Interoperability Standards for VoIP ATM Components

Part 3: Recording
Interoperability Standards for VoIP ATM Components

Part 3: Recording

© EUROCAE, 2009
FOREWORD

1 The document ED-137 “Interoperability Standards for VoIP ATM Components” was prepared by EUROCAE Working Group 67 and was accepted by the Council of EUROCAE on “Month Year”.

2 EUROCAE is an international non-profit making organisation. Membership is open to manufacturers and users in Europe of equipment for aeronautics, trade associations, national civil aviation administrations and non-European organisations. Its work programme is principally directed to the preparation of performance specifications and guidance documents for civil aviation equipment, for adoption and use at European and world-wide levels.

3 The findings of EUROCAE are resolved after discussion among its members and, where appropriate, in collaboration with RTCA Inc, Washington D.C. USA and/or the Society of Automotive Engineers (SAE), Warrendale, PA, USA through their appropriate committee.

4 The document represents “the minimum specification required for Manufacturers and Users to assure Interoperability between VoIP ATM Components”.

5 EUROCAE performance specifications are recommendations only. EUROCAE is not an official body of the European governments; its recommendations are valid statements of official policy only when adopted by a particular government or conference of governments.

6 Copies of this document may be obtained from:

EUROCAE
102 rue Etienne Dolet
92240 MALAKOFF
France

Tel: 33 1 40 92 79 30
Fax: 33 1 46 55 62 65
Email: eurocae@eurocae.net
Web Site: www.eurocae.org
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1
 1.1 BACKGROUND .. 1
 1.2 ED-137 PRESENTATION ... 3
 1.3 TERMINOLOGY FOR REQUIREMENTS, RECOMMENDATIONS AND OPTIONS .. 3

CHAPTER 2 RECORDING MODEL ... 5
 2.1 ACTIVE RECORDING ... 5
 2.2 RECORDING PHONE COMMUNICATION .. 5
 2.3 RECORDING RADIO COMMUNICATION ... 5
 2.4 SESSION SETUP .. 6
 2.4.1 SIP ... 6
 2.4.2 RTSP .. 7
 2.5 TRANSPORT ... 8
 2.5.1 EMBEDDED BINARY DATA ... 8
 2.5.2 RTP OVER INDEPENDENT TCP ... 9
 2.5.3 RTP OVER UDP .. 10
 2.6 RTSP CONTROL MESSAGES .. 11
 2.6.1 ANNOUNCE AND SETUP .. 11
 2.6.2 RECORD .. 12
 2.6.3 PAUSE ... 12
 2.6.4 SET_PARAMETER ... 12
 2.6.5 TEARDOWN ... 13
 2.6.6 REPLAY (optional) .. 13
 2.7 CALL RECORD DATA FORMAT ... 15
 2.7.1 PROPERTIES .. 15
 2.7.2 OPERATIONS ... 15

CHAPTER 3 PHONE ... 17
 3.1 AUDIO SOURCE AND CODING ... 17
 3.2 CALL RECORD DATA ... 17

CHAPTER 4 RADIO ... 19
 4.1 AUDIO SOURCE AND CODING ... 19
 4.2 CALL RECORD DATA ... 20

ANNEX A REFERENCES .. 21
ANNEX B ACRONYMS .. 23
ANNEX C LIST OF EUROCAE WG-67 CONTRIBUTORS .. 25
FIGURE INDEX

Fig. 1 – Vienna Agreement ... 2
Fig. 1 – Recording Sessions ... 5
Fig. 2 – Recording Phone Communication .. 5
Fig. 3 – Recording Radio Communication .. 6
Fig. 4 – SIP Registration .. 6
Fig. 5 – SIP Session Setup .. 7
Fig. 6 – SIP Session Setup: Message Sequence .. 7
Fig. 7 – RTSP Record and Replay Session ... 8
Fig. 8 – Embedded Binary Data Format ... 9
Fig. 9 – TCP Frame Format ..10
Fig. 10 – RTSP Record Session Setup ... 11
Fig. 11 – RTSP Record Session Setup: Messages and Sequence ... 11
Fig. 12 – RECORD: Messages and Sequence ... 12
Fig. 13 – PAUSE: Messages and Sequence ... 12
Fig. 14 – SET_PARAMETER: Messages and Sequence ... 13
Fig. 15 – TEARDOWN: Messages and Sequence .. 13
Fig. 16 – RTSP Replay Session: Messages and Sequence .. 14
Fig. 17 – Call Scenario .. 16
Fig. 18 – Audio Source at User Terminal (G/G) .. 17
Fig. 19 – Audio Source at Radio (A/G) .. 19
Fig. 20 – Audio Source at User Terminal (A/G) ... 19

TABLE INDEX

Table 1 – List of Phone Properties ... 17
Table 2 – List of Phone Operations ... 18
Table 3 – List of Radio Properties ... 20
Table 4 – List of Radio Operations ... 20
CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

Ground-Ground (G-G) ATM voice systems have been based upon analogue and more recently, digital Time Division Multiplexing / Pulsed Code Modulation (TDM/PCM) technologies for many years.

Nowadays, however, convergence of voice and data into one multimedia network is a popular trend with a variety of technical solutions available on the market. Following in this direction ATM communication networks are adopting, by a process of gradual evolution, a common infrastructure for voice and data services.

As the technology has developed IP Technology has now the true potential to fulfil operational and technical ATM communication requirements - including those of voice / data convergence, Quality of Services (QoS), security and safety. There is also the possibility that IP may deliver solutions that will, over time, bring about true savings in investment and operating costs.

EUROCAE Working Group 67 (WG-67) undertook the mission to assess the feasibility of using Voice over Internet Protocol (VoIP) for providing ATM voice services. The group defined criteria, requirements and guidelines based upon the following operational needs and constraints:

- Operational and Technical Air-Ground (A-G) and Ground-Ground (G-G) ATM Voice system requirements
- Existing IP Voice protocols and signalling standards
- IP network capabilities for Voice services
- Security, Quality of Service (QoS), and Convergence (infrastructure, protocol, applications)
- Existing IP Voice ATM system capabilities and service interfaces.

The following tasks were identified to fulfil the WG-67 mission:-

- Define ATM Systems and identify their components (Voice Communication System / VCS, Ground-based Radio Station / GRS)
- Determine possible additional operational and technical ATM requirements for new ATM voice systems, also taking into consideration A-G communications.
- Make recommendations to upgrade current standardisation documents.
- Develop a Technical Specification for a VoIP Voice ATM System including:
 - Minimum performance and safety/security requirements for the system and, if appropriate, for components;
 - Interoperability requirements between IP components of the VoIP ATM system;
 - Minimum performance requirements of an IP Network to support ATM Voice services;
 - Guidelines for qualification tests of VoIP ATM systems and their components.
Consequently the following four documents were delivered:

- **ED-136 - VoIP ATM System Operational and Technical Requirements**
- **ED-137 - Interoperability Standards for VoIP ATM Components**
- **ED-138 - Network Requirements and Performances for VoIP ATM Systems**
- **ED-139 - Qualification tests for VoIP ATM Components and Systems**

The contents of all four documents are premised on the “Vienna Agreement” which defines the different components of a VoIP ATM system and their mutual interfaces as depicted in Fig. 1.

VoIP components are interconnected through an IP network and suppliers are free to define their internal architecture (IP/Ethernet, TDM/PCM - Time Division Multiplexing / Pulsed Code Modulation, …). Between VoIP components, required interfaces are defined to guarantee their functional and technical interoperability.

Therefore, VoIP ATM Systems are composed of:

- **VoIP VCS Components** performing Radio and / or Telephone functions, including:
 1. Controller Working Positions, assuring HMI including voice devices (microphone and loudspeaker);
2. Possible local VCS Maintenance and Configuration stations;
3. Possible local Recording devices;
4. Possible LAN for local interconnection;
5. Possible Media Gateways to legacy systems (ATS-QSIG, ATS-R2, ATS-No.5, PSTN, Radio analogue lines, …).

- **VoIP Ground Radio Station Components** performing AM VHF and UHF Radio functions.
- **VoIP Supervision System Components** performing monitoring and control functions.
- **VoIP Recording Components** performing recording functions.
- **IP WAN Components** performing interconnection services between two or more different physical components.

1.2 ED-137 PRESENTATION

The scope of the WG67 ED-137 Document is to define the rules for VoIP implementations to support ATM communications. This includes the performances requested for radio (Part 1 of ED-137), the existing signalling in use for telephone (Part 2 of ED-137), for recording (Part 3 of ED-137) and for supervision (Part 4 of ED-137).

The present document, that is the Part 3 of the ED-137, proposes a profile standard for the use of RTSP to establish, terminate and modify recording sessions of the Ground Telephone Service and the Radio Service in an Air Traffic Services Ground Voice Network (AGVN).

RTSP is an application layer protocol for establishing, terminating and modifying multimedia sessions. It is typically carried over the Internet Protocol (IP) (IETF RFC 791 [2] and IETF RFC 2460 [6]). RTSP is defined in IETF RFC 2326 [5].

This document proposes a specification for the signalling profile both for basic services that provide a bi-directional transfer capability for speech media between user terminals, radios and a recorder in an IP AGVN employing SIP and RTSP in support of ATS recording services.

Interworking between an IP AGVN and a public IP network is out of scope of this document.

1.3 TERMINOLOGY FOR REQUIREMENTS, RECOMMENDATIONS AND OPTIONS

The terminology for requirements, recommendations and options in this document is based on RFC 2119 [4], which specifies Best Current Practice regarding the use of Key Words for the Internet Community. As such, the following terminology is applied:

- The word **SHALL** denotes a mandatory requirement;
- The word **SHOULD** denotes a recommendation;
- The word **MAY** denotes an option.

To avoid confusion with their natural meanings in the English language, the words **SHALL, SHOULD,** and **MAY** take on the meaning stated above only where printed in boldface. When printed in normal (Arial) typeface, the natural English meaning is meant.

Detailed description of terminology:

1. **SHALL** This word has the same meaning as the phrase “REQUIRED” and means that the definition is an absolute requirement of the specification.

2. **SHALL NOT** This phrase means that the definition is an absolute prohibition of the specification.
3. **SHOULD** This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course.

4. **SHOULD NOT** This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist valid reasons in particular circumstances when the particular behaviour is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behaviour described with this label.

5. **MAY** This word, or the adjective "OPTIONAL", mean that an item is truly optional.
CHAPTER 2
RECORDING MODEL

2.1 ACTIVE RECORDING

1 [RECORDING] Active Recording

Recording SHALL be based on active sessions opened from clients (User Terminal, Radio Transmitter/Receiver or specific 3rd party devices) to one recording device (or two devices required for redundancy). Active means that any client that sends or receives media streams (i.e. audio) takes the responsibility to send a copy of either stream to the recorders. The used time source SHALL be synchronized to the ATSU time source. This is assumed to be Universal Time Coordinated (UTC) to the accuracy specified by ICAO.

Note: In order to simplify drawings, the following just mentions a single recording device. All described mechanisms are valid for two or a defined number of recorders.

Fig. 1 – Recording Sessions

2.2 RECORDING PHONE COMMUNICATION

2 [RECORDING] Phone Communication

User Terminals participating a G/G communication session SHALL provide a single audio stream that summarizes all incoming (IN) and outgoing (OUT) audio streams.

Fig. 2– Recording Phone Communication

2.3 RECORDING RADIO COMMUNICATION

3 [RECORDING] Radio Communication

User Terminals participating a A/G communication session SHALL provide a single audio stream that summarizes all received (RX) and transmitted (TX).
Radios (or Gateways connecting legacy radios to an IP network) **SHALL** provide a single audio stream that contains the received (RX) audio stream related to a single radio channel.

![Fig. 3– Recording Radio Communication](image)

2.4 SESSION SETUP

Active recording requires an established session (i.e. a certain number of parameters that are exchanged between entities prior to any recording). User Terminal, Radio and Recorder **SHALL** use RTSP for such sessions. As RTSP relies on a transport layer protocol (TCP or UDP), these entities **MAY** use SIP to exchange capabilities and connection information (i.e. IP address, port number, and transport protocol). The following section describes the session setup using SIP and RTSP.

2.4.1 SIP

Note that this section assumes that SIP is used for session setup hence the terminology for requirements, recommendations and options is only valid for this case.

Any entity involved in a recording session (User Terminal and Recorder) **SHOULD** register with a SIP Registrar using the REGISTER method according RFC3261. It **SHOULD** be possible to register multiple contacts for a single Address of Record (AOR).

![Fig. 4– SIP Registration](image)

Participants (User Terminal, Radio) **SHALL** use INVITE to establish a session. This session setup provides the session description (connection information) and media description (media name and transport address) of each participant.

© EUROCAE, 2009
Fig. 5– SIP Session Setup

<table>
<thead>
<tr>
<th>Recorder</th>
<th>Terminal</th>
<th>Radio</th>
<th>Recorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVITE</td>
<td></td>
<td>200 OK</td>
<td>INVITE</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>ACK</td>
<td></td>
<td>200 OK</td>
<td>ACK</td>
</tr>
<tr>
<td>TCP</td>
<td></td>
<td>TCP</td>
<td>TCP</td>
</tr>
</tbody>
</table>

Fig. 6– SIP Session Setup: Message Sequence

Example for a SIP session setup from a User Terminal or Radio to the Recorder:

Request:

```
INVITE sip:recorder@atc.org SIP/2.0
... Content-Type: application/sdp
Content-Length: 87
v=0
o=0 0 IN IP4 192.0.2.94
s=Recording
t=0 0
c=IN IP4 192.0.2.94
m=application 10554 rtsp rec
```

Response:

```
SIP/2.0 200 OK
... Content-Type: application/sdp
Content-Length: 87
v=0
o=0 0 IN IP4 192.0.2.25
s=Recording
t=0 0
c=IN IP4 192.0.2.25
m=application 20554 rtsp rec
```

The session description SHALL NOT specify the used transport protocol, as this is part of the RTSP session description.

2.4.2 RTSP

User Terminals SHALL use RTSP to enable controlled, on-demand delivery of real-time data. Systems implementing RTSP SHOULD support carrying RTSP over TCP and MAY support UDP. The default port for the RTSP server SHALL be 554 for both UDP and TCP.
The following assumes that the IP address of the Recorder is known and a TCP session has been established. Participants (User Terminals, Radios) **SHALL** use ANNOUNCE and SETUP to establish a recording session. Participants (User Terminals) **MAY** use DESCRIBE and SETUP to establish a replay session. This session setup provides the session description (connection information) and media description (media name and transport address) of each participant. Participants (User Terminals, Radios) **SHALL** use TEARDOWN to close a session.

![Fig. 7– RTSP Record and Replay Session](image)

2.5 TRANSPORT

4 [RECORDING] Transport

Transport of media **SHOULD** be based on Embedded (interleaved) Binary Data and **MAY** be based on RTP over independent TCP or RTP over UDP, as described later in this section. The Transport request and response header field indicates which transport protocol is to be used and configures its parameters such as destination address, compression, multicast time-to-live and destination port for a single stream. It sets those values not already determined by a presentation description.

Transports are comma separated, listed in order of preference. Parameters may be added to each transport, separated by a semicolon. The server **SHOULD** return a Transport response-header field in the response to indicate the values actually chosen. The Transport header field **MAY** also be used to change certain transport parameters. A server **MAY** refuse to change parameters of an existing stream.

The general syntax for the transport specifier is a list of slash separated tokens:

```
Value1/Value2/Value3...
```

Which for RTP transports take the form:

```
RTP/profile/lower-transport
```

The default value for the "lower-transport" parameters is specific to the profile. For RTP/AVP, the default is UDP. The next section describes alternative transport methods.

2.5.1 EMBEDDED BINARY DATA

RTSP contains a syntax for interleaving the RTSP control stream with the data stream. This is called embedded (interleaved) binary data. Interleaved binary data **SHOULD** be used when RTSP is carried over TCP.

The channel identifier (CID) is defined in the transport header with the interleaved parameter. The following illustrates a client server session example using interleaved binary data with 0 as channel identifier.

Request:

```
SETUP rtsp://recorder:554/iprecorder/ RTSP/1.0
CSeq: 1
Transport: RTP/AVP/TCP;interleaved=0
```

Response:
2.5.1.1 FRAMING METHOD

Stream data such as RTP packets is encapsulated by an ASCII dollar sign (24 hexadecimal), followed by a one-byte channel identifier (CID), followed by the length of the encapsulated binary data as a binary, two-byte integer in network byte order. The stream data follows immediately afterwards, without a CRLF, but including the upper-layer protocol headers. Each $ block contains exactly one upper-layer protocol data unit, e.g., one RTP packet, see [5].

![Fig. 8– Embedded Binary Data Format](image)

2.5.2 RTP OVER INDEPENDENT TCP

This section adapts the guidelines for using RTP over TCP within SIP/SDP to work with RTSP as in [21].

There are two different methods for how to specify where the media should be delivered:

- **dest_addr**: The presence of this parameter and its values indicates the destination address or addresses (host address and port pairs for IP flows) necessary for the media transport.

- **No dest_addr**: The lack of the dest_addr parameter indicates that the server SHALL send media to the same address for which the RTSP messages originates. This does not work for transports requiring explicitly given destination ports.

A client codes the support of RTP over independent TCP by specifying an RTP/AVP/TCP transport option without an interleaved parameter. This transport option MUST include the "unicast" parameter. If the client wishes to use RTP with RTCP, two ports (or two address/port pairs) are specified by the dest_addr parameter. If the client wishes to use RTP without RTCP, one port (or one address/port pair) is specified by the dest_addr parameter.

If the client wishes to play the active role in initiating the TCP connection, it MAY set the "setup" parameter on the Transport line to be "active", or it MAY omit the setup parameter, as active is the default. If the client signals the active role, the ports for all dest_addr values MUST be set to 9 (the discard port).

If the client wishes to play the passive role in TCP connection initiation, it MUST set the "setup" parameter on the Transport line to be "passive". If the client is able to assume the active or the passive role, it MUST set the "setup" parameter on the Transport line to be "actpass". In either case, the dest_addr port value for RTP MUST be set to the TCP port number on which the client is expecting to receive the RTP stream connection, and the dest_addr port value for RTCP MUST be set to the TCP port number on which the client is expecting to receive the RTCP stream connection.

If upon receipt of a non-interleaved RTP/AVP/TCP request, a server decides to accept this requested option, the 2xx reply MUST contain a Transport option that specifies RTP/AVP/TCP (without using the interleaved parameter, and with using the unicast parameter). The dest_addr parameter value MUST be echoed from the parameter value in the client request unless the destination address (only port) was not provided in which case the server MAY include the source address of the RTSP TCP connection with the port number unchanged.

© EUROCAE, 2009
In addition, the server reply **MUST** set the setup parameter on the Transport line, to indicate the role the server will play in the connection setup. Permissible values are "active" (if a client set "setup" to "passive" or "actpass") and "passive" (if a client set "setup" to "active" or "actpass").

If a server sets "setup" to "passive", the "src_addr" in the reply **MUST** indicate the ports the server is willing to receive an RTP connection and (if the client requested an RTCP connection by specifying two dest_addr ports or address/port pairs) and RTCP connection. If a server sets "setup" to "active", the ports specified in "src_addr" **MUST** be set to 9.

The following illustrates a client server session example using RTP over independent TCP.

Request:

```
SETUP rtsp://recorder:554/irecorder/ RTSP/1.0
CSeq: 1
Transport: RTP/AVP/TCP;unicast;mode="RECORD";dest_addr=":9";setup=active;connection=new
```

Response:

```
RTSP/1.0 200 OK
CSeq: 1
Session: c408358f-a233-4dd2-9fb6-a338953cc8b2
Transport: RTP/AVP/TCP;unicast;dest_addr=":9";src_addr="192.0.2.5:9000";setup=passive;connection=new;ssrc=93CB001E
```

2.5.2.1 FRAMING METHOD

A 16-bit unsigned integer LENGTH field, coded in network byte order (big-endian), begins the frame. If LENGTH is non-zero, an RTP or RTCP packet follows the LENGTH field. The value coded in the LENGTH field **MUST** equal the number of octets in the RTP or RTCP packet. Zero is a valid value for LENGTH, and it codes the null packet, as in [25].

![TCP Frame Format](image)

Fig. 9– TCP Frame Format

2.5.3 RTP OVER UDP

The implementation of RTP over UDP **SHALL** be implemented according the guidelines of RFC2326, see [5].
2.6 RTSP CONTROL MESSAGES

2.6.1 ANNOUNCE AND SETUP

These messages SHALL be used to establish a recording session. The message body of ANNOUNCE SHALL contain a description of the media referenced by the requested URL, (e.g. rtsp://recorder:554/iprecorder/) using SDP, as in [8].

```
ANNOUNCE rtsp://recorder:554/iprecorder/ RTSP/1.0
CSeq: 1
Content-Type: application/sdp

v=0
o=first 2520644554 2838152170 IN IP4 first.example.net
s=Example
t=0 0
c=IN IP4 192.0.2.105
m=audio 0 RTP/AVP 8
a=rtpmap:8 PCMA/8000
```

```
SETUP rtsp://recorder:554/iprecorder/ RTSP/1.0
CSeq: 1
Transport: RTP/AVP/TCP; interleaved=0
```

```
RTSP/1.0 200 OK
CSeq: 1
Session: c408358f-a233-4dd2-9fb6-a338953cc8b2
Transport: RTP/AVP/TCP; interleaved=0
```

```
Terminal          Recorder
                 ANNOUNCE
                 ----------->
                 SETUP
                 ----------->
                 200 OK
                 <----------
                 RTSP
                 <---------->
```

Fig. 10– RTSP Record Session Setup

The following gives an example for a RTSP session setup using embedded (interleaved) binary data (request and response):
2.6.2 RECORD

This message SHALL be used to start data transmission on the stream allocated via SETUP. Clients (Terminals) MAY offer a connection reference to the recorder using an XML encoded message body (see section 2.7 for details). If clients are not able to provide a connection reference in their initial request, the answer or server response SHALL contain a server generated connection reference.

However, clients MAY already submit call record data using the defined XML structure (see section 2.7 for details) within the RECORD message and SHALL leave the connref parameter blank if they are not able to provide a connection reference value.

If the connection reference is provided by the client (request), the server (recorder) SHALL use the same connref value in the response. The following gives an example to start recording including a client generated connection reference value (request and response):

```
RECORD rtsp://recorder:554/iprecorder/ RTSP/1.0
CSeq: 2
Session: c408358f-a233-4dd2-9fb6-a338953cc8b2
Content-Type: application/x-crd+xml
<call-record-data connref="403C232A-C510-45C7-973E-D55F5CF996AF" />
(see section 2.7. for content details)
```

```
RTSP/1.0 200 OK
CSeq: 2
Session: c408358f-a233-4dd2-9fb6-a338953cc8b2
Content-Type: application/x-crd+xml
<call-record-data connref="403C232A-C510-45C7-973E-D55F5CF996AF" />
(see section 2.7. for content details)
```

Fig. 12– RECORD: Messages and Sequence

2.6.3 PAUSE

This message SHALL be used to interrupt (halt) stream delivery on the stream allocated via ANNOUNCE/SETUP (request and response):

```
PAUSE rtsp://recorder:554/iprecorder/ RTSP/1.0
CSeq: 2
Session: c408358f-a233-4dd2-9fb6-a338953cc8b2
```

```
RTSP/1.0 200 OK
CSeq: 2
Session: c408358f-a233-4dd2-9fb6-a338953cc8b2
```

Fig. 13– PAUSE: Messages and Sequence

2.6.4 SET_PARAMETER

This message SHALL be used to set the value of a parameter (call record data) for a presentation or stream specified by the URI (request and response):
SET_PARAMETER
rtsp://recorder:554/iprecorder/ RTSP/1.0
CSeq: 3
Session: c408358f-a233-4dd2-9fb6-a338953cc8b2
Content-Type: application/x-crd+xml
(see section 2.7. for content details)

RTSP/1.0 200 OK
CSeq: 3
Session: c408358f-a233-4dd2-9fb6-a338953cc8b2

Fig. 14– SET_PARAMETER: Messages and Sequence

2.6.5 TEARDOWN
This message SHALL be used to free resources associated with the stream specified by the URI (request and response):

TEARDOWN rtsp://recorder:554/iprecorder/ RTSP/1.0
CSeq: 4
Session: c408358f-a233-4dd2-9fb6-a338953cc8b2

RTSP/1.0 200 OK
CSeq: 4
Session: c408358f-a233-4dd2-9fb6-a338953cc8b2

Fig. 15– TEARDOWN: Messages and Sequence

2.6.6 REPLAY (optional)
This message sequence MAY be used to replay stored information at a replay client. Note: This is seen as optional feature.

DESCRIBE rtsp://recorder:554/replay/?connref=403C232A-C510-45C7-973E-D55F5CF996AF RTSP/1.0
CSeq: 2
Accept: application/sdp

RTSP/1.0 200 OK
CSeq: 2
Server: Example Recorder
Content-Type: application/sdp
Content-Length: 157
v=0
o=unnamed 0 0 IN IP4 playback.example.net
s=Example Stream
t=0 0
a=range:npt=0.0-9.420000000
a=length:npt=9.420000000
m=audio 0 RTP/AVP 8
a=rtpmap:8 PCMA/8000

SETUP rtsp://recorder:554/replay/?connref=403C232A-C510-45C7-973E-D55F5CF996AF RTSP/1.0
CSeq: 3
Transport: RTP/AVP/TCP;unicast;mode="PLAY";dest_addr=":9";setup=active;connection=new

RTSP/1.0 200 OK
CSeq: 3
Session: 2da07059-961e-4998-81f8-0f6345e0b15f
Server: Example Recorder
Transport: RTP/AVP/TCP;unicast;dest_addr=:9*/:9*/:src_addr=192.0.2.5:9000;setup=passive
connection=new;ssrc=91CB001E
Fig. 16– RTSP Replay Session: Messages and Sequence

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Recorder</th>
<th>Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIBE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAUSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 Success</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEARDOWN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 OK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RTSP/1.0 200 Success
CSeq: 4
Session: 2da07059-961e-4998-81f8-0f6345e0b15f
Range: npt=0-9.419

RTSP/1.0 200 Success
CSeq: 5
Session: 2da07059-961e-4998-81f8-0f6345e0b15f
Server: Example Recorder

RTSP/1.0 200 OK
CSeq: 4
Session: c408358f-a233-4dd2-9fb6-a338953cc8b2
2.7 CALL RECORD DATA FORMAT

The following XML structure SHALL be used to transmit call record data within a SET_PARAMETER message:

```xml
<call-record-data connref="403C232A-C510-45C7-973E-D55F5C5F996AF">
  <properties>
    <property name="">value</property>
  </properties>
  <operations>
    <operation name="" time="[utc-datetime]">value</operation>
  </operations>
</call-record-data>
```

Call Record data SHALL be composed of properties and operations. Any timestamp SHOULD be set by the client since it has the exact time reference for any local event. If a timestamp value is omitted, the server SHALL use the timestamp of arrival of the message.

2.7.1 PROPERTIES

Properties are single values that will not change during the lifetime of a connection and usually do not require a time reference, except for properties that are representing timestamp information. A client MAY send an updated value of a property that he already set if the new value is a more accurate one. In that case the recorder MAY overwrite the previous value if present. The recorder does not need to hold any previous values since properties are only those values that can have only one instance for a connection. For instance, the direction of the connection never changes during its lifetime. Examples:

- Direction (of the connection): 0 = unknown (default), 1 = incoming, 2 = outgoing
- Priority: 0 = highest ... 4 = lowest (normal, default)
- CallingNr, CalledNr, AlertingNr, ConnectedNr: preferred in "tel:" URI format
- SetupTime, AlertTime, ConnectTime, DisconnectTime, ReleaseTime: utc-datetime
- DisconnectCause: Cause values according to ITU-T Rec. Q.931
- DisconnectSource: 0 = unknown (default), 1 = endpoint, 2 = other
- Type: Classification of transported data. Values according to BasicService enumeration of ECMA 242 (default = 1, speech)

2.7.2 OPERATIONS

Operations are events during the lifetime of a connection that may happen at any time and SHOULD be preserved at the recorder. Examples:

- RedirectedNr: Representing a "tel:" URI format to notify a redirection with the new target.
- CallRef, ThreadRef (including e.g. a UUID): Values are typically changing during call transfers.
- PTT-State: Change of PTT state; 0 = off, 1 = on
2.8 REFERENCING CALL SCENARIOS

Please note that this section is seen as recommendation for referencing call scenarios and not as mandatory requirement. Generally, a call establishing endpoint has to tell its partner a reference with which both can assign their recordings. With this reference, later statistical evaluations about the call scenario can be done. If recorded connections are not referenced, just limited evaluation is possible.

The recorder **SHOULD** know three reference values:

- **ConnRef**: Identifying a connection that describes the details from the viewpoint of an endpoint.
- **CallRef**: Identifying a call that has one or typically two connections assigned.
- **ThreadRef**: Identifying a thread (a call scenario in general) that has one or more calls assigned.

For instance, endpoint A starts a new call scenario by creating an outgoing connection. In this case, it also creates new call and thread references which will be sent along the setup messages. Endpoint B receives an incoming request, creates an incoming connection and associates it with the call and thread references that were sent along with the setup.

![Fig. 17– Call Scenario](image)

If such references are missing, B creates new ones. After some time, B wants to make a call to C. B puts A on hold and creates an outgoing connection together with a new call reference, but assigns the existing thread reference. Endpoint C receives an incoming request and behaves like B before. If now B wanted to transfer A to C it would, as the initiator, create a new call reference and send it along with the transfer notification message. B then would release its connections. Otherwise A and C assign their connections to the newly created call reference but would still remain under the same thread reference. This way all operations are referenced via the thread. Such reference values, defining a call or thread, **MAY** be transported to the other endpoint using a SIP method (like INFO).
CHAPTER 3

PHONE

3.1 AUDIO SOURCE AND CODING

The User Terminal SHALL provide a summarized audio signal (IN & OUT) as a single coded PCM (G.711a) stream that is sent to the Recorder using RTP.

![Audio Source at User Terminal (G/G)](image)

3.2 CALL RECORD DATA

User Terminals (T) SHALL transmit the following properties to the Recorder using SET_PARAMETER.

<table>
<thead>
<tr>
<th>Property</th>
<th>Format</th>
<th>Description/Example</th>
<th>Source</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>INTEGER</td>
<td>0...unknown, 1...incoming, 2...outgoing</td>
<td>T</td>
<td>mandatory</td>
</tr>
<tr>
<td>Priority</td>
<td>INTEGER</td>
<td>1...highest ... 5...lowest</td>
<td>T</td>
<td>mandatory</td>
</tr>
<tr>
<td>CallingNr</td>
<td>TEL URI</td>
<td>tel:+4311503</td>
<td>T</td>
<td>mandatory</td>
</tr>
<tr>
<td>CalledNr</td>
<td>TEL URI</td>
<td>tel:+4311503</td>
<td>T</td>
<td>optional</td>
</tr>
<tr>
<td>AlertingNr</td>
<td>TEL URI</td>
<td>tel:+4311503</td>
<td>T</td>
<td>optional</td>
</tr>
<tr>
<td>ConnectedNr</td>
<td>TEL URI</td>
<td>tel:+4311503</td>
<td>T</td>
<td>optional</td>
</tr>
<tr>
<td>SetupTime</td>
<td>UTC DATETIME</td>
<td>20070801T054030.123Z</td>
<td>T</td>
<td>mandatory</td>
</tr>
<tr>
<td>AlertTime</td>
<td>UTC DATETIME</td>
<td>20070801T054030.123Z</td>
<td>T</td>
<td>optional</td>
</tr>
<tr>
<td>ConnectTime</td>
<td>UTC DATETIME</td>
<td>20070801T054030.123Z</td>
<td>T</td>
<td>optional</td>
</tr>
<tr>
<td>DisconnectTime</td>
<td>UTC DATETIME</td>
<td>20070801T054030.123Z</td>
<td>T</td>
<td>optional</td>
</tr>
<tr>
<td>ReleaseTime</td>
<td>UTC DATETIME</td>
<td>20070801T054030.123Z</td>
<td>T</td>
<td>optional</td>
</tr>
<tr>
<td>DisconnectCause</td>
<td>INTEGER</td>
<td>ITU-T Rec. Q.931</td>
<td>T</td>
<td>optional</td>
</tr>
<tr>
<td>DisconnectSource</td>
<td>INTEGER</td>
<td>1...endpoint, 2...other</td>
<td>T</td>
<td>optional</td>
</tr>
<tr>
<td>Type</td>
<td>INTEGER</td>
<td>1...speech</td>
<td>T</td>
<td>optional</td>
</tr>
</tbody>
</table>

User Terminals (T) SHALL transmit the following operations to the Recorder using SET_PARAMETER. Note: Operations include per definition a UTC date-time reference as unique...
timestamp.

Table 2– List of Phone Operations

<table>
<thead>
<tr>
<th>Property</th>
<th>Format</th>
<th>Description/Example</th>
<th>Source</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>RedirectedNr</td>
<td>TEL URI</td>
<td>tel:+4311503</td>
<td>T</td>
<td>mandatory</td>
</tr>
<tr>
<td>CallRef</td>
<td>UUID</td>
<td><uuid></td>
<td>T</td>
<td>optional</td>
</tr>
<tr>
<td>ThreadRef</td>
<td>UUID</td>
<td><uuid></td>
<td>T</td>
<td>optional</td>
</tr>
</tbody>
</table>
CHAPTER 4

RADIO

4.1 AUDIO SOURCE AND CODING

The Radio (or a gateway to the Radio) \textbf{SHALL} provide a single audio signal (RX) as a single coded PCM (G.711a) stream that is sent to the Recorder using RTP without header extension (HE).

\textbf{Fig. 19– Audio Source at Radio (A/G)}

The User Terminal \textbf{SHALL} provide a summarized audio signal (RX & TX) as a single coded PCM (G.711a) stream that is sent to the Recorder using RTP without header extension (HE).

\textbf{Fig. 20– Audio Source at User Terminal (A/G)}
4.2 CALL RECORD DATA

User Terminals (T) **SHALL** and Radios (R) **MAY** transmit the following properties to the Recorder using SET_PARAMETER.

<table>
<thead>
<tr>
<th>Property</th>
<th>Format</th>
<th>Description/Example</th>
<th>Source</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrequencyID</td>
<td>STRING</td>
<td>118.005</td>
<td>T, R</td>
<td>mandatory</td>
</tr>
<tr>
<td>BSS Quality Index</td>
<td>INTEGER</td>
<td>-100...-70 (RSSI)</td>
<td>R</td>
<td>optional</td>
</tr>
<tr>
<td>BSS Method</td>
<td>INTEGER</td>
<td>0...7</td>
<td>R</td>
<td>optional</td>
</tr>
</tbody>
</table>

User Terminals (T) **SHALL** and Radios (R) **MAY** transmit the following operations to the Recorder using SET_PARAMETER. Note: Operations include per definition a UTC date-time reference as unique timestamp.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Format</th>
<th>Description/Example</th>
<th>Source</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTT</td>
<td>INTEGER</td>
<td>1...on 2...off</td>
<td>T</td>
<td>mandatory</td>
</tr>
<tr>
<td>SQU</td>
<td>INTEGER</td>
<td>1...on 2...off</td>
<td>R</td>
<td>optional</td>
</tr>
<tr>
<td>Simultaneous Transmission</td>
<td>INTEGER</td>
<td>0-MAX_NB_TRANS</td>
<td>R</td>
<td>optional</td>
</tr>
</tbody>
</table>
ANNEX A

REFERENCES

[36] ECMA-312: “Private Integrated Services Network (PISN); Profile Standard for the Use of PSS1 (QSIG) in Air Traffic Services Networks”.

[37] ECMA-339: “Corporate Telecommunication Networks; Signalling Interworking between QSIG and SIP; Basic Services.”

© EUROCAE, 2009
ANNEX B

ACRONYMS

Ack Acknowledge
AGVN Air Traffic Services Ground Voice communications Network
A/G Air/Ground
AM Amplitude Modulation
ANSP Air Navigation Service Provider
ATA Analogue Telephone Adapter
ATC Air Traffic Control
ATM Air Traffic Management
ATS Air Traffic Services
ATS-No.5 Air Traffic Services – No.5 signalling system
ATS-QSIG Air Traffic Services – Q reference point SIGnalling system
ATS-R2 Air Traffic Services – R2 signalling system
AVP Audio/Video Profile
CICL Call Intrusion Capability Level
CIPL Call Intrusion Protection Level
CPICL Call Priority Interruption Capability Level
CPIPL Call Priority Interruption Protection Level
CWP Controller Working Position
DA Direct Access
DNS Domain Name Service
ECMA European Computer Manufacturers Association
G/G Ground/Ground
HMI Human Machine Interface
HTTP HyperText Transfer Protocol
IA Instantaneous Access
ICCVC Instantaneous Controller-Controller Voice Communication
IDA InDirect Access
IETF Internet Engineering Task Force
IP Internet Protocol
ISDN Integrated Services Digital Network
ITU-T International Telecommunication Union – Telecommunication standardization sector
LAN Local Area Network
LD-CELP Low Delay - Code Excited Linear Prediction
MF Multi-Frequency
MFC Multi-Frequency Code
MSC Message Sequence Chart
PABX Private Automatic Branch eXchange
PCM Pulse Code Modulation
PINX Private Integrated services Network eXchange
PISN Private Integrated Services Network
PSS1 Private Signalling System no. 1
PSTN Public Switched Telephone Network
QoS Quality of Service
Rec. Recommendation
RFC Request For Comments
RTCP Real-time Control Protocol
RTP Real-time Transport Protocol
Rx Reception
S/MIME Secure / Multipurpose Internet Mail Extensions
SDP Session Description Protocol
SIP Session Initiation Protocol
SS-IA Instantaneous Access Supplementary Service
TCP Transmission Control Protocol
TDM Time Division Multiplexing
TLS Transport Layer Secure protocol

© EUROCAE, 2009
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TU</td>
<td>Transaction User</td>
</tr>
<tr>
<td>Tx</td>
<td>Transmission</td>
</tr>
<tr>
<td>UA</td>
<td>User Agent</td>
</tr>
<tr>
<td>UAC</td>
<td>User Agent Client</td>
</tr>
<tr>
<td>UAS</td>
<td>User Agent Server</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>URI</td>
<td>Universal Resource Identifier</td>
</tr>
<tr>
<td>UHF</td>
<td>Ultra-High Frequency</td>
</tr>
<tr>
<td>VCS</td>
<td>Voice Communications System</td>
</tr>
<tr>
<td>VHF</td>
<td>Very High Frequency</td>
</tr>
<tr>
<td>VoIP</td>
<td>Voice over the Internet Protocol</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
</tbody>
</table>
ANNEX C

LIST OF EUROCAE WG-67 CONTRIBUTORS

<table>
<thead>
<tr>
<th>SURNAME</th>
<th>NAME</th>
<th>COMPANY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADRIAN</td>
<td>Andre</td>
<td>DFS</td>
</tr>
<tr>
<td>GELADA</td>
<td>Mario</td>
<td>ATIS</td>
</tr>
<tr>
<td>HAINDL</td>
<td>Bernhard</td>
<td>FREQUENTIS</td>
</tr>
<tr>
<td>KAMPICHLER</td>
<td>Wolfgang</td>
<td>FREQUENTIS</td>
</tr>
<tr>
<td>MARTÍN</td>
<td>Miguel A.</td>
<td>AENA</td>
</tr>
<tr>
<td>PALMER</td>
<td>John S.</td>
<td>JSP-TELECONSULTANCY</td>
</tr>
<tr>
<td>SMITH</td>
<td>Barry</td>
<td>FAA</td>
</tr>
<tr>
<td>STANDEREN</td>
<td>Egil</td>
<td>THALES-NO</td>
</tr>
<tr>
<td>WEGER</td>
<td>Roberto</td>
<td>SITTI</td>
</tr>
<tr>
<td>ZOMIGNANI</td>
<td>Marcelo</td>
<td>INDRA SISTEMAS</td>
</tr>
</tbody>
</table>