
Implementation of Delay Assurance Service for
Voice Applications in Wireless LANs

Pattipaka Subramanyam & Anirudha Sahoo
Kanwal Rekhi School of Information Technology
Indian Institute of Technology Bombay, Mumbai

Email: fsubbu, sahoog@it.iitb.ac.in

Parameswaran Ramanathan
Department of Electrical and Computer Engineering
University of Wisconsin, Madison, Wisconsin, USA

Email: parmesh@ece.wisc.edu

Abstract— IEEE 802.11 has become de facto standard for
wireless LANs. Although it was originally designed for data
communication, emergence of Voice over IP (VoIP) has made
it attractive for voice applications. But voice applications re-
quire delay guarantee. We have implemented Dynamic Class
Selection (DCS) mechanism in Neighborhood Proportional Delay
Differentiation (NPDD) (proposed in [1]) architecture to provide
delay assurance in IEEE 802.11 networks. But we found that
DCS is not suitable for voice applications which require tight
delay bound. Hence, we propose two Adaptive Class Selection
(ACS) mechanisms to provide delay assurances to voice flows.
However, delay assurance at all nodes within a LAN cannot
be provided with ACS or DCS. So we propose Measurement
based Distributed Call Admission Control (MDAC) mechanism
to provide delay assurances for voice traffic at all nodes. Our
experimental results show that ACS and MDAC perform much
better than DCS for voice flows at all loads.

I. I NTRODUCTION

The use of wireless devices like Personal Digital Assistants
(PDAs), Smart Phones and Laptops based on IEEE 802.11 [2]
have become commonplace. Although IEEE 802.11 WLAN
was originally designed for providing wireless access for data
traffic, the emergence of Voice over IP (VoIP) has made
it attractive for wireless voice access through IP network.
But VoIP applications require QoS from the network in
terms of delay, jitter and packet loss. Point Coordination
Function (PCF) in IEEE 802.11 provides real time support
in infrastructure mode. But most of the existing IEEE 802.11
solutions do not support PCF. IEEE 802.11 DCF mode does
not provide QoS for real time applications. Although IEEE
802.11e can support QoS, this MAC is yet to be standardized.
Hence there is a need to provide QoS in IEEE 802.11 based
WLANs to support VoIP applications.

Several MAC protocols have been proposed to provide
QoS in wireless LANs. These are broadly classified into two
categories: centralized and distributed. There are centralized
scheduling algorithms [3], [4], [5] where a designated host
(e.g. Access Point) coordinates the access to the wireless
medium. In distributed protocols, all nodes contend for the
medium and can transmit the packet only if it does not hear
another transmission. Unfair medium access can occur in
distributed protocols under certain circumstances [6], [7]. A
decentralized scheme calledBlackburstwas proposed in [8]
which minimizes the delay for real time traffic. To access
the medium a station sends a black burst by jamming the
channel for a period of time. The length of the black burst is
determined by the time the station has been waiting to access
the medium. Vaidya et al. proposed a QoS scheme in terms
of fairness in distributed fashion by allocating bandwidth in
proportion to theweightsof the flows sharing the channel [9].
Hang Su et al. proposed self-adjusting contention window
algorithm which modifies the back-off window based on the
number of packets transmitted and dropped [10].

The main problem of the above mechanisms is that they
would require changes in the MAC firmware. This means
that users have to buy new network cards with the modified
firmware. This, obviously is an impractical proposition. A
more practical solution is to have a QoS scheme which
can work on top of the standard IEEE 802.11 MAC layer.
Neighborhood Proportional Delay Differentiation (NPDD) is
a mechanism that can work on top of any MAC protocol in

a wireless device [1]. In NPDD, traffic is put into different
classes. Each class is assigned a delay differentiation parame-
ter (DDP). The average delay of packets in different classes is
in proportion to their respective DDPs. NPDD scheduler uses
Waiting Time Priority (WTP) algorithm [11]. If only NPDD
is used, then a flow having a delay bound may not fit into
a particular class properly. If the flow is assigned a higher
priority, then the actual delay suffered may be much below
the delay bound. On the other hand, if it is assigned the next
lower class, the delay may be more than the delay bound.
Hence Dynamic Class Selection (DCS) is usually employed
along with NPDD. DCS runs a periodic decision process to
determine if class of a flow needs to be changed. Changing
class of a flow makes better utilization of bandwidth while
meeting the flow’s delay bound.

We implemented the NPDD and DCS mechanism in linux
kernel to provide QoS to voice applications. But during our
experiment we noticed that DCS could not provide required
QoS to high priority flow at a high load condition. The reason
is that DCS moves a flow to higher class without considering
how the QoS of the higher class will get affected after the
move. Hence we devised anAdaptive Class Selection(ACS)
mechanism that addresses the above drawback of DCS. We
have also proposed and implemented a simple measurement
based distributed Call Admission Control mechanism to pro-
vide QoS assurance at all nodes.

II. PROPORTIONALDELAY DIFFERENTIATION

In this section we provide a brief overview of two different
Proportional Delay Differentiation (PDD) paradigms, since
our work is based on it. For more details, readers can refer
to [1].

The PDD service model supportsN classes relatively
ordered in per-hop packet queueing delays at any nodek. At
nodek, the packets with higher priority experience low delay
than packets with lower priority. The proportionality between
delays of different classes can be tuned by the network
designer with a set of class delay differentiation parameters
(DDP).

Let 1 = �1 > �2 > ::: > �N > 0 be the DDPs
defined by the network designer forN classes. Letdki be the
average queueing delay of classi packets at nodek. Then the
normalized average queueing delay~dki for all classes at nodek should be equal, where the normalized average queueing
delay of flow i at nodek is given by

~dki = dki =�i: (1)

At a PDD node the following holds

dki =dkj = �i=�j (2)

for all classesi and j.
Neighborhood PDD (NPDD) is a service model that uses

PDD paradigm along with Waiting Time Priority (WTP) [11],
[1]. In NPDD, the head-of-line packet of a classi is assigned a
waiting time prioritywi(t) and the scheduler always schedules
the highest priority head-of-line packet for transmission.

Applications using NPDD service may have their delay
much below the delay bound or much above the delay bound.
Hence NPDD by itself may not be an efficient mechanism.
DCS mechanism addresses this issue by changing the priority
of packets dynamically based on the delay suffered by the
application. Delay of packets of a flow is measured periodi-
cally. If delay of a flow exceeds (falls below) its delay bound
for a certain number of successive time periods the flow is
promoted (demoted) to the higher (lower) class. For a formal
description of DCS algorithm please refer to [1].

III. A DAPTIVE CLASS SELECTOR

The advantage of DCS is that it can utilize the bandwidth
efficiently to meet the delay guarantees of the applications at
low load. But the main problem of DCS is that its perfor-
mance deteriorates at very high load to provide assurances
proportionally. At high load, there is a possibility that many
flows may not meet their delay bound and therefore may
go to higher classes. This will cause the higher class flows
to have high delays. Hence, before a flow is promoted to a
higher class, it should be made sure the move does not affect
other flows so much that they miss their delay bounds. To
this end, we have proposed an Adaptive Class Selector (ACS)
mechanism in this paper so that the above situation is taken
care of. We propose two such algorithms to adaptively change
the class of a flow.

A. Network Model
The network model considered for this study is a conven-

tional infrastructure based IEEE 802.11 DCF network. The
wireless nodes host applications with end-to-end communica-
tion flows through AP. Each node has an implementation of
ACS architecture shown in Figure 1. For our ACS algorithm,
we have implemented the Proportional Average Delay (PAD)
Scheduler proposed in [11]. PAD services packets inN
classes and realizesproportional average per hop delays
among them locally at each node. But PAD uses average delay
(calculated over all the packets in a class) and calculates the
normalized average delay of a class (whereas NPDD applies
WTP to head-of-queue packet). The packet at the head of
queue of the class having the largest normalized average delay
is then scheduled by PAD scheduler. TableI summarizes the
notations used in this paper.

Fig. 1. Architecture of ACS framework

B. Benefit based ACS
This version of the ACS is based on what we refer to as

benefitcost. Each class at a node maintainsbenefitcost which
is the cumulative sum of the difference between the delay
bound and end-to-end delay suffered by flows in that class.
At the kth period for applicationf , thebenefitcost of a classC(k�) is defined as follows

BC(k�) =
MX
f=1

D̂f �
MX
f=1

Df (k�) (3)

The pseudo code for this version of ACS, called Benefit
based ACS (B-ACS), is shown in Algorithm1.

Algorithm B-ACSessentially promotes a flow (Step2) to
next class if the new class has a positive benefit and the flow
violates its delay bound forKI consecutive period. If the flow
has been enjoying too less delay forKD consecutive periods,
it is demoted to the lower class.

Notation Description
C(k�) Class of a flow at time� and periodk.
Df (k�) End-to-end delay of flowf at time� and periodk

D̂f Delay Bound of flowf
'f Delay Tolerance of flowf
DC(k�)) Sum of end-to-end delays of flows in classC(k�)

DBC(k�)) Sum of delay bounds of flows in classC(k�)
DB Sum of delay bounds of all flows at a node
Delay Sum of end-to-end delays of all flows at a node
MC(k�) Number of flows in classC(k�)

dC(k�) Queueing delay of classC(k�)

BC(k�) Benefit cost of classC(k�)

�C(k�) Arrival rate of classC(k�)
qag Average (across all classes) aggregate queue size
qC(k�) Average queue size at classC(k�)

�C(k�) Delay differentiated parameter of classC(k�)
GBj;k Global Benefit of nodej stored at nodek

TABLE I
L IST OF NOTATIONS USED

Algorithm 1 B �ACS(C(k�); Df (k�); D̂f ; 'f)
1: if (Df (k�) > D̂f for KI consecutive periods) then

2: C((k + 1)�) = min (C(k�) + 1; N);
3: if BC((k+1)�) > 0 then

4: BC((k+1)�) + = DBf �Df (k�);

5: BC(k�) � = DBf �Df (k�);

6: else
7: C((k + 1)�) = C(k�);
8: end if
9: else if ((Df (k�) < D̂f + 'f) for KD consecutive periods) then

10: C((k + 1)�) = max (C(k�) � 1; 0);
11: BC((k+1)�) + = D̂f �Df (k�);

12: BC(k�) � = D̂f �Df (k�);

13: else
14: C((k + 1)�) = C(k�);
15: BC((k+1)�) + = df (k�) � df ((k � 1)�);

16: end if

C. Estimation based ACS
The problem with B-ACS algorithm is that it allows a new

flow into classC(k�)+1 from C(k�) even if thebenefitcost
of classC(k�)+1, BC(k�)+1, is slightly greater than 0. This
may cause the violation of delay assurances of classC(k�)+1. E-ACS algorithm solves this problem by predicting the
expected increase in average queueing delay of classC(k�)+1 due to the class change of flowf from classC(k�) toC(k�) + 1.

In this algorithm, the delay bound requirement for each
flow in a class is not checked, but the cumulative delay
bound, DBC(k�) = Pf2C(k�) D̂f , of a classC(k�) is
checked. Since all flows in a class have same queueing delay,
the expected cumulative end-to-end delay of classC(k�),DC(k�) = Pf2C(k�)Df (k�), is calculated using expected
increase in the queueing delay and the number of flows in
that class. This can be used to check whether the cumulative
delay bound of all the flows in a class can be met or not.

Expected queueing delay of a class can be calculated as
follows. Let �i be the aggregate arrival rate of classi. Using
Little’s law[12], [13] and equation (2), the queueing delay of
classi is

di = �iqagPN�1i=0 �i�i (4)

Suppose a flow in classi with rate�f changes to classi+ 1
then the effective delay of classi becomes

d0i = �iqagPN�1i=0 �i�i + (�i+1 � �i)�f (5)

From equation (4) and (5) the new queueing delay of classi can be expressed as follows

d0i = di
PN�1i=0 �i�iPN�1i=0 �i�i + (�i+1 � �i)�f

d0i = di �iqag
�iqag + (�i+1 � �i)�fdi (6)

Algorithm 2 E �ACS(C(k�); Df (k�); D̂f ; 'f)
1: if (Df (k�) > D̂f for KI consecutive periods) then

2: C((k + 1)�) = min (C(k�) + 1; N);

3: d0
C((k+1)�)

= dC((k+1)�)

�C(k�)qag

�C(k+1)� qag+(�C(k�)+1��C(k�))
qC(k�)
MC(k�)

;

4: D0
C((k+1)�)

= DC((k+1)�) + (d0
C(k+1)�

� dC((k+1)�)) �MC(k�) ;

5: benefit = DBC((k+1)�) � D0
C((k+1)�)

;

6: if (benefit >= 0) then
7: tot benefit = DB �Delay � (DBC(k�) �DC(k�))� (DBC((k+1)�) �

D0
C((k+1)�)

);

8: if (tot benefit < 0) then
9: C((k + 1)�) = C(k�);

10: end if
11: else
12: C((k + 1)�) = C(k�);
13: end if
14: else if (Df (k�) < D̂f + 'f for KD consecutive periods) then

15: C(� + 1) = max (C(�) � 1; 0);
16: else
17: C(� + 1) = C(�);

18: end if

The average backlog due to flowf can be approximately
calculated as�fdi = qini , whereqi is the backlog of classi
andni is the total number of flows in classi.

Hence equation (6) becomes

d0i = di �iqag
�iqag + (�i+1 � �i) qini

(7)

Using equation (7) we can predict the approximate increase
in the queueing delay of classi+ 1.

d0i+1 = di+1 �iqag
�iqag + (�i+1 � �i) qini

(8)

The new in end-to-end delay (used in Step4) is defined as
follows

D0i+1 = Di+1 + (d0i+1 � di+1) � ni+1 (9)

If expected end-to-end delay,Di+1, of classi+1 after flowf moves from classi to i+ 1 is greater than the total delay
bound,DBi+1, of classi + 1 then the flowf will not be
allowed to change its class. Otherwise, flowf is promoted to
classi+1. Delay bound of all the classes is checked in Step 7
because the total delay bound (of all the classes) and total
end-to-end delay of all the flows at the node is considered.

IV. CONNECTION ADMISSION CONTROL

Both DCS and ACS try to meet delay assurances only at
a single node. They are not sufficient for providing delay
assurances at all nodes in a IEEE 802.11 LAN, because they
do not have congestion information about other nodes. In a
shared medium like IEEE 802.11, admitting a flow at one
node can affect the performance of another node. Hence new
flows should not be admitted to the network (at any node) if
the any other node in the network is not able to provide QoS
assurance after the flow is admitted.

Violation of QoS assurances in the Wireless LAN may
occur due to the following reason. The bit rate of a node
suddenly decreases due to some noise in the environment,
local mobility of a wireless node, or signal interference with
other access points at a wireless node. Hence, QoS assurance
is violated if the number of packets sent are less than the
total aggregate arrival assured at that node. Modelling this
phenomenon is quite complex. Hence, we felt a Measure-
ment based Distributed Admission Control (MDAC) is more
appropriate in this scenario. This mechanism captures the
current situation in the LAN and takes appropriate action.
MDAC captures the fluctuation in output rate inGlobalBenefit
(benefits of all the nodes in the LAN) cost.

A. MDAC
Nodes run in promiscuous mode to implement MDAC. A

nodej embeds its QoS assurance information,GlobalBenefit,
in each packet and sends it over the network. Whenever a
packet is received at a nodek from a neighboring nodej, the
GlobalBenefitvalue of nodej (GBj) is retrieved from the
packet header and it is updated as a weighted average in the
existing neighbor entry at nodek as follows,

GBnewj;k = � �GBprevj;k + (1� �) �GBj ; 0 � � � 1 (10)

Each nodek maintainsGBj;k. If no corresponding entry is
found, new entry is created andGlobalBenefitvalue is stored
using the equation (10). If nodek does not receive a packet
from a neighboring nodej for a certain period then the entryGBj;k is removed.

Algorithm 3 MDAC(C(�); D̂f ; 'f ; �f)
1: /* l is the number of neighbors of nodek */
2: for all j 1 to l do
3: if (GBj;k < 0) then

4: Reject the flow and return
5: end if
6: end for
7: if (benefit[C(�)] > 0 && GBk;k > 0) then

8: put the flow information in a new flow entry
9: Accept the flow and return

10: else
11: Reject the Flow and return

12: end if

V. I MPLEMENTATION IN L INUX KERNEL

This section describes the implementation of NPDD mech-
anism in linux kernel. Due to space limitation we have not
provided many internal details of the implementation. For
more details readers are referred to [14]. The implementation
is independent of kernel version and is implemented as kernel
modules [15]. The advantage of the kernel module is that it
makes installation easy and avoids kernel recompilation.

A. Protocol Stack
The protocol stack of a node in NPDD Network is shown

in Figure 3. The NPDD Network node consists of avir-
tual network device(NPDD device), areal network device
(802.11DCF) and aPacket Listenerin the linux kernel.
NPDD deviceis a virtual network devicewhich captures the
outgoing packets to includeNPDD headerand sends packets
by changing the packet type tonpdd. NPDD headercontains
NPDD specific information like class of a flow,GlobalBenefit
of a node, one way delay of a flow etc. ThePacket Listener
listens for NPDD packets.NPDD deviceresides below the
network layer whereas thePacket Listenerresides at network
layer. The device driver forNPDD deviceis a kernel module
which registers itself as a network device in the kernel. It
works above a real wireless device, e.g. wlan0, in the kernel,
since it transmits and receives packets through the wireless
device.

The Packet Listeneris also a part of the kernel module
which receives packets from network card. Packet reception
by a virtual device driver is not possible in linux kernel since
there are no hooks in the kernel for virtual device that can
be invoked when a packet is received. The only functions
provided are the packet reception functions of the network
layer code. There are a few alternatives to this including
tracing the interrupt that is used by the device and responding
to that interrupt. But such mechanisms make the code very
much device dependent. Our design is completely independent
of the lower level hardware.

B. Architecture of NPDD Device in Linux Kernel
The detailed architecture of the NPDD device driver is

shown in Figure 2. In linux kernel, each network device is
attached to a queueing discipline to buffer incoming packets.
The default queueing discipline is First In First Out (FIFO).

Fig. 2. Architecture of NPDD Device Driver in Linux Kernel
Flow Id NPDD Packet Mean Delay

class Distribution Packets Bound
1 0 Exponential 45 2500ms
2 1 Exponential 45 500ms
3 2 Exponential 45 325ms
4 3 Constant 33 125ms
5 0 Exponential 45 3000ms
6 1 Exponential 45 700ms
7 2 Exponential 45 400ms
8 3 Constant 33 150ms

TABLE II
TRAFFIC SPECIFICATION OF THEFLOWS USED IN OUREXPERIMENT

A packet destined to the virtual network device (npdd0) is en-
queued at device layer by the functiondev queue xmit() .
Packets from IP layer is enqueued in the queueing discipline
attached tonpdd0. A dequeue daemon is invoked to dequeue
a packet whenever the network card is ready to send a packet.
If the device is real, then the packet is sent to the network.
Otherwise, the packet is forwarded to ACS module. ACS
module may change the class of the flow according to the
class selection algorithm used (e.g. B-ACS). Now the device
associated with the packet is changed to real network device,
e.g. wlan0, anddev queue xmit() function is called.
This function enqueues the packet in the queueing discipline
attached to the real network device, wlan0. Finally, the packet
is dequeued and sent to the network.

When a packet is received from the network by the real
network device driver, it does all the processing of removing
hardware headers and hands it over to the appropriate network
layer by calling the functionnetif rx() . The packet type
is used to identify which network layer protocol the packet
should be handed over to. If the packet type is virtual then
NPDD header will be removed and will be forwarded to
corresponding network layer protocol.

C. QoS Manager
QoS Manager is the module with which application pro-

grams communicate to ask for new connections. QoS manager
runs admission control mechanism, MDAC, to reject or accept
a new connection. If MDAC returnsacceptthen the connec-
tion is admitted and the flow information is added to the list
of existing flows. Once admitted, the application can start
sending packets. QoS Manger was implemented in network
device driver. A flow can communicate with the virtual device
driver kernel module for flow addition, deletion and status in-
formation through the device generic functiondo ioctl() .
A flow sends its flow information throughdo ioctl() to
linux device module. Then the device module invokesQoS
Manager to add, delete or get status information of a flow.
When an application is finished, it callsdo ioctl() to
delete flow information and corresponding resources.

VI. EXPERIMENTAL TESTBED& RESULTS

All the wireless nodes used for our experiments are Pentium
4 based PCs running Linux Debian 3.1 kernel version 2.4.27-
3-386. All the wireless nodes are equipped with D-Link 520
wireless cards based on IEEE 802.11b DCF [16]. The AP
is a D-Link 1000AP with a bit rate of 11Mbps. Distributed
Internet Traffic Generator(D-ITG) is used for generation of
traffic [17]. D-ITG has support to generate VoIP calls with
various codecs, with Voice Activity Detection (VAD) and
compressed RTP.

A. Topology and Parameters Used
In this experiment, we consider an IEEE 802.11b based

WLAN with 3 wireless nodes located within the radio range

Application Layer

Transport Layer

IP Layer

802.11 DCF

To Network

NPDD device

Packet Listener

From Network

Fig. 3. Protocol Stack at NPDD
node

Fig. 4. Topology Used in Ex-
perimental Testbed

of an AP. The topology of the wireless network for the
experiments is shown in Figure 4. Node 4 is a wired node and
remaining all nodes are wireless systems operating in IEEE
802.11 DCF mode. Node 4 is the destination node for the
traffic generated by D-ITG traffic generator from all the three
wireless nodes. All wireless nodes are within each other’s
radio range. We have used delay utility as the performance
metric for comparison. Delay utility is defined as the ratio
of number of packets meeting its delay bounds to the total
number of packets sent.

Two mechanisms, B-ACS and E-ACS were evaluated in the
experiments and their performance is compared withbaseline
and DCS scheme. Thebaselinescheme represents a best effort
service with a single FIFO and 802.11b DCF at all wireless
devices.DCS scheme consists of4 prioritized classes with
802.11 DCF at each node andPDD scheduler is used to
service the packets. The proposed mechanisms,B-ACSandE-
ACS, consists of4 classes with 802.11 DCF at each wireless
device. The parameters for the evaluation of schemes are
shown in TableIV . In our experiments the delay tolerance is
set to 25% of the Delay Bound of application.

The traffic pattern is modeled as follows. Each node initi-
ates 8 UDP flows between itself and the node 4 via the AP.
The packet arrival patterns and the delay bound requirement
for each flow at each node is described in TableII. UDP
flows are exponentially distributed with mean inter departure
time(IDT) of 22.22ms (45 packets/sec) for class 0, 1 and 2
with a packet size of 512 bytes. For class 3, two voice flows
with G.729.3 codec were generated. Each codec type sends
33 packets/sec.

Figure 5 shows the delay utility of three nodes achieved by
the UDP flows. The delay bounds on the X-axis corresponds
to the delay bound of flows listed in TableII. It is clear that
baselinescheme is not suitable for meeting delay requirement
when delay bound is low.DCSscheme has poor delay utility
for flows with lower delays. For example, for flows with delay
bounds 125ms and 150ms DCS has worse delay utility than
B-ACS and E-ACS. The reason for this is that the class 3
flows (which have these low delay bounds) (refer to TableII)
would be demoted to smaller class by DCS when their benefit
is high. But once they go to lower class, their delay increases
significantly (due to the proportional parameter chosen), so
packets would start missing delay bounds. Then the flows are
again promoted back to higher class. When delay bound is
little loose (e.g. 500ms, 700ms), even if the flow is demoted,
due to loose bound, fewer packets miss deadline. Hence DCS
performs better than B-ACS and E-ACS in these ranges of
delay bound. SinceB-ACSand E-ACSalgorithms check for
benefit values before promoting or demoting flows, they give
higher delay utility for class 3 flows (flows with delay bounds
of 125ms, 150 ms).E-ACSprovides higher utility thanB-ACS
since it takes into account benefit of all the classes.

B. Admission Control
In this Section we provide experimental results of MDAC

call admission algorithm. We have used the same topology as
mentioned before. At each node 70% of the bandwidth was
occupied with class 0, class 1 and class 2 traffic. Remaining
bandwidth is used up by the voice calls. MDAC is tested along
with DCS, B-ACSandE-ACSalgorithms. The arrival of voice
calls follow Poisson distribution and life time of voice calls
is exponentially distributed. The mean lifetime of each call is
180sec. The mean arrival rate of calls is changed from 0.75
arrivals/minute to 1.5 arrivals/minute.

Baseline

DCS

B−ACS

E−ACS

 0%

 20%

 40%

 60%

 80%

 100%

3,000ms2,500ms700ms500ms400ms325ms150ms125ms

D
el

ay
 U

ti
li

ty

Delay Bound in ms

Fig. 5. Delay utility Vs Application Delay Bound for multiple nodes

DCS+MDAC

B−ACS+MDAC

E−ACS+MDAC

 0%

 20%

 40%

 60%

 80%

 100%

1.510.75

%
 C

a
ll

s
 B

lo
c
k
e
d

Number of Arrivals/minute

Fig. 6. Percentage of Voice Calls Blocked Vs Arrival Rate of Voice Calls
Number of 2 (21.56% load) 3 (32.35% load) 4 (43.14% load) 6 (64.71% load 8 (86.27% load)

Voice Flows/ DB DB DB DB DB DB DB DB DB DB
ALDB 125ms 150ms 125ms 150ms 125ms 150ms 125ms 150ms 125ms 150ms
150ms 72.78 76.65 28.00 44.36 13.09 28.94 9.68 11.10 4.16 5.82
200ms 98.74 95.60 81.81 78.78 69.27 67.07 26.67 26.84 11.11 10.45
250ms 99.87 99.47 97.17 95.09 91.68 89.53 54.32 54.73 19.26 18.59
300ms 100.0 99.67 99.27 97.25 96.60 94.57 64.35 64.70 22.15 21.59
350ms 100.0 99.87 100.0 98.25 98.37 96.93 74.56 74.90 26.74 25.98
400ms 100.0 99.97 100.0 98.90 99.33 98.32 79.79 79.85 32.53 31.42

TABLE III
DELAY UTILITY VARIATION WITH NUMBER OF VOICE FLOWS

WITH BOUND ON END-TO-END DELAYS

Scheme Baseline DCS,B-ACS, E-ACS
Delay Tolerance N/A :25x
NPDD Classes N/A 4

DDP �i , i 2 1,2,3,4 N/A [1; 2
5
; 4
25

; 8
125

]
DCS sensitivity parameters(KI;KD) N/A (1,1)

DCS period(seconds) N/A 1
Packet size 512 512

Per-class max queue size 2000 500
PHY Specification 802.11b 802.11b
MAC Specification DCF DCF

TABLE IV
PARAMETERS OF EVALUATED SCHEMES

The percentage of calls blocked for all the mechanisms with
MDAC is shown in Figure 6. Number of calls blocked will be
more in case ofDCS. The fluctuation of class is more in case
of DCS, since it does not check the benefit of the target class.
But in case of B-ACS, the benefit value of the target class is
checked before a class change is made. But a class change
in a proportional differentiation based network affects all the
classes. Since E-ACS checks theGlobalBenefit, it indirectly
checks the condition of all the classes (as opposed to only
target class). Hence E-ACS performs the best.

From the results presented so far it is clear that E-ACS is
best suited for voice calls which have low delay requirement.
In our next experiment, we vary the load due to voice calls
(by increasing the number of voice calls) and observe the
delay utility of E-ACS algorithm. In this experiment, we have
set two kinds of delay bounds. One is the application level
delay bound (ALDB), which is the delay bound to be met by
the application. The other is the network level delay bound
which is used while executing E-ACS algorithm. The delay
utilities for various flows with delay bounds can be found
in Table III. Now given these results, an administrator can
estimate the delay bound of voice applications as follows.
For a given application level delay bound he should decide
how much should be the network level delay (which will be
used by the E-ACS algorithm), for which he may have to
figure out various delays at the host. The network level delay
bounds used for voice flows in the experiments are 125ms and
150ms. The table gives the choice of choosing the network
level delay bound (a parameter for E-ACS algorithm) based
on desired delay utility. For example if the system will have
3 voice calls (32.35% load) and application level delay of
300ms is required and a delay utility of 100% is desired,
then the administrator has to go for 125ms as network level
delay.

We also have experimental results with regards to delay and
jitter in the network. Effectiveness of our MDAC and ACS
was demonstrated by running one of the widely used VoIP
applicationgnomemeetingon our testbed. We are not able to
present those results due to space constraints. Those results
can be found in [14].

VII. C ONCLUSIONS& FUTURE WORK

We have implemented DCS mechanism for providing QoS
to VoIP applications. But we found that DCS only works
fine at low load. At high load DCS fails to provide QoS
because DCS promotes a flow without considering how the
change would affect the QoS of the higher class. We have
proposed two Adaptive Class Selector(ACS) mechanism in
order to provide QoS assurances at high load. Experimental
results show that ACS mechanisms work better than DCS
to provide QoS assurances for higher classes. For low delay
applications E-ACS is the most suitable mechanism in terms
of delay utility. To assure QoS at all nodes in a WLAN, a
measurement based Call Admission Control called MDAC

is proposed. Experimental results shows that MDAC is able
to accept more connections with ACS mechanism than DCS
mechanism.

We intend to extend our work to provide delay assurance
in a multi-hop wireless network. The admission control al-
gorithm we have presented cannot handle hidden terminal
problem. We would like to address it in the current imple-
mentation. We also would like to implement our MDAC in
an Access Point instead of mobile client. That would require
a linux based Access Point (so that we can put our changes
in the kernel). This would also take care of hidden terminal
problem.

REFERENCES

[1] Kuang-Ching Wang Parameswaran Ramanathan. A Cross-layer Ap-
proach for Concurrent Delay and Throughput Assurances in Multihop
Wireless Hotspots. InWMASH, 2003.

[2] IEEE. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications , IEEE Standard 802.11, June 1999.

[3] C. S. Chang and K. C. Chen. Service curve proportional sharing algo-
rithm for service-guaranteed multi-access in integrated-service wireless
networks. InProceedings of IEEE VTC, volume 2, pages 1288 –1293,
1999.

[4] C. S. Chang and K. C. Chen. A unified wireless LAN architecture
for real-time and non-real-time communication services. InIEEE/ACM
Transactions on Networking, pages 44 – 59, February 2000.

[5] M. Veeraraghavan, N. Cocker, and T. Moors. Support of voice services
in IEEE 802.11 wireless LANs. InProceedings of IEEE INFOCOM,
volume 1, pages 488 – 497, April 2001.

[6] S. Xu and T. Saadawi. Does the IEEE 802.11 MAC protocol work
well in multihop wireless ad hoc network. InIEEE Communications
Magazine, volume 39, pages 130 – 137, June 2001.

[7] Jinyang Li, Charles Blake, Douglas S., J. De Couto, Hu Imm Lee, and
Robert Morris. Capacity of ad-hoc wireless networks. InProceedings
of ACM Mobicom, 2001.

[8] A.S. Krishnakumar J.L. Sobrinho. Quality of Service in ad hoc carrier
sense mutilple access networks. InIEEE Journal on Selected Areas in
Communications, volume 17(8), pages 1353–1368, 199.

[9] Nitin H. Vaidya, Paramvir Bahl, and Seema Gupta. Distributed fair
scheduling in a wireless LAN. InMobile Computing and Networking,
pages 167–178, 2000.

[10] Hang Su and Peiliang Qiu. IEEE 802.11 Distributed Coordination
Function : Performance Analysis and Protocol Enhancement. InAINA,
volume 2, pages 335 – 338, 2004.

[11] Parameswaran Ramanathan Constantinos Dovrolis, Dimitrios Stiliadis.
Proportional Differentiated Services: Delay Differentiation and Packet
Scheduling. InIEEE Transactions on Networking, volume 10:1, New
York, NY, February 2002.

[12] G. Bloch, S. Greiner, H. Meer, and K. S. Trivedi.Queueing Networks
and Markov Chains. John Wiley and Sons, 1999.

[13] L. Kleinrock. Queueing systems, Volume II. John Wiley and Sons,
1976.

[14] S. Pattipaka.Providing Delay Assurances in Infrastructure based Wire-
less LANs. M.Tech. Thesis, Indian Institute of Technology, Bombay,
2005.

[15] Peter Jay Salzman and Ori Pomerantz.The Linux Kernel Module
Programming Guide. Peter Jay Salzman, 2001.

[16] IEEE. Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications: Higher-Speed Physical Layer
Extension in the 2.4 ghz band, IEEE Standard 802.11b, Sept. 1999.

[17] Distributed Internet Traffic Generator.http://www.grid.unina.
it/software/ITG/ .

