235, January 2002.

[32] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, Session
Traversal Utilities for NAT (STUN), RFC 5389, October 2008.

[33] R. Mahy, P. Matthews, and J. Rosenberg, Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN), RFC 5766, April 2010.

[34] J. Rosenberg, Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for
Offer/Answer Protocols, RFC 5245, April 2010.

[35] J. Rosenberg, Indicating Support for Interactive Connectivity
Establishment (ICE) in the Session Initiation Protocol (SIP),
RFC 5768, April 2010.

[36] The UPnP Forum, http://www.upnp.org/.
[37] C. Jennings, R. Mahy, and F. Audet, Managing Client-Initiated

Connections in the Session Initiation Protocol (SIP), RFC
5626, October 2009.

[38] W. Werapun, A. A. E. Kalam, B. Paillassa, and J. Fasson, “Solu-
tion analysis for SIP security threats,” in Proceedings of the
International Conference on Multimedia Computing and Sys-
tems (ICMCS ’09), pp. 174–180, April 2009.

[39] I. Dolnák, “Denial of service attacks in Voice over IP net-
works,” in Proceedings of the Research in Telecommunication
Technology Workshop (RTT ’10), VŠB-Technical University of
Ostrava, Velké Losiny, Czech Republic, September 2010.

[40] J. Peterson, S/MIME Advanced Encryption Standard (AES)
Requirement for the Session Initiation Protocol (SIP), RFC
3853, February 2011.

[41] J. Kuthan, J. Floroiu, H. Schulzrinne, S. Sisalem, and U. Aben,
SIP Security, John Wiley & Sons, New York, NY, USA, 2009.

[42] C. Jennings and J. Fischl, Certificate Management Service for
the Session Initiation Protocol (SIP), RFC 6072, February
2011.

[43] T. Dierks and C. Allen, The TLS Protocol, RFC2246, January
1999.

[44] E. Rescorla and N. Modadugu, Datagram Transport Layer
Security, RFC4347, April 2006.

[45] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobsion, RTP:
A Transport Protocol for Real-Time Applications, RFC 3550,
July 2003.

[46] M. Baugher, D. Mcgrew, M. Naslund, E. Carrara, and K.
Norrman, The Secure Real-time Transport Protocol (SRTP),
RFC 3711, March 2004.

[47] F. Andreasen, M. Baugher, and D. Wing, Session Description
Protocol (SDP) Security Descriptions for Media Streams,
RFC4568, July 2006.

[48] J. Arkko, E. Carrara, F. Lindholm, K. Naslud, and K. Norrman,
MIKEY: Multimedia Internet KEYing, RFC 3830, August 2004.

[49] J. Fischl, H. Tschofenig, and E. Rescortla, Framework for Esta-
blishing a Secure Real-time Transport Protocol (SRTP) Secu-
rity Context Using Datagram Transport Layer Security
(DTLS), RFC 5763, May 2010.

[50] P. Zimmermann, A. Johnston, and J. Calls, ZRTP: Media Path
Key Agreement for Unicast Secure RTP, RFC 6189, April 2011.

[51] D. Eastlake, Domain Name System Security Extensions, RFC
2535, March 1999.

[52] Cisco Inc., Overview of High Availability in SIP-based Voice
Networks, http://www.cisco.com/univercd/cc/td/doc/product/
software/ios123/123cgcr/vvfax c/callc c/sip c/sipha c/hacha-
p1.htm.

[53] S. Knight, D. Weaver, D. Whipple, and R. Hinden, Virtual
Router Redundancy Protocol, RFC 2338, April 1998.

[54] The Linux-HA, http://www.linux-ha.org/.
[55] Pacemaker, A scalable High-Availibility cluster resource man-

ager, http://clusterlabs.org/.
[56] The Open Source Initiative (OSI), http://www.opensource

.org/.



Advances in Multimedia 21

[57] A. Johnston, R. Sparks, C. Cunningham, S. Donovan, and K.
Summers, Session Initiation Protocol Service Examples, RFC
5359, October 2008.

[58] Mobicents project, http://www.mobicents.org/.
[59] OpenXCAP—Free XCAP server for SIP SIMPLE, http://open-

xcap.org/.
[60] SailFin Project—Project Kenai, http://sailfin.java.net/.
[61] Cipango, http://www.cipango.org/.
[62] WeSIP, http://www.wesip.com/.
[63] Adhearsion: Open-Source Telephony Development Frame-

work, http://adhearsion.com/.
[64] MySTUN server, http://developer.berlios.de/projects/mystun/.
[65] The TurnServer project—open-source TURN server imple-

mentation, http://turnserver.sourceforge.net/.
[66] ReStund, http://www.creytiv.com/restund.html.
[67] Numb STUN/TURN Server, http://numb.viagenie.ca.
[68] RTPproxy, http://www.rtpproxy.org.
[69] MediaProxy—Fast and scalable RTP relay, http://mediaproxy

.ag-projects.com/.
[70] The Keepalived project, http://www.keepalived.org/.
[71] Distributed replicated block device project, http://www.drbd

.org/.
[72] Elastix, The Open Source Unified Communications Server,

http://www.elastix.org/.
[73] The sipXecs Enterprise Communications System, http://www

.sipfoundry.org/.


