
Network Working Group J. Rosenberg/H. Schulzrinne/G. Camarillo/A. Johnston/J. Peterson/R. Sparks/M. Handley/E. Schooler

Request for Comments: 3261 dynamicsoft/Columbia U./Ericsson/Worldcom/Neustar/dynamicsoft/ICIR/AT&T

Category: Standards Track June 2002
Obsoletes: 2543

SIP: Session Initiation Protocol

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discus-
sion and suggestions for improvements. Please refer to the current edition of the “Internet Official Protocol
Standards” (STD 1) for the standardization state and status of this protocol. Distribution of this memo is
unlimited.

Copyright Notice

Copyright (c) The Internet Society (2002). All Rights Reserved.

Abstract

This document describes Session Initiation Protocol (SIP), an application-layer control (signaling)
protocol for creating, modifying, and terminating sessions with one or more participants. These sessions
include Internet telephone calls, multimedia distribution, and multimedia conferences.

SIP invitations used to create sessions carry session descriptions that allow participants to agree on
a set of compatible media types. SIP makes use of elements called proxy servers to help route requests
to the user’s current location, authenticate and authorize users for services, implement provider call-
routing policies, and provide features to users. SIP also provides a registration function that allows users
to upload their current locations for use by proxy servers. SIP runs on top of several different transport
protocols.

Contents
1 Introduction 9
2 Overview of SIP Functionality 10

3 Terminology 11

4 Overview of Operation 11

5 Structure of the Protocol 16

6 Definitions 18

RFC 3261 SIP: Session Initiation Protocol June 2002

7 SIP Messages 22

7.1 Requests . 23

7.2 Responses . 23

7.3 Header Fields . 24

7.3.1 Header Field Format . 24

7.3.2 Header Field Classification 27

7.3.3 Compact Form . 27

7.4 Bodies . 27

7.4.1 Message Body Type. 27

7.4.2 Message Body Length. 28

7.5 Framing SIP Messages 28

8 General User Agent Behavior 28

8.1 UAC Behavior . 28

8.1.1 Generating the Request . 29

8.1.2 Sending the Request . 33

8.1.3 Processing Responses. 33

8.2 UAS Behavior . 36

8.2.1 Method Inspection . 36

8.2.2 Header Inspection . 36

8.2.3 Content Processing .. 38

8.2.4 Applying Extensions . 38

8.2.5 Processing the Request. 38

8.2.6 Generating the Response. 38

8.2.7 Stateless UAS Behavior . 39

8.3 Redirect Servers . 40

9 Canceling a Request 41

9.1 Client Behavior . 41

9.2 Server Behavior . 42

10 Registrations 43

10.1 Overview . 43

10.2 Constructing theREGISTER Request . 44

10.2.1 Adding Bindings . 45

10.2.2 Removing Bindings . 46

Rosenberg, et al. Standards Track [Page 2]

RFC 3261 SIP: Session Initiation Protocol June 2002

10.2.3 Fetching Bindings . 47

10.2.4 Refreshing Bindings . 47

10.2.5 Setting the Internal Clock 47

10.2.6 Discovering a Registrar . 47

10.2.7 Transmitting a Request. 47

10.2.8 Error Responses . 48

10.3 ProcessingREGISTER Requests . 48

11 Querying for Capabilities 50

11.1 Construction ofOPTIONS Request . 50

11.2 Processing ofOPTIONS Request . 51

12 Dialogs 52

12.1 Creation of a Dialog . 53

12.1.1 UAS behavior . 53

12.1.2 UAC Behavior . 54

12.2 Requests within a Dialog . 54

12.2.1 UAC Behavior . 55

12.2.2 UAS Behavior . 57

12.3 Termination of a Dialog . 58

13 Initiating a Session 58

13.1 Overview . 58

13.2 UAC Processing . .. 58

13.2.1 Creating the InitialINVITE . 58

13.2.2 ProcessingINVITE Responses . 60

13.3 UAS Processing . .. 62

13.3.1 Processing of theINVITE . 62

14 Modifying an Existing Session 64

14.1 UAC Behavior . 64

14.2 UAS Behavior . 65

15 Terminating a Session 66

15.1 Terminating a Session with aBYE Request . 67

15.1.1 UAC Behavior . 67

15.1.2 UAS Behavior . 67

Rosenberg, et al. Standards Track [Page 3]

RFC 3261 SIP: Session Initiation Protocol June 2002

16 Proxy Behavior 67

16.1 Overview . 67

16.2 Stateful Proxy . 68

16.3 Request Validation . 69

16.4 Route Information Preprocessing 71

16.5 Determining Request Targets . 71

16.6 Request Forwarding . 73

16.7 Response Processing. 78

16.8 Processing Timer C. 83

16.9 Handling Transport Errors . 83

16.10CANCEL Processing. 84

16.11Stateless Proxy . 84

16.12Summary of ProxyRoute Processing .. 86

16.12.1 Examples . 86

17 Transactions 89

17.1 Client Transaction . 91

17.1.1 INVITE Client Transaction . 91

17.1.2 Non-INVITE Client Transaction . 95

17.1.3 Matching Responses to Client Transactions . 96

17.1.4 Handling Transport Errors . 96

17.2 Server Transaction . 96

17.2.1 INVITE Server Transaction . 98

17.2.2 Non-INVITE Server Transaction . 100

17.2.3 Matching Requests toServer Transactions . 100

17.2.4 Handling Transport Errors . 101

18 Transport 101

18.1 Clients . 103

18.1.1 Sending Requests . 103

18.1.2 Receiving Responses. 104

18.2 Servers . 105

18.2.1 Receiving Requests .. 105

18.2.2 Sending Responses . 106

18.3 Framing . 106

18.4 Error Handling . 106

Rosenberg, et al. Standards Track [Page 4]

RFC 3261 SIP: Session Initiation Protocol June 2002

19 Common Message Components 107

19.1 SIP and SIPS Uniform Resource Indicators . 107

19.1.1 SIP and SIPS URI Components. 107

19.1.2 Character Escaping Requirements. 110

19.1.3 Example SIP and SIPS URIs . 111

19.1.4 URI Comparison . 111

19.1.5 Forming Requests from a URI . 113

19.1.6 Relating SIP URIs and tel URLs . 114

19.2 Option Tags . 115

19.3 Tags . 115

20 Header Fields 116

20.1 Accept . 117

20.2 Accept-Encoding . 117

20.3 Accept-Language . 119

20.4 Alert-Info . 120

20.5 Allow . 120

20.6 Authentication-Info . 120

20.7 Authorization . 121

20.8 Call-ID . 121

20.9 Call-Info . 121

20.10Contact . 122

20.11Content-Disposition. 122

20.12Content-Encoding . 123

20.13Content-Language . 123

20.14Content-Length . 124

20.15Content-Type . 124

20.16CSeq . 124

20.17Date . 124

20.18Error-Info . 125

20.19Expires . 125

20.20From . 125

20.21In-Reply-To . 126

20.22Max-Forwards . 126

20.23Min-Expires . 127

20.24MIME-Version . 127

Rosenberg, et al. Standards Track [Page 5]

RFC 3261 SIP: Session Initiation Protocol June 2002

20.25Organization . 127

20.26Priority . 127

20.27Proxy-Authenticate . 128

20.28Proxy-Authorization . 128

20.29Proxy-Require . 128

20.30Record-Route . 128

20.31Reply-To . 129

20.32Require . 129

20.33Retry-After . 129

20.34Route . 130

20.35Server . 130

20.36Subject . 130

20.37Supported . 130

20.38Timestamp . 131

20.39To . 131

20.40Unsupported . 131

20.41User-Agent . 131

20.42Via . 132

20.43Warning . 132

20.44WWW-Authenticate . 134

21 Response Codes 134

21.1 Provisional 1xx . 134

21.1.1 100 Trying . 134

21.1.2 180 Ringing . 134

21.1.3 181 Call Is Being Forwarded . 134

21.1.4 182 Queued . 135

21.1.5 183 Session Progress. 135

21.2 Successful 2xx . .. 135

21.2.1 200 OK . 135

21.3 Redirection 3xx . 135

21.3.1 300 Multiple Choices. 135

21.3.2 301 Moved Permanently . 136

21.3.3 302 Moved Temporarily. 136

21.3.4 305 Use Proxy . 136

21.3.5 380 Alternative Service . 136

Rosenberg, et al. Standards Track [Page 6]

RFC 3261 SIP: Session Initiation Protocol June 2002

21.4 Request Failure 4xx . 136

21.4.1 400 Bad Request . 136

21.4.2 401 Unauthorized . 137

21.4.3 402 Payment Required . 137

21.4.4 403 Forbidden . 137

21.4.5 404 Not Found 137

21.4.6 405 Method Not Allowed . 137

21.4.7 406 Not Acceptable .. 137

21.4.8 407 Proxy Authentication Required . 137

21.4.9 408 Request Timeout . 137

21.4.10 410 Gone . 138

21.4.11 413 Request Entity Too Large .. 138

21.4.12 414Request-URI Too Long . 138

21.4.13 415Unsupported Media Type . 138

21.4.14 416Unsupported URI Scheme . 138

21.4.15 420 Bad Extension . 138

21.4.16 421 Extension Required . 138

21.4.17 423 Interval Too Brief . 139

21.4.18 480 Temporarily Unavailable . .. 139

21.4.19 481 Call/Transaction Does Not Exist 139

21.4.20 482 Loop Detected . 139

21.4.21 483 Too Many Hops . 139

21.4.22 484 Address Incomplete . 139

21.4.23 485 Ambiguous 140

21.4.24 486 Busy Here . 140

21.4.25 487 Request Terminated . 140

21.4.26 488 Not Acceptable Here. 140

21.4.27 491 Request Pending . 140

21.4.28 493 Undecipherable . 141

21.5 Server Failure 5xx . 141

21.5.1 500Server Internal Error . 141

21.5.2 501 Not Implemented . 141

21.5.3 502 Bad Gateway . 141

21.5.4 503 Service Unavailable . 141

21.5.5 504Server Time-out . 142

Rosenberg, et al. Standards Track [Page 7]

RFC 3261 SIP: Session Initiation Protocol June 2002

21.5.6 505 Version NotSupported . 142

21.5.7 513 Message Too Large. 142

21.6 Global Failures 6xx . 142

21.6.1 600 Busy Everywhere . 142

21.6.2 603 Decline . 142

21.6.3 604 Does Not Exist Anywhere . 142

21.6.4 606 Not Acceptable .. 142

22 Usage of HTTP Authentication 143

22.1 Framework . 143

22.2 User-to-User Authentication . 145

22.3 Proxy-to-User Authentication . 146

22.4 The Digest Authentication Scheme . 147

23 S/MIME 148

23.1 S/MIME Certificates . 149

23.2 S/MIME Key Exchange . 149

23.3 Securing MIME bodies 151

23.4 SIP Header Privacy and Integrity using S/MIME: Tunneling SIP. 152

23.4.1 Integrity and Confidentiality Properties of SIP Headers. 153

23.4.2 Tunneling Integrity and Authentication .. 154

23.4.3 Tunneling Encryption . 156

24 Examples 157

24.1 Registration . 157

24.2 Session Setup 158

25 Augmented BNF for the SIP Protocol 163

25.1 Basic Rules . 163

26 Security Considerations: Threat Model and Security Usage Recommendations 176

26.1 Attacks and Threat Models . 177

26.1.1 Registration Hijacking . 177

26.1.2 Impersonating aServer . 178

26.1.3 Tampering with Message Bodies. 178

26.1.4 Tearing Down Sessions. 179

26.1.5 Denial of Service and Amplification . 179

Rosenberg, et al. Standards Track [Page 8]

RFC 3261 SIP: Session Initiation Protocol June 2002

26.2 Security Mechanisms. 180

26.2.1 Transport and Network Layer Security . .. 180

26.2.2 SIPS URI Scheme . 181

26.2.3 HTTP Authentication . 182

26.2.4 S/MIME . 182

26.3 Implementing Security Mechanisms . .. 182

26.3.1 Requirements for Implementers of SIP . 182

26.3.2 Security Solutions .. 183

26.4 Limitations . 186

26.4.1 HTTP Digest . 187

26.4.2 S/MIME . 187

26.4.3 TLS . 188

26.4.4 SIPS URIs . 188

26.5 Privacy . 189

27 IANA Considerations 190

27.1 Option Tags . 190

27.2 Warn-Codes . 190

27.3 Header Field Names . 190

27.4 Method and Response Codes. 191

27.5 The “message/sip” MIME type.. 192

27.6 NewContent-Disposition Parameter Registrations . 192

28 ChangesFrom RFC 2543 192

28.1 Major Functional Changes . 193

28.2 Minor Functional Changes . 196

29 Acknowledgments 199

30 Authors’ Addresses 199

1 Introduction

There are many applications of the Internet that require the creation and management of a session, where
a session is considered an exchange of data between an association of participants. The implementation of
these applications is complicated by the practices of participants: users may move between endpoints, they
may be addressable by multiple names, and they may communicate in several different media - sometimes
simultaneously. Numerous protocols have been authored that carry various forms of real-time multimedia

Rosenberg, et al. Standards Track [Page 9]

RFC 3261 SIP: Session Initiation Protocol June 2002

session data such as voice, video, or text messages. The Session Initiation Protocol (SIP) works in con-
cert with these protocols by enabling Internet endpoints (called user agents) to discover one another and to
agree on a characterization of a session they would like to share. For locating prospective session partici-
pants, and for other functions, SIP enables the creation of an infrastructure of network hosts (called proxy
servers) to which user agents can send registrations, invitations to sessions, and other requests. SIP is an
agile, general-purpose tool for creating, modifying, and terminating sessions that works independently of
underlying transport protocols and without dependency on the type of session that is being established.

2 Overview of SIP Functionality

SIP is an application-layer control protocol that can establish, modify, and terminate multimedia sessions
(conferences) such as Internet telephony calls. SIP can also invite participants to already existing sessions,
such as multicast conferences. Media can be added to (and removed from) an existing session. SIP trans-
parently supports name mapping and redirection services, which supports personal mobility [27] - users can
maintain a single externally visible identifier regardless of their network location.

SIP supports five facets of establishing and terminating multimedia communications:

User location: determination of the end system to be used for communication;

User availability: determination of the willingness of the called party to engage in communications;

User capabilities: determination of the media and media parameters to be used;

Session setup:“ringing”, establishment of session parameters at both called and calling party;

Session management:including transfer and termination of sessions, modifying session parameters, and
invoking services.

SIP is not a vertically integrated communications system. SIP is rather a component that can be used with
other IETF protocols to build a complete multimedia architecture. Typically, these architectures will include
protocols such as the Real-time Transport Protocol (RTP) (RFC 1889 [28]) for transporting real-time data
and providing QoS feedback, the Real-Time streaming protocol (RTSP) (RFC 2326 [29]) for controlling
delivery of streaming media, the Media Gateway Control Protocol (MEGACO) (RFC 3015 [30]) for con-
trolling gateways to the Public Switched Telephone Network (PSTN), and the Session Description Protocol
(SDP) (RFC 2327 [1]) for describing multimedia sessions. Therefore, SIP should be used in conjunction
with other protocols in order to provide complete services to the users. However, the basic functionality and
operation of SIP does not depend on any of these protocols.

SIP does not provide services. Rather, SIP provides primitives that can be used to implement different
services. For example, SIP can locate a user and deliver an opaque object to his current location. If this
primitive is used to deliver a session description written in SDP, for instance, the endpoints can agree on the
parameters of a session. If the same primitive is used to deliver a photo of the caller as well as the session
description, a “caller ID” service can be easily implemented. As this example shows, a single primitive is
typically used to provide several different services.

SIP does not offer conference control services such as floor control or voting and does not prescribe how a
conference is to be managed. SIP can be used to initiate a session that uses some other conference control

Rosenberg, et al. Standards Track [Page 10]

RFC 3261 SIP: Session Initiation Protocol June 2002

protocol. Since SIP messages and the sessions they establish can pass through entirely different networks,
SIP cannot, and does not, provide any kind of network resource reservation capabilities.

The nature of the services provided make security particularly important.To that end, SIP provides a suite
of security services, which include denial-of-service prevention, authentication (both user to user and proxy
to user), integrity protection, and encryption and privacy services.

SIP works with both IPv4 and IPv6.

3 Terminology

In this document, the key wordsMUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD SHOULD

NOT, RECOMMENDED, NOT RECOMMENDED, MAY , andOPTIONAL are to be interpreted as described in
BCP 14, RFC 2119 [2] and indicate requirement levels for compliant SIP implementations.

4 Overview of Operation

This section introduces the basic operations of SIP using simple examples. This section is tutorial in nature
and does not contain any normative statements.

The first example shows the basic functions of SIP: location of an end point, signal of a desire to communi-
cate, negotiation of session parameters to establish the session, and teardown of the session once established.

Figure 1 shows a typical example of a SIP message exchange between two users, Alice and Bob. (Each
message is labeled with the letter “F” and a number for reference by the text.) In this example, Alice uses a
SIP application on her PC (referred to as a softphone) to call Bob on his SIP phone over the Internet. Also
shown are two SIP proxy servers that act on behalf of Alice and Bob to facilitate the session establishment.
This typical arrangement is often referred to as the “SIP trapezoid” as shown by the geometric shape of the
dotted lines in Figure 1.

Alice “calls” Bob using his SIP identity, a type of Uniform Resource Identifier (URI) called a SIP URI. SIP
URIs are defined in Section 19.1. It has a similar form to an email address, typically containing a username
and a host name. In this case, it issip:bob@biloxi.com , wherebiloxi.com is the domain of Bob’s
SIP service provider. Alice has a SIP URI ofsip:alice@atlanta.com . Alice might have typed in
Bob’s URI or perhaps clicked on a hyperlink or an entry in an address book. SIP also provides a secure
URI, called a SIPS URI. An example would besips:bob@biloxi.com . A call made to a SIPS URI
guarantees that secure, encrypted transport (namely TLS) is used to carry all SIP messages from the caller to
the domain of the callee. From there, the request is sent securely to the callee, but with security mechanisms
that depend on the policy of the domain of the callee.

SIP is based on an HTTP-like request/response transaction model. Each transaction consists of a request
that invokes a particular method, or function, on the server and at least one response. In this example, the
transaction begins with Alice’s softphone sending anINVITE request addressed to Bob’s SIP URI.INVITE
is an example of a SIP method that specifies the action that the requestor (Alice) wants the server (Bob)
to take. TheINVITE request contains a number of header fields. Header fields are named attributes that
provide additional information about a message. The ones present in anINVITE include a unique identifier
for the call, the destination address, Alice’s address, and information about the type of session that Alice

Rosenberg, et al. Standards Track [Page 11]

RFC 3261 SIP: Session Initiation Protocol June 2002

atlanta.com . . . biloxi.com
. proxy proxy .

. .
Alice’s . Bob’s

softphone SIP Phone
INVITE F1		
--------------->	INVITE F2	
100 Trying F3	--------------->	INVITE F4
<---------------	100 Trying F5	--------------->
	<--------------	180 Ringing F6
	180 Ringing F7	<---------------
180 Ringing F8	<---------------	200 OK F9
<---------------	200 OK F10	<---------------
200 OK F11	<---------------	
<---------------		
ACK F12		
--->		
Media Session		
<==>		
BYE F13		
<---		
200 OK F14		
--->		

Figure 1: SIP session setup example with SIP trapezoid

wishes to establish with Bob. TheINVITE (message F1 in Figure 1) might look like this:

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
Max-Forwards: 70
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@pc33.atlanta.com
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(Alice’s SDP not shown)

The first line of the text-encoded message contains the method name (INVITE). The lines that follow are a

Rosenberg, et al. Standards Track [Page 12]

RFC 3261 SIP: Session Initiation Protocol June 2002

list of header fields. This example contains a minimum required set. The header fields are briefly described
below:

Via contains the address (pc33.atlanta.com) at which Alice is expecting to receive responses to this
request. It also contains a branch parameter that identifies this transaction.

To contains a display name (Bob) and a SIP or SIPS URI (sip:bob@biloxi.com) towards which the
request was originally directed. Display names are described in RFC 2822 [3].

From also contains a display name (Alice) and a SIP or SIPS URI (sip:alice@atlanta.com) that
indicate the originator of the request. This header field also has a tag parameter containing a random string
(1928301774) that was added to the URI by the softphone. It is used for identification purposes.

Call-ID contains a globally unique identifier for this call, generated by the combination of a random string
and the softphone’s host name or IP address. The combination of theTo tag,From tag, andCall-ID com-
pletely defines a peer-to-peer SIP relationship between Alice and Bob and is referred to as a dialog.

CSeq or Command Sequence contains an integer and a method name. TheCSeq number is incremented
for each new request within a dialog and is a traditional sequence number.

Contact contains a SIP or SIPS URI that represents a direct route to contact Alice, usually composed of a
username at a fully qualified domain name (FQDN). While an FQDN is preferred, many end systems do not
have registered domain names, so IP addresses are permitted. While theVia header field tells other elements
where to send the response, theContact header field tells other elements where to send future requests.

Max-Forwards serves to limit the number of hops a request can make on the way to its destination. It
consists of an integer that is decremented by one at each hop.

Content-Type contains a description of the message body (not shown).

Content-Length contains an octet (byte) count of the message body.

The complete set of SIP header fields is defined in Section 20.

The details of the session, such as the type of media, codec, or sampling rate, are not described using SIP.
Rather, the body of a SIP message contains a description of the session, encoded in some other protocol
format. One such format is the Session Description Protocol (SDP) (RFC 2327 [1]). This SDP message (not
shown in the example) is carried by the SIP message in a way that is analogous to a document attachment
being carried by an email message, or a web page being carried in an HTTP message.

Since the softphone does not know the location of Bob or the SIP server in thebiloxi.com domain, the
softphone sends theINVITE to the SIP server that serves Alice’s domain,. The address of theatlanta.com
SIP server could have been configured in Alice’s softphone, or it could have been discovered by DHCP, for
example.

The SIP server is a type of SIP server known as a proxy server. A proxy server receives SIP requests and
forwards them on behalf of the requestor. In this example, the proxy server receives theINVITE request
and sends a 100 (Trying) response back to Alice’s softphone. The 100 (Trying) response indicates that the
INVITE has been received and that the proxy is working on her behalf to route theINVITE to the destination.
Responses in SIP use a three-digit code followed by a descriptive phrase. This response contains the same
To, From, Call-ID, CSeq and branch parameter in theVia as theINVITE, which allows Alice’s softphone
to correlate this response to the sentINVITE. Theatlanta.com proxy server locates the proxy server at
biloxi.com , possibly by performing a particular type of DNS (Domain Name Service) lookup to find
the SIP server that serves thebiloxi.com domain. This is described in [4]. As a result, it obtains the

Rosenberg, et al. Standards Track [Page 13]

RFC 3261 SIP: Session Initiation Protocol June 2002

IP address of thebiloxi.com proxy server and forwards, or proxies, theINVITE request there. Before
forwarding the request, the proxy server adds an additionalVia header field value that contains its own
address (theINVITE already contains Alice’s address in the firstVia). The biloxi.com proxy server
receives theINVITE and responds with a 100 (Trying) response back to the atlanta.com proxy server to
indicate that it has received theINVITE and is processing the request. The proxy server consults a database,
generically called a location service, that contains the current IP address of Bob. (We shall see in the next
section how this database can be populated.) Thebiloxi.com proxy server adds anotherVia header field
value with its own address to theINVITE and proxies it to Bob’s SIP phone.

Bob’s SIP phone receives theINVITE and alerts Bob to the incoming call from Alice so that Bob can decide
whether to answer the call, that is, Bob’s phone rings. Bob’s SIP phone indicates this in a 180 (Ringing)
response, which is routed back through the two proxies in the reverse direction. Each proxy uses theVia
header field to determine where to send the response and removes its own address from the top. As a result,
although DNS and location service lookups were required to route the initialINVITE, the 180 (Ringing)
response can be returned to the caller without lookups or without state being maintained in the proxies.
This also has the desirable property that each proxy that sees theINVITE will also see all responses to the
INVITE.

When Alice’s softphone receives the 180 (Ringing) response, it passes this information to Alice, perhaps
using an audio ringback tone or by displaying a message on Alice’s screen.

In this example, Bob decides to answer the call. When he picks up the handset, his SIP phone sends a 200
(OK) response to indicate that the call has been answered. The 200 (OK) contains a message body with the
SDP media description of the type of session that Bob is willing to establish with Alice. As a result, there
is a two-phase exchange of SDP messages: Alice sent one to Bob, and Bob sent one back to Alice. This
two-phase exchange provides basic negotiation capabilities and is based on a simple offer/answer model of
SDP exchange. If Bob did not wish to answer the call or was busy on another call, an error response would
have been sent instead of the 200 (OK), which would have resulted in no media session being established.
The complete list of SIP response codes is in Section 21. The 200 (OK) (message F9 in Figure 1) might
look like this as Bob sends it out:

SIP/2.0 200 OK
Via: SIP/2.0/UDP server10.biloxi.com

;branch=z9hG4bKnashds8;received=192.0.2.3
Via: SIP/2.0/UDP bigbox3.site3.atlanta.com

;branch=z9hG4bK77ef4c2312983.1;received=192.0.2.2
Via: SIP/2.0/UDP pc33.atlanta.com

;branch=z9hG4bK776asdhds ;received=192.0.2.1
To: Bob <sip:bob@biloxi.com>;tag=a6c85cf
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@pc33.atlanta.com
CSeq: 314159 INVITE
Contact: <sip:bob@192.0.2.4>
Content-Type: application/sdp
Content-Length: 131

(Bob’s SDP not shown)

Rosenberg, et al. Standards Track [Page 14]

RFC 3261 SIP: Session Initiation Protocol June 2002

The first line of the response contains the response code (200) and the reason phrase (OK). The remaining
lines contain header fields. TheVia, To, From, Call-ID, andCSeq header fields are copied from theINVITE
request. (There are threeVia header field values - one added by Alice’s SIP phone, one added by the proxy,
and one added by the biloxi.com proxy.) Bob’s SIP phone has added a tag parameter to theTo header field.
This tag will be incorporated by both endpoints into the dialog and will be included in all future requests and
responses in this call. TheContact header field contains a URI at which Bob can be directly reached at his
SIP phone. TheContent-Type andContent-Length refer to the message body (not shown) that contains
Bob’s SDP media information.

In addition to DNS and location service lookups shown in this example, proxy servers can make flexible
“routing decisions” to decide where to send a request. For example, if Bob’s SIP phone returned a 486
(Busy Here) response, thebiloxi.com proxy server could proxy theINVITE to Bob’s voicemail server.
A proxy server can also send anINVITE to a number of locations at the same time. This type of parallel
search is known as forking.

In this case, the 200 (OK) is routed back through the two proxies and is received by Alice’s softphone, which
then stops the ringback tone and indicates that the call has been answered. Finally, Alice’s softphone sends
an acknowledgement message,ACK, to Bob’s SIP phone to confirm the reception of the final response (200
(OK)). In this example, theACK is sent directly from Alice’s softphone to Bob’s SIP phone, bypassing the
two proxies. This occurs because the endpoints have learned each other’s address from theContact header
fields through theINVITE/200 (OK) exchange, which was not known when the initialINVITE was sent.
The lookups performed by the two proxies are no longer needed, so the proxies drop out of the call flow.
This completes theINVITE/200/ACK three-way handshake used to establish SIP sessions. Full details on
session setup are in Section 13.

Alice and Bob’s media session has now begun, and they send media packets using the format to which they
agreed in the exchange of SDP. In general, the end-to-end media packets take a different path from the SIP
signaling messages.

During the session, either Alice or Bob may decide to change the characteristics of the media session. This is
accomplished by sending a re-INVITE containing a new media description. This re-INVITE references the
existing dialog so that the other party knows that it is to modify an existing session instead of establishing
a new session. The other party sends a 200 (OK) to accept the change. The requestor responds to the 200
(OK) with anACK. If the other party does not accept the change, he sends an error response such as 488
(Not Acceptable Here), which also receives anACK. However, the failure of the re-INVITE does not cause
the existing call to fail - the session continues using the previously negotiated characteristics. Full details on
session modification are in Section 14.

At the end of the call, Bob disconnects (hangs up) first and generates aBYE message. ThisBYE is routed
directly to Alice’s softphone, again bypassing the proxies. Alice confirms receipt of theBYE with a 200
(OK) response, which terminates the session and theBYE transaction. NoACK is sent - anACK is only
sent in response to a response to anINVITE request. The reasons for this special handling forINVITE will
be discussed later, but relate to the reliability mechanisms in SIP, the length of time it can take for a ringing
phone to be answered, and forking. For this reason, request handling in SIP is often classified as either
INVITE or non-INVITE, referring to all other methods besidesINVITE. Full details on session termination
are in Section 15.

Section 24.2 describes the messages shown in Figure 1 in full.

In some cases, it may be useful for proxies in the SIP signaling path to see all the messaging between

Rosenberg, et al. Standards Track [Page 15]

RFC 3261 SIP: Session Initiation Protocol June 2002

the endpoints for the duration of the session. For example, if thebiloxi.com proxy server wished to
remain in the SIP messaging path beyond the initialINVITE, it would add to theINVITE a required routing
header field known asRecord-Route that contained a URI resolving to the hostname or IP address of the
proxy. This information would be received by both Bob’s SIP phone and (due to theRecord-Route header
field being passed back in the 200 (OK)) Alice’s softphone and stored for the duration of the dialog. The
biloxi.com proxy server would then receive and proxy theACK, BYE, and 200 (OK) to theBYE. Each
proxy can independently decide to receive subsequent messages, and those messages will pass through all
proxies that elect to receive it. This capability is frequently used for proxies that are providing mid-call
features.

Registration is another common operation in SIP. Registration is one way that thebiloxi.com server
can learn the current location of Bob. Upon initialization, and at periodic intervals, Bob’s SIP phone sends
REGISTER messages to a server in thebiloxi.com domain known as a SIP registrar. TheREGISTER
messages associate Bob’s SIP or SIPS URI (sip:bob@biloxi.com) with the machine into which he is
currently logged (conveyed as a SIP or SIPS URI in theContact header field). The registrar writes this
association, also called a binding, to a database, called the location service, where it can be used by the
proxy in thebiloxi.com domain. Often, a registrar server for a domain is co-located with the proxy
for that domain. It is an important concept that the distinction between types of SIP servers is logical, not
physical.

Bob is not limited to registering from a single device. For example, both his SIP phone at home and the one
in the office could send registrations. This information is stored together in the location service and allows
a proxy to perform various types of searches to locate Bob. Similarly, more than one user can be registered
on a single device at the same time.

The location service is just an abstract concept. It generally contains information that allows a proxy to input
a URI and receive a set of zero or more URIs that tell the proxy where to send the request. Registrations are
one way to create this information, but not the only way. Arbitrary mapping functions can be configured at
the discretion of the administrator.

Finally, it is important to note that in SIP, registration is used for routing incoming SIP requests and has
no role in authorizing outgoing requests.Authorization and authentication are handled in SIP either on a
request-by-request basis with a challenge/response mechanism, or by using a lower layer scheme as dis-
cussed in Section 26.

The complete set of SIP message details for this registration example is in Section 24.1.

Additional operations in SIP, such as querying for the capabilities of a SIP server or client usingOPTIONS,
or canceling a pending request usingCANCEL, will be introduced in later sections.

5 Structure of the Protocol

SIP is structured as a layered protocol, which means that its behavior is described in terms of a set of fairly
independent processing stages with only a loose coupling between each stage. The protocol behavior is
described as layers for the purpose of presentation, allowing the description of functions common across
elements in a single section. It does not dictate an implementation in any way. When we say that an element
“contains” a layer, we mean it is compliant to the set of rules defined by that layer.

Not every element specified by the protocol contains every layer. Furthermore, the elements specified by

Rosenberg, et al. Standards Track [Page 16]

RFC 3261 SIP: Session Initiation Protocol June 2002

SIP are logical elements, not physical ones. A physical realization can choose to act as different logical
elements, perhaps even on a transaction-by-transaction basis.

The lowest layer of SIP is its syntax and encoding. Its encoding is specified using an augmented Backus-
Naur Form grammar (BNF). The complete BNF is specified in Section 25; an overview of a SIP message’s
structure can be found in Section 7.

The second layer is the transport layer. It defines how a client sends requests and receives responses and
how a server receives requests and sends responses over the network. All SIP elements contain a transport
layer. The transport layer is described in Section 18.

The third layer is the transaction layer. Transactions are a fundamental component of SIP. A transaction
is a request sent by a client transaction (using the transport layer) to a server transaction, along with all
responses to that request sent from the server transaction back to the client. The transaction layer handles
application-layer retransmissions, matching of responses to requests, and application-layer timeouts. Any
task that a user agent client (UAC) accomplishes takes place using a series of transactions. Discussion of
transactions can be found in Section 17. User agents contain a transaction layer, as do stateful proxies.
Stateless proxies do not contain a transaction layer. The transaction layer has a client component (referred
to as a client transaction) and a server component (referred to as a server transaction), each of which are
represented by a finite state machine that is constructed to process a particular request.

The layer above the transaction layer is called the transaction user (TU). Each of the SIP entities, except
the stateless proxy, is a transaction user. When a TU wishes to send a request, it creates a client transaction
instance and passes it the request along with the destination IP address, port, and transport to which to send
the request. A TU that creates a client transaction can also cancel it. When a client cancels a transaction,
it requests that the server stop further processing, revert to the state that existed before the transaction was
initiated, and generate a specific error response to that transaction. This is done with aCANCEL request,
which constitutes its own transaction, but references the transaction to be cancelled (Section 9).

The SIP elements, that is, user agent clients and servers, stateless and stateful proxies and registrars, contain
a core that distinguishes them from each other. Cores, except for the stateless proxy, are transaction users.
While the behavior of the UAC and UAS cores depends on the method, there are some common rules for all
methods (Section 8). For a UAC, these rules govern the construction of a request; for a UAS, they govern the
processing of a request and generating a response. Since registrations play an important role in SIP, a UAS
that handles aREGISTER is given the special name registrar. Section 10 describes UAC and UAS core
behavior for theREGISTER method. Section 11 describes UAC and UAS core behavior for theOPTIONS
method, used for determining the capabilities of a UA.

Certain other requests are sent within a dialog. A dialog is a peer-to-peer SIP relationship between two
user agents that persists for some time. The dialog facilitates sequencing of messages and proper routing
of requests between the user agents. TheINVITE method is the only way defined in this specification to
establish a dialog. When a UAC sends a request that is within the context of a dialog, it follows the common
UAC rules as discussed in Section 8 but also the rules for mid-dialog requests. Section 12 discusses dialogs
and presents the procedures for their construction and maintenance, in addition to construction of requests
within a dialog.

The most important method in SIP is theINVITE method, which is used to establish a session between
participants. A session is a collection of participants, and streams of media between them, for the purposes
of communication. Section 13 discusses how sessions are initiated, resulting in one or more SIP dialogs.
Section 14 discusses how characteristics of that session are modified through the use of anINVITE request

Rosenberg, et al. Standards Track [Page 17]

RFC 3261 SIP: Session Initiation Protocol June 2002

within a dialog. Finally, section 15 discusses how a session is terminated.

The procedures of Sections 8, 10, 11, 12, 13, 14, and 15 deal entirely with the UA core (Section 9 describes
cancellation, which applies to both UA core and proxy core). Section 16 discusses the proxy element, which
facilitates routing of messages between user agents.

6 Definitions

The following terms have special significance for SIP.

Address-of-Record: An address-of-record (AOR) is a SIP or SIPS URI that points to a domain with a
location service that can map the URI to another URI where the user might be available. Typically,
the location service is populated through registrations. An AOR is frequently thought of as the “public
address” of the user.

Back-to-Back User Agent: A back-to-back user agent (B2BUA) is a logical entity that receives a request
and processes it as a user agent server (UAS). In order to determine how the request should be an-
swered, it acts as a user agent client (UAC) and generates requests. Unlike a proxy server, it maintains
dialog state and must participate in all requests sent on the dialogs it has established. Since it is a
concatenation of a UAC and UAS, no explicit definitions are needed for its behavior.

Call: A call is an informal term that refers to some communication between peers, generally set up for the
purposes of a multimedia conversation.

Call Leg: Another name for a dialog [31]; no longer used in this specification.

Call Stateful: A proxy is call stateful if it retains state for a dialog from the initiatingINVITE to the ter-
minatingBYE request. A call stateful proxy is always transaction stateful, but the converse is not
necessarily true.

Client: A client is any network element that sends SIP requests and receives SIP responses. Clients may or
may not interact directly with a human user. User agent clients and proxies are clients.

Conference: A multimedia session (see below) that contains multiple participants.

Core: Core designates the functions specific to a particular type of SIP entity, i.e., specific to either a
stateful or stateless proxy, a user agent or registrar. All cores, except those for the stateless proxy, are
transaction users.

Dialog: A dialog is a peer-to-peer SIP relationship between two UAs that persists for some time. A dialog
is established by SIP messages, such as a 2xx response to anINVITE request. A dialog is identified by
a call identifier, local tag, and a remote tag. A dialog was formerly known as a call leg in RFC 2543.

Downstream: A direction of message forwarding within a transaction that refers to the direction that re-
quests flow from the user agent client to user agent server.

Final Response:A response that terminates a SIP transaction, as opposed to a provisional response that
does not. All 2xx, 3xx, 4xx, 5xx and 6xx responses are final.

Rosenberg, et al. Standards Track [Page 18]

RFC 3261 SIP: Session Initiation Protocol June 2002

Header: A header is a component of a SIP message that conveys information about the message. It is
structured as a sequence of header fields.

Header Field: A header field is a component of the SIP message header. A header field can appear as one
or more header field rows. Header field rows consist of a header field name and zero or more header
field values. Multiple header field values on a given header field row are separated by commas. Some
header fields can only have a single header field value, and as a result, always appear as a single header
field row.

Header Field Value: A header field value is a single value; a header field consists of zero or more header
field values.

Home Domain: The domain providing service to a SIP user. Typically, this is the domain present in the
URI in the address-of-record of a registration.

Informational Response: Same as a provisional response.

Initiator, Calling Party, Caller: The party initiating a session (and dialog) with anINVITE request. A
caller retains this role from the time it sends the initialINVITE that established a dialog until the
termination of that dialog.

Invitation: An INVITE request.

Invitee, Invited User, Called Party, Callee: The party that receives anINVITE request for the purpose of
establishing a new session. A callee retains this role from the time it receives theINVITE until the
termination of the dialog established by thatINVITE.

Location Service: A location service is used by a SIP redirect or proxy server to obtain information about
a callee’s possible location(s). It contains a list of bindings of address-of-record keys to zero or more
contact addresses. The bindings can be created and removed in many ways; this specification defines
aREGISTER method that updates the bindings.

Loop: A request that arrives at a proxy, is forwarded, and later arrives back at the same proxy. When it
arrives the second time, itsRequest-URI is identical to the first time, and other header fields that
affect proxy operation are unchanged, so that the proxy would make the same processing decision on
the request it made the first time. Looped requests are errors, and the procedures for detecting them
and handling them are described by the protocol.

Loose Routing: A proxy is said to be loose routing if it follows the procedures defined in this specification
for processing of theRoute header field. These procedures separate the destination of the request
(present in theRequest-URI) from the set of proxies that need to be visited along the way (present
in theRoute header field). A proxy compliant to these mechanisms is also known as a loose router.

Message:Data sent between SIP elements as part of the protocol. SIP messages are either requests or
responses.

Method: The method is the primary function that a request is meant to invoke on a server. The method is
carried in the request message itself. Example methods areINVITE andBYE.

Rosenberg, et al. Standards Track [Page 19]

RFC 3261 SIP: Session Initiation Protocol June 2002

Outbound Proxy: A proxy that receives requests from a client, even though it may not be the server re-
solved by theRequest-URI. Typically, a UA is manually configured with an outbound proxy, or can
learn about one through auto-configuration protocols.

Parallel Search: In a parallel search, a proxy issues several requests to possible user locations upon receiv-
ing an incoming request. Rather than issuing one request and then waiting for the final response before
issuing the next request as in a sequential search, a parallel search issues requests without waiting for
the result of previous requests.

Provisional Response:A response used by the server to indicate progress, but that does not terminate a
SIP transaction. 1xx responses are provisional, other responses are considered final.

Proxy, Proxy Server : An intermediary entity that acts as both a server and a client for the purpose of
making requests on behalf of other clients. A proxy server primarily plays the role of routing, which
means its job is to ensure that a request is sent to another entity “closer” to the targeted user. Proxies
are also useful for enforcing policy (for example, making sure a user is allowed to make a call). A
proxy interprets, and, if necessary, rewrites specific parts of a request message before forwarding it.

Recursion: A client recurses on a 3xx response when it generates a new request to one or more of the URIs
in theContact header field in the response.

Redirect Server : A redirect server is a user agent server that generates 3xx responses to requests it re-
ceives, directing the client to contact an alternate set of URIs.

Registrar: A registrar is a server that acceptsREGISTER requests and places the information it receives
in those requests into the location service for the domain it handles.

Regular Transaction: A regular transaction is any transaction with a method other thanINVITE, ACK, or
CANCEL.

Request: A SIP message sent from a client to a server, for the purpose of invoking a particular operation.

Response:A SIP message sent from a server to a client, for indicating the status of a request sent from the
client to the server.

Ringback: Ringback is the signaling tone produced by the calling party’s application indicating that a
called party is being alerted (ringing).

Route Set: A route set is a collection of ordered SIP or SIPS URI which represent a list of proxies that
must be traversed when sending a particular request. A route set can be learned, through headers like
Record-Route, or it can be configured.

Server: A server is a network element that receives requests in order to service them and sends back re-
sponses to those requests. Examples of servers are proxies, user agent servers, redirect servers, and
registrars.

Sequential Search: In a sequential search, a proxy server attempts each contact address in sequence, pro-
ceeding to the next one only after the previous has generated a final response. A 2xx or 6xx class final
response always terminates a sequential search.

Rosenberg, et al. Standards Track [Page 20]

RFC 3261 SIP: Session Initiation Protocol June 2002

Session:From the SDP specification: “A multimedia session is a set of multimedia senders and receivers
and the data streams flowing from senders to receivers. A multimedia conference is an example of a
multimedia session.” (RFC 2327 [1]) (A session as defined for SDP can comprise one or more RTP
sessions.) As defined, a callee can be invited several times, by different calls, to the same session. If
SDP is used, a session is defined by the concatenation of the SDP user name, session id, network type,
address type, and address elements in the origin field.

SIP Transaction: A SIP transaction occurs between a client and a server and comprises all messages from
the first request sent from the client to the server up to a final (non-1xx) response sent from the server
to the client. If the request isINVITE and the final response is a non-2xx, the transaction also includes
anACK to the response. TheACK for a 2xx response to anINVITE request is a separate transaction.

Spiral: A spiral is a SIP request that is routed to a proxy, forwarded onwards, and arrives once again at that
proxy, but this time differs in a way that will result in a different processing decision than the original
request. Typically, this means that the request’sRequest-URI differs from its previous arrival. A
spiral is not an error condition, unlike a loop. A typical cause for this is call forwarding. A user calls
joe@example.com . Theexample.com proxy forwards it to Joe’s PC, which in turn, forwards it
to bob@example.com . This request is proxied back to theexample.com proxy. However, this
is not a loop. Since the request is targeted at a different user, it is considered a spiral, and is a valid
condition.

Stateful Proxy: A logical entity that maintains the client and server transaction state machines defined by
this specification during the processing of a request, also known as a transaction stateful proxy. The
behavior of a stateful proxy is further defined in Section 16. A (transaction) stateful proxy is not the
same as a call stateful proxy.

Stateless Proxy:A logical entity that does not maintain the client or server transaction state machines
defined in this specification when it processes requests. A stateless proxy forwards every request it
receives downstream and every response it receives upstream.

Strict Routing: A proxy is said to be strict routing if it follows theRoute processing rules of RFC 2543
and many prior work in progress versions of this RFC. That rule caused proxies to destroy the contents
of theRequest-URI when aRoute header field was present. Strict routing behavior is not used in
this specification, in favor of a loose routing behavior. Proxies that perform strict routing are also
known as strict routers.

Target Refresh Request:A target refresh request sent within a dialog is defined as a request that can
modify the remote target of the dialog.

Transaction User (TU): The layer of protocol processing that resides above the transaction layer. Trans-
action users include the UAC core, UAS core, and proxy core.

Upstream: A direction of message forwarding within a transaction that refers to the direction that responses
flow from the user agent server back to the user agent client.

URL-encoded: A character string encoded according to RFC 2396, Section 2.4 [5].

User Agent Client (UAC): A user agent client is a logical entity that creates a new request, and then uses
the client transaction state machinery to send it. The role of UAC lasts only for the duration of that

Rosenberg, et al. Standards Track [Page 21]

RFC 3261 SIP: Session Initiation Protocol June 2002

transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the duration
of that transaction. If it receives a request later, it assumes the role of a user agent server for the
processing of that transaction.

UAC Core: The set of processing functions required of a UAC that reside above the transaction and trans-
port layers.

User Agent Server (UAS): A user agent server is a logical entity that generates a response to a SIP request.
The response accepts, rejects, or redirects the request. This role lasts only for the duration of that
transaction. In other words, if a piece of software responds to a request, it acts as a UAS for the
duration of that transaction. If it generates a request later, it assumes the role of a user agent client for
the processing of that transaction.

UAS Core: The set of processing functions required at a UAS that resides above the transaction and trans-
port layers.

User Agent (UA): A logical entity that can act as both a user agent client and user agent server.

The role of UAC and UAS, as well as proxy and redirect servers, are defined on a transaction-by-transaction
basis. For example, the user agent initiating a call acts as a UAC when sending the initialINVITE request
and as a UAS when receiving aBYE request from the callee. Similarly, the same software can act as a proxy
server for one request and as a redirect server for the next request.

Proxy, location, and registrar servers defined above are logical entities; implementationsMAY combine them
into a single application.

7 SIP Messages

SIP is a text-based protocol and uses the UTF-8 charset (RFC 2279 [6]).

A SIP message is either a request from a client to a server, or a response from a server to a client.

Both Request (section 7.1) and Response (section 7.2) messages use the basic format of RFC 2822 [3], even
though the syntax differs in character set and syntax specifics. (SIP allows header fields that would not be
valid RFC 2822 header fields, for example.) Both types of messages consist of a start-line, one or more
header fields, an empty line indicating the end of the header fields, and an optional message-body.

generic-message = start-line
*message-header
CRLF
[message-body]

start-line = Request-Line / Status-Line

The start-line, each message-header line, and the empty lineMUST be terminated by a carriage-return line-
feed sequence (CRLF). Note that the empty lineMUST be present even if the message-body is not.

Except for the above difference in character sets, much of SIP’s message and header field syntax is identical
to HTTP/1.1. Rather than repeating the syntax and semantics here, we use [HX.Y] to refer to Section X.Y
of the current HTTP/1.1 specification (RFC 2616 [7]).

Rosenberg, et al. Standards Track [Page 22]

RFC 3261 SIP: Session Initiation Protocol June 2002

However, SIP is not an extension of HTTP.

7.1 Requests

SIP requests are distinguished by having aRequest-Line for a start-line. A Request-Line contains a
method name, aRequest-URI, and the protocol version separated by a single space (SP) character.

TheRequest-Line ends with CRLF. No CR or LF are allowed except in the end-of-line CRLF sequence.
No linear whitespace (LWS) is allowed in any of the elements.

Request-Line = Method SP Request-URI SP SIP-Version CRLF

Method: This specification defines six methods:REGISTER for registering contact information,INVITE,
ACK, andCANCEL for setting up sessions,BYE for terminating sessions, andOPTIONS for query-
ing servers about their capabilities. SIP extensions, documented in standards track RFCs, may define
additional methods.

Request-URI : The Request-URI is a SIP or SIPS URI as described in Section 19.1 or a general URI
(RFC 2396 [5]). It indicates the user or service to which this request is being addressed. TheRequest-
URI MUST NOT contain unescaped spaces or control characters andMUST NOT be enclosed in “<>”.

SIP elementsMAY support Request-URIs with schemes other than “sip” and “sips”, for example the
“tel” URI scheme of RFC 2806 [8]. SIP elementsMAY translate non-SIP URIs using any mechanism
at their disposal, resulting in SIP URI, SIPS URI, or some other scheme.

SIP-Version: Both request and response messages include the version of SIP in use, and follow [H3.1] (with
HTTP replaced by SIP, and HTTP/1.1 replaced by SIP/2.0) regarding version ordering, compliance
requirements, and upgrading of version numbers.To be compliant with this specification, applications
sending SIP messagesMUST include a SIP-Version of “SIP/2.0”. The SIP-Version string is case-
insensitive, but implementationsMUST send upper-case.

Unlike HTTP/1.1, SIP treats the version number as a literal string. In practice, this should make no
difference.

7.2 Responses

SIP responses are distinguished from requests by having a Status-Line as their start-line. A Status-Line
consists of the protocol version followed by a numeric Status-Code and its associated textual phrase, with
each element separated by a single SP character.

No CR or LF is allowed except in the final CRLF sequence.

Status-Line = SIP-Version SP Status-Code SP Reason-Phrase CRLF

The Status-Code is a 3-digit integer result code that indicates the outcome of an attempt to understand and
satisfy a request. The Reason-Phrase is intended to give a short textual description of the Status-Code. The
Status-Code is intended for use by automata, whereas the Reason-Phrase is intended for the human user. A
client is not required to examine or display the Reason-Phrase.

Rosenberg, et al. Standards Track [Page 23]

RFC 3261 SIP: Session Initiation Protocol June 2002

While this specification suggests specific wording for the reason phrase, implementationsMAY choose other
text, for example, in the language indicated in theAccept-Language header field of the request.

The first digit of the Status-Code defines the class of response. The last two digits do not have any catego-
rization role. For this reason, any response with a status code between 100 and 199 is referred to as a “1xx
response”, any response with a status code between 200 and 299 as a “2xx response”, and so on. SIP/2.0
allows six values for the first digit:

1xx: Provisional – request received, continuing to process the request;

2xx: Success – the action was successfully received, understood, and accepted;

3xx: Redirection – further action needs to be taken in order to complete the request;

4xx: Client Error – the request contains bad syntax or cannot be fulfilled at this server;

5xx: Server Error – the server failed to fulfill an apparently valid request;

6xx: Global Failure – the request cannot be fulfilled at any server.

Section 21 defines these classes and describes the individual codes.

7.3 Header Fields

SIP header fields are similar to HTTP header fields in both syntax and semantics. In particular, SIP header
fields follow the [H4.2] definitions of syntax for the message-header and the rules for extending header
fields over multiple lines. However, the latter is specified in HTTP with implicit whitespace and folding.
This specification conforms to RFC 2234 [9] and uses only explicit whitespace and folding as an integral
part of the grammar.

[H4.2] also specifies that multiple header fields of the same field name whose value is a comma-separated
list can be combined into one header field. That applies to SIP as well, but the specific rule is different
because of the different grammars. Specifically, any SIP header whose grammar is of the form

header = header-name HCOLON header-value *(COMMA header-value)

allows for combining header fields of the same name into a comma-separated list. TheContact header field
allows a comma-separated list unless the header field value is “*”.

7.3.1 Header Field Format

Header fields follow the same generic header format as that given in Section 2.2 of RFC 2822 [3]. Each
header field consists of a field name followed by a colon (“:”) and the field value.

field-name: field-value

Rosenberg, et al. Standards Track [Page 24]

RFC 3261 SIP: Session Initiation Protocol June 2002

The formal grammar for a message-header specified in Section 25 allows for an arbitrary amount of whites-
pace on either side of the colon; however, implementations should avoid spaces between the field name and
the colon and use a single space (SP) between the colon and the field-value.

Subject: lunch
Subject : lunch
Subject :lunch
Subject: lunch

Thus, the above are all valid and equivalent, but the last is the preferred form.

Header fields can be extended over multiple lines by preceding each extra line with at least one SP or
horizontal tab (HT). The line break and the whitespace at the beginning of the next line are treated as a
single SP character. Thus, the following are equivalent:

Subject: I know you’re there, pick up the phone and talk to me!
Subject: I know you’re there,

pick up the phone
and talk to me!

The relative order of header fields with different field names is not significant. However, it isRECOM-
MENDED that header fields which are needed for proxy processing (Via, Route, Record-Route, Proxy-
Require, Max-Forwards, andProxy-Authorization, for example) appear towards the top of the message
to facilitate rapid parsing. The relative order of header field rows with the same field name is important.
Multiple header field rows with the same field-nameMAY be present in a message if and only if the entire
field-value for that header field is defined as a comma-separated list (that is, if follows the grammar defined
in Section 7.3). ItMUST be possible to combine the multiple header field rows into one “field-name: field-
value” pair, without changing the semantics of the message, by appending each subsequent field-value to the
first, each separated by a comma. The exceptions to this rule are theWWW-Authenticate, Authorization,
Proxy-Authenticate, andProxy-Authorization header fields. Multiple header field rows with these names
MAY be present in a message, but since their grammar does not follow the general form listed in Section 7.3,
theyMUST NOT be combined into a single header field row.

ImplementationsMUST be able to process multiple header field rows with the same name in any combination
of the single-value-per-line or comma-separated value forms.

The following groups of header field rows are valid and equivalent:

Route: <sip:alice@atlanta.com>
Subject: Lunch
Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>
Subject: Lunch

Rosenberg, et al. Standards Track [Page 25]

RFC 3261 SIP: Session Initiation Protocol June 2002

Subject: Lunch
Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>,

<sip:carol@chicago.com>

Each of the following blocks is valid but not equivalent to the others:

Route: <sip:alice@atlanta.com>
Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:bob@biloxi.com>
Route: <sip:alice@atlanta.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>,<sip:carol@chicago.com>,
<sip:bob@biloxi.com>

The format of a header field-value is defined per header-name. It will always be either an opaque sequence of
TEXT-UTF8 octets, or a combination of whitespace, tokens, separators, and quoted strings. Many existing
header fields will adhere to the general form of a value followed by a semi-colon separated sequence of
parameter-name, parameter-value pairs:

field-name: field-value *(;parameter-name=parameter-value)

Even though an arbitrary number of parameter pairs may be attached to a header field value, any given
parameter-nameMUST NOT appear more than once.

When comparing header fields, field names are always case-insensitive. Unless otherwise stated in the defi-
nition of a particular header field, field values, parameter names, and parameter values are case-insensitive.
Tokens are always case-insensitive. Unless specified otherwise, values expressed as quoted strings are case-
sensitive. For example,

Contact: <sip:alice@atlanta.com>;expires=3600

is equivalent to

CONTACT: <sip:alice@atlanta.com>;ExPiReS=3600

and

Content-Disposition: session;handling=optional

is equivalent to

content-disposition: Session;HANDLING=OPTIONAL

Rosenberg, et al. Standards Track [Page 26]

RFC 3261 SIP: Session Initiation Protocol June 2002

The following two header fields are not equivalent:

Warning: 370 devnull "Choose a bigger pipe"
Warning: 370 devnull "CHOOSE A BIGGER PIPE"

7.3.2 Header Field Classification

Some header fields only make sense in requests or responses. These are called request header fields and
response header fields, respectively. If a header field appears in a message not matching its category (such
as a request header field in a response), itMUST be ignored. Section 20 defines the classification of each
header field.

7.3.3 Compact Form

SIP provides a mechanism to represent common header field names in an abbreviated form. This may
be useful when messages would otherwise become too large to be carried on the transport available to it
(exceeding the maximum transmission unit (MTU) when using UDP, for example). These compact forms
are defined in Section 20. A compact formMAY be substituted for the longer form of a header field name at
any time without changing the semantics of the message. A header field nameMAY appear in both long and
short forms within the same message. ImplementationsMUST accept both the long and short forms of each
header name.

7.4 Bodies

Requests, including new requests defined in extensions to this specification,MAY contain message bodies
unless otherwise noted. The interpretation of the body depends on the request method.

For response messages, the request method and the response status code determine the type and interpreta-
tion of any message body. All responsesMAY include a body.

7.4.1 Message Body Type

The Internet media type of the message bodyMUST be given by theContent-Type header field. If the body
has undergone any encoding such as compression, then thisMUST be indicated by theContent-Encoding
header field; otherwise,Content-Encoding MUST be omitted. If applicable, the character set of the message
body is indicated as part of theContent-Type header-field value.

The “multipart” MIME type defined in RFC 2046 [10]MAY be used within the body of the message. Im-
plementations that send requests containing multipart message bodiesMUST send a session description as a
non-multipart message body if the remote implementation requests this through anAccept header field that
does not contain multipart.

SIP messagesMAY contain binary bodies or body parts. When no explicit charset parameter is provided by
the sender, media subtypes of the “text” type are defined to have a default charset value of “UTF-8”.

Rosenberg, et al. Standards Track [Page 27]

RFC 3261 SIP: Session Initiation Protocol June 2002

7.4.2 Message Body Length

The body length in bytes is provided by theContent-Length header field. Section 20.14 describes the
necessary contents of this header field in detail.

The “chunked” transfer encoding of HTTP/1.1MUST NOT be used for SIP. (Note: The chunked encoding
modifies the body of a message in order to transfer it as a series of chunks, each with its own size indicator.)

7.5 Framing SIP Messages

Unlike HTTP, SIP implementations can use UDP or other unreliable datagram protocols. Each such data-
gram carries one request or response. See Section 18 on constraints on usage of unreliable transports.

Implementations processing SIP messages over stream-oriented transportsMUST ignore any CRLF appear-
ing before the start-line [H4.1].

TheContent-Length header field value is used to locate the end of each SIP message in a stream. It will always be
present when SIP messages are sent over stream-oriented transports.

8 General User Agent Behavior

A user agent represents an end system. It contains a user agent client (UAC), which generates requests, and
a user agent server (UAS), which responds to them. A UAC is capable of generating a request based on
some external stimulus (the user clicking a button, or a signal on a PSTN line) and processing a response. A
UAS is capable of receiving a request and generating a response based on user input, external stimulus, the
result of a program execution, or some other mechanism.

When a UAC sends a request, the request passes through some number of proxy servers, which forward the
request towards the UAS. When the UAS generates a response, the response is forwarded towards the UAC.

UAC and UAS procedures depend strongly on two factors. First, based on whether the request or response is
inside or outside of a dialog, and second, based on the method of a request. Dialogs are discussed thoroughly
in Section 12; they represent a peer-to-peer relationship between user agents and are established by specific
SIP methods, such asINVITE.

In this section, we discuss the method-independent rules for UAC and UAS behavior when processing
requests that are outside of a dialog. This includes, of course, the requests which themselves establish a
dialog.

Security procedures for requests and responses outside of a dialog are described in Section 26. Specifically,
mechanisms exist for the UAS and UAC to mutually authenticate. A limited set of privacy features are also
supported through encryption of bodies using S/MIME.

8.1 UAC Behavior

This section covers UAC behavior outside of a dialog.

Rosenberg, et al. Standards Track [Page 28]

RFC 3261 SIP: Session Initiation Protocol June 2002

8.1.1 Generating the Request

A valid SIP request formulated by a UACMUST ,at a minimum, contain the following header fields:To,
From, CSeq, Call-ID, Max-Forwards, andVia; all of these header fields are mandatory in all SIP requests.
These six header fields are the fundamental building blocks of a SIP message, as they jointly provide for
most of the critical message routing services including the addressing of messages, the routing of responses,
limiting message propagation, ordering of messages, and the unique identification of transactions. These
header fields are in addition to the mandatory request line, which contains the method,Request-URI, and
SIP version.

Examples of requests sent outside of a dialog include anINVITE to establish a session (Section 13) and an
OPTIONS to query for capabilities (Section 11).

Request-URI The initial Request-URI of the messageSHOULD be set to the value of the URI in the
To field. One notable exception is theREGISTER method; behavior for setting theRequest-URI of
REGISTER is given in Section 10. It may also be undesirable for privacy reasons or convenience to set these
fields to the same value (especially if the originating UA expects that theRequest-URI will be changed
during transit).

In some special circumstances, the presence of a pre-existing route set can affect theRequest-URI of the
message. A pre-existing route set is an ordered set of URIs that identify a chain of servers, to which a UAC
will send outgoing requests that are outside of a dialog. Commonly, they are configured on the UA by a
user or service provider manually, or through some other non-SIP mechanism. When a provider wishes
to configure a UA with an outbound proxy, it isRECOMMENDED that this be done by providing it with a
pre-existing route set with a single URI, that of the outbound proxy.

When a pre-existing route set is present, the procedures for populating theRequest-URI andRoute header
field detailed in Section 12.2.1MUST be followed (even though there is no dialog), using the desired
Request-URI as the remote target URI.

To The To header field first and foremost specifies the desired “logical” recipient of the request, or the
address-of-record of the user or resource that is the target of this request. This may or may not be the
ultimate recipient of the request. TheTo header fieldMAY contain a SIP or SIPS URI, but it may also
make use of other URI schemes (the tel URL (RFC 2806 [8]), for example) when appropriate. All SIP
implementationsMUST support the SIP URI scheme. Any implementation that supports TLSMUST support
the SIPS URI scheme. TheTo header field allows for a display name.

A UAC may learn how to populate theTo header field for a particular request in a number of ways. Usually
the user will suggest theTo header field through a human interface, perhaps inputting the URI manually
or selecting it from some sort of address book. Frequently, the user will not enter a complete URI, but
rather a string of digits or letters (for example, “bob”). It is at the discretion of the UA to choose how to
interpret this input. Using the string to form the user part of a SIP URI implies that the UA wishes the
name to be resolved in the domain to the right-hand side (RHS) of the at-sign in the SIP URI (for instance,
sip:bob@example.com). Using the string to form the user part of a SIPS URI implies that the UA
wishes to communicate securely, and that the name is to be resolved in the domain to the RHS of the at-sign.
The RHS will frequently be the home domain of the requestor, which allows for the home domain to process
the outgoing request. This is useful for features like “speed dial” that require interpretation of the user part

Rosenberg, et al. Standards Track [Page 29]

RFC 3261 SIP: Session Initiation Protocol June 2002

in the home domain. The tel URL may be used when the UA does not wish to specify the domain that
should interpret a telephone number that has been input by the user. Rather, each domain through which the
request passes would be given that opportunity. As an example, a user in an airport might log in and send
requests through an outbound proxy in the airport. If they enter “411” (this is the phone number for local
directory assistance in the United States), that needs to be interpreted and processed by the outbound proxy
in the airport, not the user’s home domain. In this case, tel:411 would be the right choice.

A request outside of a dialogMUST NOT contain aTo tag; the tag in theTo field of a request identifies the
peer of the dialog. Since no dialog is established, no tag is present.

For further information on theTo header field, see Section 20.39. The following is an example of a validTo
header field:

To: Carol <sip:carol@chicago.com>

From The From header field indicates the logical identity of the initiator of the request, possibly the
user’s address-of-record. Like theTo header field, it contains a URI and optionally a display name. It is
used by SIP elements to determine which processing rules to apply to a request (for example, automatic call
rejection). As such, it is very important that theFrom URI not contain IP addresses or the FQDN of the host
on which the UA is running, since these are not logical names.

The From header field allows for a display name. A UACSHOULD use the display name “Anonymous”,
along with a syntactically correct, but otherwise meaningless URI (like sip:thisis@anonymous.invalid), if
the identity of the client is to remain hidden.

Usually, the value that populates theFrom header field in requests generated by a particular UA is pre-
provisioned by the user or by the administrators of the user’s local domain. If a particular UA is used by
multiple users, it might have switchable profiles that include a URI corresponding to the identity of the
profiled user. Recipients of requests can authenticate the originator of a request in order to ascertain that
they are who theirFrom header field claims they are (see Section 22 for more on authentication).

The From field MUST contain a newtag parameter, chosen by the UAC. See Section 19.3 for details on
choosing a tag.

For further information on theFrom header field, see Section 20.20. Examples:

From: "Bob" <sips:bob@biloxi.com> ;tag=a48s
From: sip:+12125551212@phone2net.com;tag=887s
From: Anonymous <sip:c8oqz84zk7z@privacy.org>;tag=hyh8

Call-ID The Call-ID header field acts as a unique identifier to group together a series of messages. It
MUST be the same for all requests and responses sent by either UA in a dialog. ItSHOULD be the same in
each registration from a UA.

In a new request created by a UAC outside of any dialog, theCall-ID header fieldMUST be selected by the
UAC as a globally unique identifier over space and time unless overridden by method-specific behavior. All
SIP UAs must have a means to guarantee that theCall-ID header fields they produce will not be inadvertently
generated by any other UA. Note that when requests are retried after certain failure responses that solicit
an amendment to a request (for example, a challenge for authentication), these retried requests are not
considered new requests, and therefore do not need newCall-ID header fields; see Section 8.1.3.

Rosenberg, et al. Standards Track [Page 30]

RFC 3261 SIP: Session Initiation Protocol June 2002

Use of cryptographically random identifiers (RFC 1750 [11]) in the generation of Call-IDs isRECOM-
MENDED. ImplementationsMAY use the form “localid@host”. Call-IDs are case-sensitive and are simply
compared byte-by-byte.

Using cryptographically random identifiers provides some protection against session hijacking and reduces the like-
lihood of unintentionalCall-ID collisions.

No provisioning or human interface is required for the selection of theCall-ID header field value for a
request.

For further information on theCall-ID header field, see Section 20.8.

Example:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6@foo.bar.com

CSeq TheCSeq header field serves as a way to identify and order transactions. It consists of a sequence
number and a method. The methodMUST match that of the request. For non-REGISTER requests outside
of a dialog, the sequence number value is arbitrary. The sequence number valueMUST be expressible as a
32-bit unsigned integer andMUST be less than 2**31. As long as it follows the above guidelines, a client
may use any mechanism it would like to selectCSeq header field values.

Section 12.2.1 discusses construction of theCSeq for requests within a dialog.

Example:

CSeq: 4711 INVITE

Max-Forwards TheMax-Forwards header field serves to limit the number of hops a request can transit
on the way to its destination. It consists of an integer that is decremented by one at each hop. If theMax-
Forwards value reaches 0 before the request reaches its destination, it will be rejected with a 483(Too Many
Hops) error response.

A UAC MUST insert aMax-Forwards header field into each request it originates with a value thatSHOULD

be 70. This number was chosen to be sufficiently large to guarantee that a request would not be dropped
in any SIP network when there were no loops, but not so large as to consume proxy resources when a loop
does occur. Lower values should be used with caution and only in networks where topologies are known by
the UA.

Via TheVia header field indicates the transport used for the transaction and identifies the location where
the response is to be sent. AVia header field value is added only after the transport that will be used to reach
the next hop has been selected (which may involve the usage of the procedures in [4]).

When the UAC creates a request, itMUST insert aVia into that request. The protocol name and protocol
version in the header fieldMUST be SIP and 2.0, respectively. TheVia header field valueMUST contain a
branch parameter. This parameter is used to identify the transaction created by that request. This parameter
is used by both the client and the server.

The branch parameter valueMUST be unique across space and time for all requests sent by the UA. The ex-
ceptions to this rule areCANCEL andACK for non-2xx responses. As discussed below, aCANCEL request

Rosenberg, et al. Standards Track [Page 31]

RFC 3261 SIP: Session Initiation Protocol June 2002

will have the same value of the branch parameter as the request it cancels. As discussed in Section 17.1.1,
an ACK for a non-2xx response will also have the same branch ID as theINVITE whose response it ac-
knowledges.

The uniqueness property of the branch ID parameter, to facilitate its use as a transaction ID, was not part of
RFC 2543.

The branch ID inserted by an element compliant with this specificationMUST always begin with the char-
acters “z9hG4bK”. These 7 characters are used as a magic cookie (7 is deemed sufficient to ensure that
an older RFC 2543 implementation would not pick such a value), so that servers receiving the request can
determine that the branch ID was constructed in the fashion described by this specification (that is, globally
unique). Beyond this requirement, the precise format of the branch token is implementation-defined.

TheVia header maddr, ttl, and sent-by components will be set when the request is processed by the transport
layer (Section 18).

Via processing for proxies is described in Section 16.6 Item 8 and Section 16.7 Item 3.

Contact TheContact header field provides a SIP or SIPS URI that can be used to contact that specific
instance of the UA for subsequent requests. TheContact header fieldMUST be present and contain exactly
one SIP or SIPS URI in any request that can result in the establishment of a dialog. For the methods defined
in this specification, that includes only theINVITE request. For these requests, the scope of theContact
is global. That is, theContact header field value contains the URI at which the UA would like to receive
requests, and this URIMUST be valid even if used in subsequent requests outside of any dialogs.

If the Request-URI or topRoute header field value contains a SIPS URI, theContact header fieldMUST

contain a SIPS URI as well.

For further information on theContact header field, see Section 20.10.

Supported and Require If the UAC supports extensions to SIP that can be applied by the server to
the response, the UACSHOULD include aSupported header field in the request listing the option tags
(Section 19.2) for those extensions.

The option tags listedMUST only refer to extensions defined in standards-track RFCs. This is to prevent
servers from insisting that clients implement non-standard, vendor-defined features in order to receive ser-
vice. Extensions defined by experimental and informational RFCs are explicitly excluded from usage with
the Supported header field in a request, since they too are often used to document vendor-defined exten-
sions.

If the UAC wishes to insist that a UAS understand an extension that the UAC will apply to the request in
order to process the request, itMUST insert aRequire header field into the request listing the option tag for
that extension. If the UAC wishes to apply an extension to the request and insist that any proxies that are
traversed understand that extension, itMUST insert aProxy-Require header field into the request listing the
option tag for that extension.

As with theSupported header field, the option tags in theRequire andProxy-Require header fieldsMUST

only refer to extensions defined in standards-track RFCs.

Rosenberg, et al. Standards Track [Page 32]

RFC 3261 SIP: Session Initiation Protocol June 2002

Additional Message Components After a new request has been created, and the header fields described
above have been properly constructed, any additional optional header fields are added, as are any header
fields specific to the method.

SIP requestsMAY contain a MIME-encoded message-body. Regardless of the type of body that a request
contains, certain header fields must be formulated to characterize the contents of the body. For further
information on these header fields, see Sections 20.11 through 20.15.

8.1.2 Sending the Request

The destination for the request is then computed. Unless there is local policy specifying otherwise, the desti-
nationMUST be determined by applying the DNS procedures described in [4] as follows. If the first element
in the route set indicated a strict router (resulting in forming the request as described in Section 12.2.1), the
proceduresMUST be applied to theRequest-URI of the request. Otherwise, the procedures are applied to
the firstRoute header field value in the request (if one exists), or to the request’sRequest-URI if there
is noRoute header field present. These procedures yield an ordered set of address, port, and transports to
attempt. Independent of which URI is used as input to the procedures of [4], if theRequest-URI specifies
a SIPS resource, the UACMUST follow the procedures of [4] as if the input URI were a SIPS URI.

Local policy MAY specify an alternate set of destinations to attempt. If theRequest-URI contains a SIPS
URI, any alternate destinationsMUST be contacted with TLS. Beyond that, there are no restrictions on the
alternate destinations if the request contains noRoute header field. This provides a simple alternative to
a pre-existing route set as a way to specify an outbound proxy. However, that approach for configuring
an outbound proxy isNOT RECOMMENDED ; a pre-existing route set with a single URISHOULD be used
instead. If the request contains aRoute header field, the requestSHOULD be sent to the locations derived
from its topmost value, butMAY be sent to any server that the UA is certain will honor theRoute and
Request-URI policies specified in this document (as opposed to those in RFC 2543). In particular, a UAC
configured with an outbound proxySHOULD attempt to send the request to the location indicated in the first
Route header field value instead of adopting the policy of sending all messages to the outbound proxy.

This ensures that outbound proxies that do not addRecord-Route header field values will drop out of the path of
subsequent requests. It allows endpoints that cannot resolve the firstRoute URI to delegate that task to an outbound
proxy.

The UAC SHOULD follow the procedures defined in [4] for stateful elements, trying each address until a
server is contacted. Each try constitutes a new transaction, and therefore each carries a different topmost
Via header field value with a new branch parameter. Furthermore, the transport value in theVia header field
is set to whatever transport was determined for the target server.

8.1.3 Processing Responses

Responses are first processed by the transport layer and then passed up to the transaction layer. The trans-
action layer performs its processing and then passes the response up to the TU. The majority of response
processing in the TU is method specific. However, there are some general behaviors independent of the
method.

Rosenberg, et al. Standards Track [Page 33]

RFC 3261 SIP: Session Initiation Protocol June 2002

Transaction Layer Errors In some cases, the response returned by the transaction layer will not be a SIP
message, but rather a transaction layer error. When a timeout error is received from the transaction layer,
it MUST be treated as if a 408 (Request Timeout) status code has been received. If a fatal transport error is
reported by the transport layer (generally, due to fatal ICMP errors in UDP or connection failures in TCP),
the conditionMUST be treated as a 503 (Service Unavailable) status code.

Unrecognized ResponsesA UAC MUST treat any final response it does not recognize as being equivalent
to the x00 response code of that class, andMUST be able to process the x00 response code for all classes.
For example, if a UAC receives an unrecognized response code of 431, it can safely assume that there was
something wrong with its request and treat the response as if it had received a 400 (Bad Request) response
code. A UAC MUST treat any provisional response different than 100 that it does not recognize as 183
(Session Progress). A UACMUST be able to process 100 and 183 responses.

Vias If more than oneVia header field value is present in a response, the UACSHOULD discard the
message.

The presence of additionalVia header field values that precede the originator of the request suggests that the message
was misrouted or possibly corrupted.

Processing 3xx ResponsesUpon receipt of a redirection response (for example, a 301 response status
code), clientsSHOULD use the URI(s) in theContact header field to formulate one or more new requests
based on the redirected request. This process is similar to that of a proxy recursing on a 3xx class response
as detailed in Sections 16.5 and 16.6. A client starts with an initial target set containing exactly one URI,
theRequest-URI of the original request. If a client wishes to formulate new requests based on a 3xx class
response to that request, it places the URIs to try into the target set.Subject to the restrictions in this
specification, a client can choose whichContact URIs it places into the target set. As with proxy recursion,
a client processing 3xx class responsesMUST NOT add any given URI to the target set more than once. If
the original request had a SIPS URI in theRequest-URI, the clientMAY choose to recurse to a non-SIPS
URI, but SHOULD inform the user of the redirection to an insecure URI.

Any new request may receive 3xx responses themselves containing the original URI as a contact. Two locations can
be configured to redirect to each other. Placing any given URI in the target set only once prevents infinite redirection
loops.

As the target set grows, the clientMAY generate new requests to the URIs in any order. A common mech-
anism is to order the set by the “q” parameter value from theContact header field value. Requests to the
URIs MAY be generated serially or in parallel. One approach is to process groups of decreasing q-values
serially and process the URIs in each q-value group in parallel. Another is to perform only serial processing
in decreasing q-value order, arbitrarily choosing between contacts of equal q-value.

If contacting an address in the list results in a failure, as defined in the next paragraph, the element moves to
the next address in the list, until the list is exhausted. If the list is exhausted, then the request has failed.

FailuresSHOULD be detected through failure response codes (codes greater than 399); for network errors
the client transaction will report any transport layer failures to the transaction user. Note that some response
codes (detailed in 8.1.3.5) indicate that the request can be retried; requests that are reattempted should not
be considered failures.

Rosenberg, et al. Standards Track [Page 34]

RFC 3261 SIP: Session Initiation Protocol June 2002

When a failure for a particular contact address is received, the clientSHOULD try the next contact address.
This will involve creating a new client transaction to deliver a new request.

In order to create a request based on a contact address in a 3xx response, a UACMUST copy the entire
URI from the target set into theRequest-URI, except for themethod-param andheader URI parameters
(see Section 19.1.1 for a definition of these parameters). It uses theheader parameters to create header
field values for the new request, overwriting header field values associated with the redirected request in
accordance with the guidelines in Section 19.1.5.

Note that in some instances, header fields that have been communicated in the contact address may instead
append to existing request header fields in the original redirected request. As a general rule, if the header
field can accept a comma-separated list of values, then the new header field valueMAY be appended to any
existing values in the original redirected request. If the header field does not accept multiple values, the
value in the original redirected requestMAY be overwritten by the header field value communicated in the
contact address. For example, if a contact address is returned with the following value:

sip:user@host?Subject=foo&Call-Info=<http://www.foo.com>

Then anySubject header field in the original redirected request is overwritten, but the HTTP URL is merely
appended to any existingCall-Info header field values.

It is RECOMMENDED that the UAC reuse the sameTo, From, andCall-ID used in the original redirected
request, but the UACMAY also choose to update theCall-ID header field value for new requests, for example.

Finally, once the new request has been constructed, it is sent using a new client transaction, and therefore
MUST have a new branch ID in the topVia field as discussed in Section 8.1.1.

In all other respects, requests sent upon receipt of a redirect responseSHOULD re-use the header fields and
bodies of the original request.

In some instances,Contact header field values may be cached at UAC temporarily or permanently depend-
ing on the status code received and the presence of an expiration interval; see Sections 21.3.2 and 21.3.3.

Processing 4xx ResponsesCertain 4xx response codes require specific UA processing, independent of
the method.

If a 401 (Unauthorized) or 407 (Proxy Authentication Required) response is received, the UACSHOULD

follow the authorization procedures of Section 22.2 and Section 22.3 to retry the request with credentials.

If a 413 (Request Entity Too Large) response is received (Section 21.4.11), the request contained a body
that was longer than the UAS was willing to accept. If possible, the UACSHOULD retry the request, either
omitting the body or using one of a smaller length.

If a 415 (Unsupported Media Type) response is received (Section 21.4.13), the request contained media
types not supported by the UAS. The UACSHOULD retry sending the request, this time only using content
with types listed in theAccept header field in the response, with encodings listed in theAccept-Encoding
header field in the response, and with languages listed in theAccept-Language in the response.

If a 416 (Unsupported URI Scheme) response is received (Section 21.4.14), theRequest-URI used a URI
scheme not supported by the server. The clientSHOULD retry the request, this time, using a SIP URI.

If a 420 (Bad Extension) response is received (Section 21.4.15), the request contained aRequire or Proxy-
Require header field listing an option-tag for a feature not supported by a proxy or UAS. The UACSHOULD

Rosenberg, et al. Standards Track [Page 35]

RFC 3261 SIP: Session Initiation Protocol June 2002

retry the request, this time omitting any extensions listed in theUnsupported header field in the response.

In all of the above cases, the request is retried by creating a new request with the appropriate modifications.
This new request constitutes a new transaction andSHOULD have the same value of theCall-ID, To, and
From of the previous request, but theCSeq should contain a new sequence number that is one higher than
the previous.

With other 4xx responses, including those yet to be defined, a retry may or may not be possible depending
on the method and the use case.

8.2 UAS Behavior

When a request outside of a dialog is processed by a UAS, there is a set of processing rules that are followed,
independent of the method. Section 12 gives guidance on how a UAS can tell whether a request is inside or
outside of a dialog.

Note that request processing is atomic. If a request is accepted, all state changes associated with itMUST be
performed. If it is rejected, all state changesMUST NOT be performed.

UASsSHOULD process the requests in the order of the steps that follow in this section (that is, starting with
authentication, then inspecting the method, the header fields, and so on throughout the remainder of this
section).

8.2.1 Method Inspection

Once a request is authenticated (or authentication is skipped), the UASMUST inspect the method of the
request. If the UAS recognizes but does not support the method of a request, itMUST generate a 405
(Method Not Allowed) response. Procedures for generating responses are described in Section 8.2.6. The
UAS MUST also add anAllow header field to the 405 (Method Not Allowed) response. TheAllow header
field MUST list the set of methods supported by the UAS generating the message. TheAllow header field is
presented in Section 20.5.

If the method is one supported by the server, processing continues.

8.2.2 Header Inspection

If a UAS does not understand a header field in a request (that is, the header field is not defined in this spec-
ification or in any supported extension), the serverMUST ignore that header field and continue processing
the message. A UASSHOULD ignore any malformed header fields that are not necessary for processing
requests.

To and Request-URI TheTo header field identifies the original recipient of the request designated by
the user identified in theFrom field. The original recipient may or may not be the UAS processing the
request, due to call forwarding or other proxy operations. A UASMAY apply any policy it wishes to de-
termine whether to accept requests when theTo header field is not the identity of the UAS. However, it is
RECOMMENDED that a UAS accept requests even if they do not recognize the URI scheme (for example, a
tel: URI) in theTo header field, or if theTo header field does not address a known or current user of this

Rosenberg, et al. Standards Track [Page 36]

RFC 3261 SIP: Session Initiation Protocol June 2002

UAS. If, on the other hand, the UAS decides to reject the request, itSHOULD generate a response with a 403
(Forbidden) status code and pass it to the server transaction for transmission.

However, theRequest-URI identifies the UAS that is to process the request. If theRequest-URI uses a
scheme not supported by the UAS, itSHOULD reject the request with a 416 (Unsupported URI Scheme)
response. If theRequest-URI does not identify an address that the UAS is willing to accept requests for,
it SHOULD reject the request with a 404 (Not Found) response. Typically, a UA that uses theREGISTER
method to bind its address-of-record to a specific contact address will see requests whoseRequest-URI
equals that contact address. Other potential sources of received Request-URIs include theContact header
fields of requests and responses sent by the UA that establish or refresh dialogs.

Merged Requests If the request has no tag in theTo header field, the UAS coreMUST check the request
against ongoing transactions. If theFrom tag, Call-ID, andCSeq exactly match those associated with
an ongoing transaction, but the request does not match that transaction (based on the matching rules in
Section 17.2.3), the UAS coreSHOULD generate a 482 (Loop Detected) response and pass it to the server
transaction.

The same request has arrived at the UAS more than once, following different paths, most likely due to forking. The
UAS processes the first such request received and responds with a 482 (Loop Detected) to the rest of them.

Require Assuming the UAS decides that it is the proper element to process the request, it examines the
Require header field, if present.

TheRequire header field is used by a UAC to tell a UAS about SIP extensions that the UAC expects the
UAS to support in order to process the request properly. Its format is described in Section 20.32. If a
UAS does not understand an option-tag listed in aRequire header field, itMUST respond by generating a
response with status code 420 (Bad Extension). The UASMUST add anUnsupported header field, and list
in it those options it does not understand amongst those in theRequire header field of the request.

Note thatRequire andProxy-Require MUST NOT be used in a SIPCANCEL request, or in anACK request
sent for a non-2xx response. These header fieldsMUST be ignored if they are present in these requests.

An ACK request for a 2xx responseMUST contain only thoseRequire andProxy-Require values that were
present in the initial request.

Example:

UAC -> AS: INVITE sip:watson@bell-telephone.com SIP/2.0
Require: 100rel

UAS -> UAC: SIP/2.0 420 Bad Extension
Unsupported: 100rel

This behavior ensures that the client-server interaction will proceed without delay when all options are understood
by both sides, and only slow down if options are not understood (as in the example above). For a well-matched
client-server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms.
In addition, it also removes ambiguity when the client requires features that the server does not understand. Some
features, such as call handling fields, are only of interest to end systems.

Rosenberg, et al. Standards Track [Page 37]

RFC 3261 SIP: Session Initiation Protocol June 2002

8.2.3 Content Processing

Assuming the UAS understands any extensions required by the client, the UAS examines the body of the
message, and the header fields that describe it. If there are any bodies whose type (indicated by theContent-
Type), language (indicated by theContent-Language) or encoding (indicated by theContent-Encoding)
are not understood, and that body part is not optional (as indicated by theContent-Disposition header field),
the UASMUST reject the request with a 415 (Unsupported Media Type) response. The responseMUST

contain anAccept header field listing the types of all bodies it understands, in the event the request contained
bodies of types not supported by the UAS. If the request contained content encodings not understood by the
UAS, the responseMUST contain anAccept-Encoding header field listing the encodings understood by
the UAS. If the request contained content with languages not understood by the UAS, the responseMUST

contain anAccept-Language header field indicating the languages understood by the UAS. Beyond these
checks, body handling depends on the method and type. For further information on the processing of
content-specific header fields, see Section 7.4 as well as Section 20.11 through 20.15.

8.2.4 Applying Extensions

A UAS that wishes to apply some extension when generating the responseMUST NOT do so unless support
for that extension is indicated in theSupported header field in the request. If the desired extension is not
supported, the serverSHOULD rely only on baseline SIP and any other extensions supported by the client. In
rare circumstances, where the server cannot process the request without the extension, the serverMAY send
a 421 (Extension Required) response. This response indicates that the proper response cannot be generated
without support of a specific extension. The needed extension(s)MUST be included in aRequire header
field in the response. This behavior isNOT RECOMMENDED, as it will generally break interoperability.

Any extensions applied to a non-421 responseMUST be listed in aRequire header field included in the
response. Of course, the serverMUST NOT apply extensions not listed in theSupported header field in the
request. As a result of this, theRequire header field in a response will only ever contain option tags defined
in standards-track RFCs.

8.2.5 Processing the Request

Assuming all of the checks in the previous subsections are passed, the UAS processing becomes method-
specific. Section 10 covers theREGISTER request, Section 11 covers theOPTIONS request, Section 13
covers theINVITE request, and Section 15 covers theBYE request.

8.2.6 Generating the Response

When a UAS wishes to construct a response to a request, it follows the general procedures detailed in the
following subsections. Additional behaviors specific to the response code in question, which are not detailed
in this section, may also be required.

Once all procedures associated with the creation of a response have been completed, the UAS hands the
response back to the server transaction from which it received the request.

Rosenberg, et al. Standards Track [Page 38]

RFC 3261 SIP: Session Initiation Protocol June 2002

Sending a Provisional Response One largely non-method-specific guideline for the generation of re-
sponses is that UASsSHOULD NOT issue a provisional response for a non-INVITE request. Rather, UASs
SHOULD generate a final response to a non-INVITE request as soon as possible.

When a 100 (Trying) response is generated, anyTimestamp header field present in the requestMUST be
copied into this 100 (Trying) response. If there is a delay in generating the response, the UASSHOULD add
a delay value into theTimestamp value in the response. This valueMUST contain the difference between
the time of sending of the response and receipt of the request, measured in seconds.

Headers and Tags TheFrom field of the responseMUST equal theFrom header field of the request. The
Call-ID header field of the responseMUST equal theCall-ID header field of the request. TheCSeq header
field of the responseMUST equal theCSeq field of the request. TheVia header field values in the response
MUST equal theVia header field values in the request andMUST maintain the same ordering.

If a request contained aTo tag in the request, theTo header field in the responseMUST equal that of the
request. However, if theTo header field in the request did not contain a tag, the URI in theTo header field
in the responseMUST equal the URI in theTo header field; additionally, the UASMUST add a tag to the
To header field in the response (with the exception of the 100 (Trying) response, in which a tagMAY be
present). This serves to identify the UAS that is responding, possibly resulting in a component of a dialog
ID. The same tagMUST be used for all responses to that request, both final and provisional (again excepting
the 100 (Trying)). Procedures for the generation of tags are defined in Section 19.3.

8.2.7 Stateless UAS Behavior

A stateless UAS is a UAS that does not maintain transaction state. It replies to requests normally, but
discards any state that would ordinarily be retained by a UAS after a response has been sent. If a stateless
UAS receives a retransmission of a request, it regenerates the response and resends it, just as if it were
replying to the first instance of the request. A UAS cannot be stateless unless the request processing for
that method would always result in the same response if the requests are identical. This rules out stateless
registrars, for example. Stateless UASs do not use a transaction layer; they receive requests directly from
the transport layer and send responses directly to the transport layer.

The stateless UAS role is needed primarily to handle unauthenticated requests for which a challenge re-
sponse is issued. If unauthenticated requests were handled statefully, then malicious floods of unauthenti-
cated requests could create massive amounts of transaction state that might slow or completely halt call pro-
cessing in a UAS, effectively creating a denial of service condition; for more information see Section 26.1.5.

The most important behaviors of a stateless UAS are the following:

• A stateless UASMUST NOT send provisional (1xx) responses.

• A stateless UASMUST NOT retransmit responses.

• A stateless UASMUST ignoreACK requests.

• A stateless UASMUST ignoreCANCEL requests.

• To header tagsMUST be generated for responses in a stateless manner - in a manner that will generate
the same tag for the same request consistently. For information on tag construction see Section 19.3.

Rosenberg, et al. Standards Track [Page 39]

RFC 3261 SIP: Session Initiation Protocol June 2002

In all other respects, a stateless UAS behaves in the same manner as a stateful UAS. A UAS can operate in
either a stateful or stateless mode for each new request.

8.3 Redirect Servers

In some architectures it may be desirable to reduce the processing load on proxy servers that are responsible
for routing requests, and improve signaling path robustness, by relying on redirection.

Redirection allows servers to push routing information for a request back in a response to the client, thereby
taking themselves out of the loop of further messaging for this transaction while still aiding in locating
the target of the request. When the originator of the request receives the redirection, it will send a new
request based on the URI(s) it has received. By propagating URIs from the core of the network to its edges,
redirection allows for considerable network scalability.

A redirect server is logically constituted of a server transaction layer and a transaction user that has access
to a location service of some kind (see Section 10 for more on registrars and location services). This
location service is effectively a database containing mappings between a single URI and a set of one or
more alternative locations at which the target of that URI can be found.

A redirect server does not issue any SIP requests of its own. After receiving a request other thanCANCEL,
the server either refuses the request or gathers the list of alternative locations from the location service and
returns a final response of class 3xx. For well-formedCANCEL requests, itSHOULD return a 2xx response.
This response ends the SIP transaction. The redirect server maintains transaction state for an entire SIP
transaction. It is the responsibility of clients to detect forwarding loops between redirect servers.

When a redirect server returns a 3xx response to a request, it populates the list of (one or more) alternative
locations into theContact header field. Anexpires parameter to theContact header field values may also
be supplied to indicate the lifetime of theContact data.

The Contact header field contains URIs giving the new locations or user names to try, or may simply
specify additional transport parameters. A 301 (Moved Permanently) or 302 (Moved Temporarily) response
may also give the same location and username that was targeted by the initial request but specify additional
transport parameters such as a different server or multicast address to try, or a change of SIP transport from
UDP to TCP or vice versa.

However, redirect serversMUST NOT redirect a request to a URI equal to the one in theRequest-URI;
instead, provided that the URI does not point to itself, the serverMAY proxy the request to the destination
URI, or MAY reject it with a 404.

If a client is using an outbound proxy, and that proxy actually redirects requests, a potential arises for infinite
redirection loops.

Note that aContact header field valueMAY also refer to a different resource than the one originally called.
For example, a SIP call connected to PSTN gateway may need to deliver a special informational announce-
ment such as “The number you have dialed has been changed.“

A Contact response header field can contain any suitable URI indicating where the called party can be
reached, not limited to SIP URIs. For example, it could contain URIs for phones, fax, or irc (if they
were defined) or a mailto: (RFC 2368 [32]) URL. Section 26.4.4 discusses implications and limitations
of redirecting a SIPS URI to a non-SIPS URI.

Rosenberg, et al. Standards Track [Page 40]

RFC 3261 SIP: Session Initiation Protocol June 2002

Theexpires parameter of aContact header field value indicates how long the URI is valid. The value of
the parameter is a number indicating seconds. If this parameter is not provided, the value of theExpires
header field determines how long the URI is valid. Malformed valuesSHOULD be treated as equivalent to
3600.

This provides a modest level of backwards compatibility with RFC 2543, which allowed absolute times in this
header field. If an absolute time is received, it will be treated as malformed, and then default to 3600.

Redirect serversMUST ignore features that are not understood (including unrecognized header fields, any
unknown option tags inRequire, or even method names) and proceed with the redirection of the request in
question.

9 Canceling a Request

The previous section has discussed general UA behavior for generating requests and processing responses
for requests of all methods. In this section, we discuss a general purpose method, calledCANCEL.

TheCANCEL request, as the name implies, is used to cancel a previous request sent by a client. Specifically,
it asks the UAS to cease processing the request and to generate an error response to that request.CANCEL
has no effect on a request to which a UAS has already given a final response. Because of this, it is most
useful toCANCEL requests to which it can take a server long time to respond. For this reason,CANCEL
is best forINVITE requests, which can take a long time to generate a response. In that usage, a UAS that
receives aCANCEL request for anINVITE, but has not yet sent a final response, would “stop ringing”, and
then respond to theINVITE with a specific error response (a 487).

CANCEL requests can be constructed and sent by both proxies and user agent clients. Section 15 discusses
under what conditions a UAC wouldCANCEL anINVITE request, and Section 16.10 discusses proxy usage
of CANCEL.

A stateful proxy responds to aCANCEL, rather than simply forwarding a response it would receive from
a downstream element. For that reason,CANCEL is referred to as a “hop-by-hop” request, since it is
responded to at each stateful proxy hop.

9.1 Client Behavior

A CANCEL requestSHOULD NOT be sent to cancel a request other thanINVITE.

Since requests other thanINVITE are responded to immediately, sending aCANCEL for a non-INVITE request
would always create a race condition.

The following procedures are used to construct aCANCEL request. TheRequest-URI, Call-ID, To, the
numeric part ofCSeq, andFrom header fields in theCANCEL requestMUST be identical to those in the
request being cancelled, including tags. ACANCEL constructed by a clientMUST have only a singleVia
header field value matching the topVia value in the request being cancelled. Using the same values for these
header fields allows theCANCEL to be matched with the request it cancels (Section 9.2 indicates how such
matching occurs). However, the method part of theCSeq header fieldMUST have a value ofCANCEL.
This allows it to be identified and processed as a transaction in its own right (See Section 17).

Rosenberg, et al. Standards Track [Page 41]

RFC 3261 SIP: Session Initiation Protocol June 2002

If the request being cancelled contains aRoute header field, theCANCEL requestMUST include thatRoute
header field’s values.

This is needed so that stateless proxies are able to routeCANCEL requests properly.

TheCANCEL requestMUST NOT contain anyRequire or Proxy-Require header fields.

Once theCANCEL is constructed, the clientSHOULD check whether it has received any response (provi-
sional or final) for the request being cancelled (herein referred to as the “original request”).

If no provisional response has been received, theCANCEL requestMUST NOT be sent; rather, the client
MUST wait for the arrival of a provisional response before sending the request. If the original request has
generated a final response, theCANCEL SHOULD NOT be sent, as it is an effective no-op, sinceCANCEL
has no effect on requests that have already generated a final response. When the client decides to send the
CANCEL, it creates a client transaction for theCANCEL and passes it theCANCEL request along with
the destination address, port, and transport. The destination address, port, and transport for theCANCEL
MUST be identical to those used to send the original request.

If it was allowed to send theCANCEL before receiving a response for the previous request, the server could receive
theCANCEL before the original request.

Note that both the transaction corresponding to the original request and theCANCEL transaction will com-
plete independently. However, a UAC canceling a request cannot rely on receiving a 487 (Request Termi-
nated) response for the original request, as an RFC 2543-compliant UAS will not generate such a response.
If there is no final response for the original request in 64*T1 seconds (T1 is defined in Section 17.1.1), the
client SHOULD then consider the original transaction cancelled andSHOULD destroy the client transaction
handling the original request.

9.2 Server Behavior

The CANCEL method requests that the TU at the server side cancel a pending transaction. The TU de-
termines the transaction to be cancelled by taking theCANCEL request, and then assuming that the re-
quest method is anything butCANCEL or ACK and applying the transaction matching procedures of Sec-
tion 17.2.3. The matching transaction is the one to be cancelled.

The processing of aCANCEL request at a server depends on the type of server. A stateless proxy will
forward it, a stateful proxy might respond to it and generate someCANCEL requests of its own, and a UAS
will respond to it. See Section 16.10 for proxy treatment ofCANCEL.

A UAS first processes theCANCEL request according to the general UAS processing described in Sec-
tion 8.2. However, sinceCANCEL requests are hop-by-hop and cannot be resubmitted, they cannot be
challenged by the server in order to get proper credentials in anAuthorization header field. Note also that
CANCEL requests do not contain aRequire header field.

If the UAS did not find a matching transaction for theCANCEL according to the procedure above, it
SHOULD respond to theCANCEL with a 481 (Call Leg/Transaction Does Not Exist). If the transaction
for the original request still exists, the behavior of the UAS on receiving aCANCEL request depends on
whether it has already sent a final response for the original request. If it has, theCANCEL request has no
effect on the processing of the original request, no effect on any session state, and no effect on the responses
generated for the original request. If the UAS has not issued a final response for the original request, its

Rosenberg, et al. Standards Track [Page 42]

RFC 3261 SIP: Session Initiation Protocol June 2002

behavior depends on the method of the original request. If the original request was anINVITE, the UAS
SHOULD immediately respond to theINVITE with a 487 (Request Terminated). ACANCEL request has no
impact on the processing of transactions with any other method defined in this specification.

Regardless of the method of the original request, as long as theCANCEL matched an existing transaction,
the UAS answers theCANCEL request itself with a 200 (OK) response. This response is constructed
following the procedures described in Section 8.2.6 noting that theTo tag of the response to theCANCEL
and theTo tag in the response to the original requestSHOULD be the same. The response toCANCEL is
passed to the server transaction for transmission.

10 Registrations

10.1 Overview

SIP offers a discovery capability. If a user wants to initiate a session with another user, SIP must discover the
current host(s) at which the destination user is reachable. This discovery process is frequently accomplished
by SIP network elements such as proxy servers and redirect servers which are responsible for receiving a
request, determining where to send it based on knowledge of the location of the user, and then sending
it there. To do this, SIP network elements consult an abstract service known as a location service, which
provides address bindings for a particular domain. These address bindings map an incoming SIP or SIPS
URI, sip:bob@biloxi.com, for example, to one or more URIs that are somehow “closer” to the desired user,
sip:bob@engineering.biloxi.com, for example. Ultimately, a proxy will consult a location service that maps
a received URI to the user agent(s) at which the desired recipient is currently residing.

Registration creates bindings in a location service for a particular domain that associates an address-of-
record URI with one or more contact addresses. Thus, when a proxy for that domain receives a request whose
Request-URI matches the address-of-record, the proxy will forward the request to the contact addresses
registered to that address-of-record. Generally, it only makes sense to register an address-of-record at a
domain’s location service when requests for that address-of-record would be routed to that domain. In
most cases, this means that the domain of the registration will need to match the domain in the URI of the
address-of-record.

There are many ways by which the contents of the location service can be established. One way is adminis-
tratively. In the above example, Bob is known to be a member of the engineering department through access
to a corporate database. However, SIP provides a mechanism for a UA to create a binding explicitly. This
mechanism is known as registration.

Registration entails sending aREGISTER request to a special type of UAS known as a registrar. A regis-
trar acts as the front end to the location service for a domain, reading and writing mappings based on the
contents ofREGISTER requests. This location service is then typically consulted by a proxy server that is
responsible for routing requests for that domain.

An illustration of the overall registration process is given in Figure 2. Note that the registrar and proxy
server are logical roles that can be played by a single device in a network; for purposes of clarity the two are
separated in this illustration. Also note that UAs may send requests through a proxy server in order to reach
a registrar if the two are separate elements.

SIP does not mandate a particular mechanism for implementing the location service. The only requirement

Rosenberg, et al. Standards Track [Page 43]

RFC 3261 SIP: Session Initiation Protocol June 2002

is that a registrar for some domainMUST be able to read and write data to the location service, and a proxy or
a redirect server for that domainMUST be capable of reading that same data. A registrarMAY be co-located
with a particular SIP proxy server for the same domain.

10.2 Constructing theREGISTER Request

REGISTER requests add, remove, and query bindings. AREGISTER request can add a new binding
between an address-of-record and one or more contact addresses. Registration on behalf of a particular
address-of-record can be performed by a suitably authorized third party. A client can also remove previous
bindings or query to determine which bindings are currently in place for an address-of-record.

Except as noted, the construction of theREGISTER request and the behavior of clients sending aREGIS-
TER request is identical to the general UAC behavior described in Section 8.1 and Section 17.1.

A REGISTER request does not establish a dialog. A UACMAY include aRoute header field in aREGIS-
TER request based on a pre-existing route set as described in Section 8.1. TheRecord-Route header field
has no meaning inREGISTER requests or responses, andMUST be ignored if present. In particular, the
UAC MUST NOT create a new route set based on the presence or absence of aRecord-Route header field
in any response to aREGISTER request.

The following header fields, exceptContact, MUST be included in aREGISTER request. AContact
header fieldMAY be included:

Request-URI : The Request-URI names the domain of the location service for which the registration
is meant (for example,sip:chicago.com). Theuserinfo and “@” components of the SIP URI
MUST NOT be present.

To: The To header field contains the address of record whose registration is to be created, queried, or
modified. TheTo header field and theRequest-URI field typically differ, as the former contains a
user name. This address-of-recordMUST be a SIP URI or SIPS URI.

From : TheFrom header field contains the address-of-record of the person responsible for the registration.
The value is the same as theTo header field unless the request is a third-party registration.

Call-ID : All registrations from a UACSHOULD use the sameCall-ID header field value for registrations
sent to a particular registrar.

If the same client were to use differentCall-ID values, a registrar could not detect whether a delayed
REGISTER request might have arrived out of order.

CSeq: TheCSeq value guarantees proper ordering ofREGISTER requests. A UAMUST increment the
CSeq value by one for eachREGISTER request with the sameCall-ID.

Contact : REGISTER requestsMAY contain aContact header field with zero or more values containing
address bindings.

UAs MUST NOT send a new registration (that is, containing newContact header field values, as opposed
to a retransmission) until they have received a final response from the registrar for the previous one or the
previousREGISTER request has timed out.

The followingContact header parameters have a special meaning inREGISTER requests:

Rosenberg, et al. Standards Track [Page 44]

RFC 3261 SIP: Session Initiation Protocol June 2002

bob
+----+
| UA |
| |
+----+

|
|3)INVITE
| carol@chicago.com

chicago.com +--------+ V
+---------+ 2)Store|Location|4)Query +-----+
|Registrar|=======>| Service|<=======|Proxy|sip.chicago.com
+---------+ +--------+=======>+-----+

A 5)Resp |
| |
| |

1)REGISTER| |
| |

+----+ |
| UA |<-------------------------------+

cube2214a| | 6)INVITE
+----+ carol@cube2214a.chicago.com

carol

Figure 2:REGISTER example

action: The action parameter from RFC 2543 has been deprecated. UACsSHOULD NOT use theaction
parameter.

expires: Theexpires parameter indicates how long the UA would like the binding to be valid. The value is
a number indicating seconds. If this parameter is not provided, the value of theExpires header field
is used instead. ImplementationsMAY treat values larger than 2**32-1 (4294967295 seconds or 136
years) as equivalent to 2**32-1. Malformed valuesSHOULD be treated as equivalent to 3600.

10.2.1 Adding Bindings

TheREGISTER request sent to a registrar includes the contact address(es) to which SIP requests for the
address-of-record should be forwarded. The address-of-record is included in theTo header field of the
REGISTER request.

TheContact header field values of the request typically consist of SIP or SIPS URIs that identify particular
SIP endpoints (for example, “sip:carol@cube2214a.chicago.com”), but theyMAY use any URI scheme. A
SIP UA can choose to register telephone numbers (with the tel URL, RFC 2806 [8]) or email addresses (with
a mailto URL, RFC 2368 [32]) as Contacts for an address-of-record, for example.

For example, Carol, with address-of-record “sip:carol@chicago.com”, would register with the SIP registrar
of the domain chicago.com. Her registrations would then be used by a proxy server in the chicago.com
domain to route requests for Carol’s address-of-record to her SIP endpoint.

Rosenberg, et al. Standards Track [Page 45]

RFC 3261 SIP: Session Initiation Protocol June 2002

Once a client has established bindings at a registrar, itMAY send subsequent registrations containing new
bindings or modifications to existing bindings as necessary. The 2xx response to theREGISTER request
will contain, in aContact header field, a complete list of bindings that have been registered for this address-
of-record at this registrar.

If the address-of-record in theTo header field of aREGISTER request is a SIPS URI, then anyContact
header field values in the requestSHOULD also be SIPS URIs. Clients should only register non-SIPS URIs
under a SIPS address-of-record when the security of the resource represented by the contact address is
guaranteed by other means. This may be applicable to URIs that invoke protocols other than SIP, or SIP
devices secured by protocols other than TLS.

Registrations do not need to update all bindings. Typically, a UA only updates its own contact addresses.

Setting the Expiration Interval of Contact Addresses When a client sends aREGISTER request, it
MAY suggest an expiration interval that indicates how long the client would like the registration to be valid.
(As described in Section 10.3, the registrar selects the actual time interval based on its local policy.)

There are two ways in which a client can suggest an expiration interval for a binding: through anExpires
header field or anexpires Contact header parameter. The latter allows expiration intervals to be suggested
on a per-binding basis when more than one binding is given in a singleREGISTER request, whereas the
former suggests an expiration interval for allContact header field values that do not contain theexpires
parameter.

If neither mechanism for expressing a suggested expiration time is present in aREGISTER, the client is
indicating its desire for the server to choose.

Preferences amongContact Addresses If more than oneContact is sent in aREGISTER request, the
registering UA intends to associate all of the URIs in theseContact header field values with the address-
of-record present in theTo field. This list can be prioritized with the “q” parameter in theContact header
field. Theq parameter indicates a relative preference for the particularContact header field value compared
to other bindings for this address-of-record. Section 16.6 describes how a proxy server uses this preference
indication.

10.2.2 Removing Bindings

Registrations are soft state and expire unless refreshed, but can also be explicitly removed. A client can
attempt to influence the expiration interval selected by the registrar as described in Section 10.2.1. A UA
requests the immediate removal of a binding by specifying an expiration interval of “0” for that contact
address in aREGISTER request. UAsSHOULD support this mechanism so that bindings can be removed
before their expiration interval has passed.

TheREGISTER-specificContact header field value of “*” applies to all registrations, but itMUST NOT be
used unless theExpires header field is present with a value of “0”.

Use of the “*” Contact header field value allows a registering UA to remove all bindings associated with an address-
of-record without knowing their precise values.

Rosenberg, et al. Standards Track [Page 46]

RFC 3261 SIP: Session Initiation Protocol June 2002

10.2.3 Fetching Bindings

A success response to anyREGISTER request contains the complete list of existing bindings, regardless of
whether the request contained aContact header field. If noContact header field is present in aREGISTER
request, the list of bindings is left unchanged.

10.2.4 Refreshing Bindings

Each UA is responsible for refreshing the bindings that it has previously established. A UASHOULD NOT

refresh bindings set up by other UAs.

The 200 (OK) response from the registrar contains a list ofContact fields enumerating all current bindings.
The UA compares each contact address to see if it created the contact address, using comparison rules in
Section 19.1.4. If so, it updates the expiration time interval according to the expires parameter or, if absent,
the Expires field value. The UA then issues aREGISTER request for each of its bindings before the
expiration interval has elapsed. ItMAY combine several updates into oneREGISTER request.

A UA SHOULD use the sameCall-ID for all registrations during a single boot cycle. Registration refreshes
SHOULD be sent to the same network address as the original registration, unless redirected.

10.2.5 Setting the Internal Clock

If the response for aREGISTER request contains aDate header field, the clientMAY use this header field
to learn the current time in order to set any internal clocks.

10.2.6 Discovering a Registrar

UAs can use three ways to determine the address to which to send registrations: by configuration, using the
address-of-record, and multicast. A UA can be configured, in ways beyond the scope of this specification,
with a registrar address. If there is no configured registrar address, the UASHOULD use the host part of the
address-of-record as theRequest-URI and address the request there, using the normal SIP server location
mechanisms [4]. For example, the UA for the user “sip:carol@chicago.com” addresses theREGISTER
request to “sip:chicago.com”.

Finally, a UA can be configured to use multicast. Multicast registrations are addressed to the well-known
“all SIP servers” multicast address “sip.mcast.net” (224.0.1.75 for IPv4). No well-known IPv6 multicast
address has been allocated; such an allocation will be documented separately when needed. SIP UAsMAY

listen to that address and use it to become aware of the location of other local users (see [33]); however, they
do not respond to the request.

Multicast registration may be inappropriate in some environments, for example, if multiple businesses share the
same local area network.

10.2.7 Transmitting a Request

Once theREGISTER method has been constructed, and the destination of the message identified, UACs
follow the procedures described in Section 8.1.2 to hand off theREGISTER to the transaction layer. If the

Rosenberg, et al. Standards Track [Page 47]

RFC 3261 SIP: Session Initiation Protocol June 2002

transaction layer returns a timeout error because theREGISTER yielded no response, the UACSHOULD

NOT immediately re-attempt a registration to the same registrar.

An immediate re-attempt is likely to also timeout. Waiting some reasonable time interval for the conditions causing
the timeout to be corrected reduces unnecessary load on the network. No specific interval is mandated.

10.2.8 Error Responses

If a UA receives a 423 (Interval Too Brief) response, itMAY retry the registration after making the expiration
interval of all contact addresses in theREGISTER request equal to or greater than the expiration interval
within theMin-Expires header field of the 423 (Interval Too Brief) response.

10.3 ProcessingREGISTER Requests

A registrar is a UAS that responds toREGISTER requests and maintains a list of bindings that are accessible
to proxy servers and redirect servers within its administrative domain. A registrar handles requests according
to Section 8.2 and Section 17.2, but it accepts onlyREGISTER requests. A registrarMUST not generate
6xx responses.

A registrarMAY redirectREGISTER requests as appropriate. One common usage would be for a registrar
listening on a multicast interface to redirect multicastREGISTER requests to its own unicast interface with
a 302 (Moved Temporarily) response.

RegistrarsMUST ignore theRecord-Route header field if it is included in aREGISTER request. Registrars
MUST NOT include aRecord-Route header field in any response to aREGISTER request.

A registrar might receive a request that traversed a proxy which treatsREGISTER as an unknown request and
which added aRecord-Route header field value.

A registrar has to know (for example, through configuration) the set of domain(s) for which it maintains
bindings.REGISTER requestsMUST be processed by a registrar in the order that they are received.REG-
ISTER requestsMUST also be processed atomically, meaning that a particularREGISTER request is either
processed completely or not at all. EachREGISTER messageMUST be processed independently of any
other registration or binding changes.

When receiving aREGISTER request, a registrar follows these steps:

1. The registrar inspects theRequest-URI to determine whether it has access to bindings for the domain
identified in theRequest-URI. If not, and if the server also acts as a proxy server, the serverSHOULD

forward the request to the addressed domain, following the general behavior for proxying messages
described in Section 16.

2. To guarantee that the registrar supports any necessary extensions, the registrarMUST process the
Require header field values as described for UASs in Section 8.2.2.

3. A registrarSHOULD authenticate the UAC. Mechanisms for the authentication of SIP user agents
are described in Section 22. Registration behavior in no way overrides the generic authentication
framework for SIP. If no authentication mechanism is available, the registrarMAY take theFrom
address as the asserted identity of the originator of the request.

Rosenberg, et al. Standards Track [Page 48]

RFC 3261 SIP: Session Initiation Protocol June 2002

4. The registrarSHOULD determine if the authenticated user is authorized to modify registrations for this
address-of-record. For example, a registrar might consult an authorization database that maps user
names to a list of addresses-of-record for which that user has authorization to modify bindings. If the
authenticated user is not authorized to modify bindings, the registrarMUST return a 403 (Forbidden)
and skip the remaining steps.

In architectures that support third-party registration, one entity may be responsible for updating the
registrations associated with multiple addresses-of-record.

5. The registrar extracts the address-of-record from theTo header field of the request. If the address-of-
record is not valid for the domain in theRequest-URI, the registrarMUST send a 404 (Not Found)
response and skip the remaining steps. The URIMUST then be converted to a canonical form.To do
that, all URI parametersMUST be removed (including the user-param), and any escaped characters
MUST be converted to their unescaped form. The result serves as an index into the list of bindings.

6. The registrar checks whether the request contains theContact header field. If not, it skips to the last
step. If theContact header field is present, the registrar checks if there is oneContact field value
that contains the special value “*” and anExpires field. If the request has additionalContact fields
or an expiration time other than zero, the request is invalid, and the serverMUST return a 400 (Invalid
Request) and skip the remaining steps. If not, the registrar checks whether theCall-ID agrees with the
value stored for each binding. If not, itMUST remove the binding. If it does agree, itMUST remove
the binding only if theCSeq in the request is higher than the value stored for that binding. Otherwise,
the updateMUST be aborted and the request fails.

7. The registrar now processes each contact address in theContact header field in turn. For each address,
it determines the expiration interval as follows:

• If the field value has anexpires parameter, that valueMUST be taken as the requested expiration.

• If there is no such parameter, but the request has anExpires header field, that valueMUST be
taken as the requested expiration.

• If there is neither, a locally-configured default valueMUST be taken as the requested expiration.

The registrarMAY choose an expiration less than the requested expiration interval. If and only if the
requested expiration interval is greater than zero AND smaller than one hour AND less than a registrar-
configured minimum, the registrarMAY reject the registration with a response of 423 (Interval Too
Brief). This responseMUST contain aMin-Expires header field that states the minimum expiration
interval the registrar is willing to honor. It then skips the remaining steps.

Allowing the registrar to set the registration interval protects it against excessively frequent regis-
tration refreshes while limiting the state that it needs to maintain and decreasing the likelihood of
registrations going stale. The expiration interval of a registration is frequently used in the creation of
services. An example is a follow-me service, where the user may only be available at a terminal for a
brief period. Therefore, registrars should accept brief registrations; a request should only be rejected
if the interval is so short that the refreshes would degrade registrar performance.

For each address, the registrar then searches the list of current bindings using the URI comparison
rules. If the binding does not exist, it is tentatively added. If the binding does exist, the registrar
checks theCall-ID value. If theCall-ID value in the existing binding differs from theCall-ID value in

Rosenberg, et al. Standards Track [Page 49]

RFC 3261 SIP: Session Initiation Protocol June 2002

the request, the bindingMUST be removed if the expiration time is zero and updated otherwise. If they
are the same, the registrar compares theCSeq value. If the value is higher than that of the existing
binding, it MUST update or remove the binding as above. If not, the updateMUST be aborted and the
request fails.

This algorithm ensures that out-of-order requests from the same UA are ignored.

Each binding record records theCall-ID andCSeq values from the request.

The binding updatesMUST be committed (that is, made visible to the proxy or redirect server) if and
only if all binding updates and additions succeed. If any one of them fails (for example, because the
back-end database commit failed), the requestMUST fail with a 500 (Server Error) response and all
tentative binding updatesMUST be removed.

8. The registrar returns a 200 (OK) response. The responseMUST containContact header field values
enumerating all current bindings. EachContact valueMUST feature an “expires” parameter indicating
its expiration interval chosen by the registrar. The responseSHOULD include aDate header field.

11 Querying for Capabilities

The SIP methodOPTIONS allows a UA to query another UA or a proxy server as to its capabilities. This
allows a client to discover information about the supported methods, content types, extensions, codecs, etc.
without “ringing” the other party. For example, before a client inserts aRequire header field into anINVITE
listing an option that it is not certain the destination UAS supports, the client can query the destination UAS
with anOPTIONS to see if this option is returned in aSupported header field. All UAsMUST support the
OPTIONS method.

The target of theOPTIONS request is identified by theRequest-URI, which could identify another UA or
a SIP server. If theOPTIONS is addressed to a proxy server, theRequest-URI is set without a user part,
similar to the way aRequest-URI is set for aREGISTER request.

Alternatively, a server receiving anOPTIONS request with aMax-Forwards header field value of 0MAY

respond to the request regardless of theRequest-URI.

This behavior is common with HTTP/1.1. This behavior can be used as a “traceroute” functionality to check the
capabilities of individual hop servers by sending a series ofOPTIONS requests with incrementedMax-Forwards
values.

As is the case for general UA behavior, the transaction layer can return a timeout error if theOPTIONS
yields no response. This may indicate that the target is unreachable and hence unavailable.

An OPTIONS requestMAY be sent as part of an established dialog to query the peer on capabilities that
may be utilized later in the dialog.

11.1 Construction ofOPTIONS Request

An OPTIONS request is constructed using the standard rules for a SIP request as discussed in Section 8.1.1.

A Contact header fieldMAY be present in anOPTIONS.

Rosenberg, et al. Standards Track [Page 50]

RFC 3261 SIP: Session Initiation Protocol June 2002

An Accept header fieldSHOULD be included to indicate the type of message body the UAC wishes to
receive in the response. Typically, this is set to a format that is used to describe the media capabilities of a
UA, such as SDP (application/sdp).

The response to anOPTIONS request is assumed to be scoped to theRequest-URI in the original request.
However, only when anOPTIONS is sent as part of an established dialog is it guaranteed that future requests
will be received by the server that generated theOPTIONS response.

ExampleOPTIONS request:

OPTIONS sip:carol@chicago.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKhjhs8ass877
Max-Forwards: 70
To: <sip:carol@chicago.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 63104 OPTIONS
Contact: <sip:alice@pc33.atlanta.com>
Accept: application/sdp
Content-Length: 0

11.2 Processing ofOPTIONS Request

The response to anOPTIONS is constructed using the standard rules for a SIP response as discussed in
Section 8.2.6. The response code chosenMUST be the same that would have been chosen had the request
been anINVITE. That is, a 200 (OK) would be returned if the UAS is ready to accept a call, a 486 (Busy
Here) would be returned if the UAS is busy, etc. This allows anOPTIONS request to be used to determine
the basic state of a UAS, which can be an indication of whether the UAS will accept anINVITE request.

An OPTIONS request received within a dialog generates a 200 (OK) response that is identical to one
constructed outside a dialog and does not have any impact on the dialog.

This use ofOPTIONS has limitations due to the differences in proxy handling ofOPTIONS andINVITE
requests. While a forkedINVITE can result in multiple 200 (OK) responses being returned, a forkedOP-
TIONS will only result in a single 200 (OK) response, since it is treated by proxies using the non-INVITE
handling. See Section 16.7 for the normative details.

If the response to anOPTIONS is generated by a proxy server, the proxy returns a 200 (OK), listing the
capabilities of the server. The response does not contain a message body.

Allow, Accept, Accept-Encoding, Accept-Language, andSupported header fieldsSHOULD be present
in a 200 (OK) response to anOPTIONS request. If the response is generated by a proxy, theAllow header
field SHOULD be omitted as it is ambiguous since a proxy is method agnostic.Contact header fieldsMAY

be present in a 200 (OK) response and have the same semantics as in a 3xx response. That is, they may list
a set of alternative names and methods of reaching the user. AWarning header fieldMAY be present.

A message bodyMAY be sent, the type of which is determined by theAccept header field in theOPTIONS
request (application/sdp is the default if theAccept header field is not present). If the types include one that
can describe media capabilities, the UASSHOULD include a body in the response for that purpose. Details
on the construction of such a body in the case of application/sdp are described in [12].

Rosenberg, et al. Standards Track [Page 51]

RFC 3261 SIP: Session Initiation Protocol June 2002

ExampleOPTIONS response generated by a UAS (corresponding to the request in Section 11.1):

SIP/2.0 200 OK
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKhjhs8ass877

;received=192.0.2.4
To: <sip:carol@chicago.com>;tag=93810874
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 63104 OPTIONS
Contact: <sip:carol@chicago.com>
Contact: <mailto:carol@chicago.com>
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE
Accept: application/sdp
Accept-Encoding: gzip
Accept-Language: en
Supported: foo
Content-Type: application/sdp
Content-Length: 274

(SDP not shown)

12 Dialogs

A key concept for a user agent is that of a dialog. A dialog represents a peer-to-peer SIP relationship between
two user agents that persists for some time. The dialog facilitates sequencing of messages between the user
agents and proper routing of requests between both of them. The dialog represents a context in which to
interpret SIP messages. Section 8 discussed method independent UA processing for requests and responses
outside of a dialog. This section discusses how those requests and responses are used to construct a dialog,
and then how subsequent requests and responses are sent within a dialog.

A dialog is identified at each UA with a dialog ID, which consists of aCall-ID value, a local tag and a remote
tag. The dialog ID at each UA involved in the dialog is not the same. Specifically, the local tag at one UA is
identical to the remote tag at the peer UA. The tags are opaque tokens that facilitate the generation of unique
dialog IDs.

A dialog ID is also associated with all responses and with any request that contains a tag in theTo field. The
rules for computing the dialog ID of a message depend on whether the SIP element is a UAC or UAS. For a
UAC, theCall-ID value of the dialog ID is set to theCall-ID of the message, the remote tag is set to the tag
in theTo field of the message, and the local tag is set to the tag in theFrom field of the message (these rules
apply to both requests and responses). As one would expect for a UAS, theCall-ID value of the dialog ID is
set to theCall-ID of the message, the remote tag is set to the tag in theFrom field of the message, and the
local tag is set to the tag in theTo field of the message.

A dialog contains certain pieces of state needed for further message transmissions within the dialog. This
state consists of the dialog ID, a local sequence number (used to order requests from the UA to its peer), a
remote sequence number (used to order requests from its peer to the UA), a local URI, a remote URI, remote

Rosenberg, et al. Standards Track [Page 52]

RFC 3261 SIP: Session Initiation Protocol June 2002

target, a boolean flag called “secure”, and a route set, which is an ordered list of URIs. The route set is the
list of servers that need to be traversed to send a request to the peer. A dialog can also be in the “early”
state, which occurs when it is created with a provisional response, and then transition to the “confirmed”
state when a 2xx final response arrives. For other responses, or if no response arrives at all on that dialog,
the early dialog terminates.

12.1 Creation of a Dialog

Dialogs are created through the generation of non-failure responses to requests with specific methods.
Within this specification, only 2xx and 101-199 responses with aTo tag, where the request wasINVITE,
will establish a dialog. A dialog established by a non-final response to a request is in the “early” state and
it is called an early dialog. ExtensionsMAY define other means for creating dialogs. Section 13 gives more
details that are specific to theINVITE method. Here, we describe the process for creation of dialog state
that is not dependent on the method.

UAs MUST assign values to the dialog ID components as described below.

12.1.1 UAS behavior

When a UAS responds to a request with a response that establishes a dialog (such as a 2xx toINVITE),
the UASMUST copy all Record-Route header field values from the request into the response (including
the URIs, URI parameters, and anyRecord-Route header field parameters, whether they are known or
unknown to the UAS) andMUST maintain the order of those values. The UASMUST add aContact header
field to the response. TheContact header field contains an address where the UAS would like to be con-
tacted for subsequent requests in the dialog (which includes theACK for a 2xx response in the case of an
INVITE). Generally, the host portion of this URI is the IP address or FQDN of the host. The URI provided
in the Contact header fieldMUST be a SIP or SIPS URI. If the request that initiated the dialog contained
a SIPS URI in theRequest-URI or in the topRecord-Route header field value, if there was any, or the
Contact header field if there was noRecord-Route header field, theContact header field in the response
MUST be a SIPS URI. The URISHOULD have global scope (that is, the same URI can be used in messages
outside this dialog). The same way, the scope of the URI in theContact header field of theINVITE is not
limited to this dialog either. It can therefore be used in messages to the UAC even outside this dialog.

The UAS then constructs the state of the dialog. This stateMUST be maintained for the duration of the
dialog.

If the request arrived over TLS, and theRequest-URI contained a SIPS URI, the “secure” flag is set to
TRUE.

The route setMUST be set to the list of URIs in theRecord-Route header field from the request, taken in
order and preserving all URI parameters. If noRecord-Route header field is present in the request, the
route setMUST be set to the empty set. This route set, even if empty, overrides any pre-existing route set for
future requests in this dialog. The remote targetMUST be set to the URI from theContact header field of
the request.

The remote sequence numberMUST be set to the value of the sequence number in theCSeq header field
of the request. The local sequence numberMUST be empty. The call identifier component of the dialog ID
MUST be set to the value of theCall-ID in the request. The local tag component of the dialog IDMUST be

Rosenberg, et al. Standards Track [Page 53]

RFC 3261 SIP: Session Initiation Protocol June 2002

set to the tag in theTo field in the response to the request (which always includes a tag), and the remote tag
component of the dialog IDMUST be set to the tag from theFrom field in the request. A UASMUST be
prepared to receive a request without a tag in theFrom field, in which case the tag is considered to have a
value of null.

This is to maintain backwards compatibility with RFC 2543, which did not mandateFrom tags.

The remote URIMUST be set to the URI in theFrom field, and the local URIMUST be set to the URI in the
To field.

12.1.2 UAC Behavior

When a UAC sends a request that can establish a dialog (such as anINVITE) it MUST provide a SIP or SIPS
URI with global scope (i.e., the same SIP URI can be used in messages outside this dialog) in theContact
header field of the request. If the request has aRequest-URI or a topmostRoute header field value with a
SIPS URI, theContact header fieldMUST contain a SIPS URI.

When a UAC receives a response that establishes a dialog, it constructs the state of the dialog. This state
MUST be maintained for the duration of the dialog.

If the request was sent over TLS, and theRequest-URI contained a SIPS URI, the “secure” flag is set to
TRUE.

The route setMUST be set to the list of URIs in theRecord-Route header field from the response, taken in
reverse order and preserving all URI parameters. If noRecord-Route header field is present in the response,
the route setMUST be set to the empty set. This route set, even if empty, overrides any pre-existing route set
for future requests in this dialog. The remote targetMUST be set to the URI from theContact header field
of the response.

The local sequence numberMUST be set to the value of the sequence number in theCSeq header field of
the request. The remote sequence numberMUST be empty (it is established when the remote UA sends a
request within the dialog). The call identifier component of the dialog IDMUST be set to the value of the
Call-ID in the request. The local tag component of the dialog IDMUST be set to the tag in theFrom field
in the request, and the remote tag component of the dialog IDMUST be set to the tag in theTo field of the
response. A UACMUST be prepared to receive a response without a tag in theTo field, in which case the
tag is considered to have a value of null.

This is to maintain backwards compatibility with RFC 2543, which did not mandateTo tags.

The remote URIMUST be set to the URI in theTo field, and the local URIMUST be set to the URI in the
From field.

12.2 Requests within a Dialog

Once a dialog has been established between two UAs, either of themMAY initiate new transactions as needed
within the dialog. The UA sending the request will take the UAC role for the transaction. The UA receiving
the request will take the UAS role. Note that these may be different roles than the UAs held during the
transaction that established the dialog.

Rosenberg, et al. Standards Track [Page 54]

RFC 3261 SIP: Session Initiation Protocol June 2002

Requests within a dialogMAY containRecord-Route andContact header fields. However, these requests
do not cause the dialog’s route set to be modified, although they may modify the remote target URI. Specifi-
cally, requests that are not target refresh requests do not modify the dialog’s remote target URI, and requests
that are target refresh requests do. For dialogs that have been established with an

INVITE, the only target refresh request defined is re-INVITE (see Section 14). Other extensions may define
different target refresh requests for dialogs established in other ways.

Note that anACK is NOT a target refresh request.

Target refresh requests only update the dialog’s remote target URI, and not the route set formed from
the Record-Route. Updating the latter would introduce severe backwards compatibility problems with
RFC 2543-compliant systems.

12.2.1 UAC Behavior

Generating the Request A request within a dialog is constructed by using many of the components of the
state stored as part of the dialog.

The URI in theTo field of the requestMUST be set to the remote URI from the dialog state. The tag in the
To header field of the requestMUST be set to the remote tag of the dialog ID. TheFrom URI of the request
MUST be set to the local URI from the dialog state. The tag in theFrom header field of the requestMUST be
set to the local tag of the dialog ID. If the value of the remote or local tags is null, the tag parameterMUST

be omitted from theTo or From header fields, respectively.

Usage of the URI from theTo andFrom fields in the original request within subsequent requests is done for back-
wards compatibility with RFC 2543, which used the URI for dialog identification. In this specification, only the
tags are used for dialog identification. It is expected that mandatory reflection of the originalTo andFrom URI in
mid-dialog requests will be deprecated in a subsequent revision of this specification.

TheCall-ID of the requestMUST be set to theCall-ID of the dialog. Requests within a dialogMUST con-
tain strictly monotonically increasing and contiguousCSeq sequence numbers (increasing-by-one) in each
direction (exceptingACK andCANCEL of course, whose numbers equal the requests being acknowledged
or cancelled). Therefore, if the local sequence number is not empty, the value of the local sequence number
MUST be incremented by one, and this valueMUST be placed into theCSeq header field. If the local se-
quence number is empty, an initial valueMUST be chosen using the guidelines of Section 8.1.1. The method
field in theCSeq header field valueMUST match the method of the request.

With a length of 32 bits, a client could generate, within a single call, one request a second for about 136 years before
needing to wrap around. The initial value of the sequence number is chosen so that subsequent requests within the
same call will not wrap around. A non-zero initial value allows clients to use a time-based initial sequence number.
A client could, for example, choose the 31 most significant bits of a 32-bit second clock as an initial sequence
number.

The UAC uses the remote target and route set to build theRequest-URI andRoute header field of the
request.

If the route set is empty, the UACMUST place the remote target URI into theRequest-URI. The UAC
MUST NOT add aRoute header field to the request.

Rosenberg, et al. Standards Track [Page 55]

RFC 3261 SIP: Session Initiation Protocol June 2002

If the route set is not empty, and the first URI in the route set contains the lr parameter (see Section 19.1.1),
the UACMUST place the remote target URI into theRequest-URI andMUST include aRoute header field
containing the route set values in order, including all parameters.

If the route set is not empty, and its first URI does not contain the lr parameter, the UACMUST place the first
URI from the route set into theRequest-URI, stripping any parameters that are not allowed in aRequest-
URI. The UAC MUST add aRoute header field containing the remainder of the route set values in order,
including all parameters. The UACMUST then place the remote target URI into theRoute header field as
the last value.

For example, if the remote target is sip:user@remoteua and the route set contains:

<sip:proxy1>,<sip:proxy2>,<sip:proxy3;lr>,<sip:proxy4>

The request will be formed with the followingRequest-URI andRoute header field:

METHOD sip:proxy1
Route: <sip:proxy2>,<sip:proxy3;lr>,<sip:proxy4>,<sip:user@remoteua>

If the first URI of the route set does not contain the lr parameter, the proxy indicated does not understand the routing
mechanisms described in this document and will act as specified in RFC 2543, replacing theRequest-URI with the
first Route header field value it receives while forwarding the message. Placing theRequest-URI at the end of the
Route header field preserves the information in thatRequest-URI across the strict router (it will be returned to the
Request-URI when the request reaches a loose-router).

A UAC SHOULD include aContact header field in any target refresh requests within a dialog, and unless
there is a need to change it, the URISHOULD be the same as used in previous requests within the dialog. If
the “secure” flag is true, that URIMUST be a SIPS URI. As discussed in Section 12.2.2, aContact header
field in a target refresh request updates the remote target URI. This allows a UA to provide a new contact
address, should its address change during the duration of the dialog.

However, requests that are not target refresh requests do not affect the remote target URI for the dialog.

The rest of the request is formed as described in Section 8.1.1.

Once the request has been constructed, the address of the server is computed and the request is sent, using
the same procedures for requests outside of a dialog (Section 8.1.2).

The procedures in Section 8.1.2 will normally result in the request being sent to the address indicated by the topmost
Route header field value or theRequest-URI if no Route header field is present.Subject to certain restrictions,
they allow the request to be sent to an alternate address (such as a default outbound proxy not represented in the
route set).

Processing the ResponsesThe UAC will receive responses to the request from the transaction layer. If
the client transaction returns a timeout, this is treated as a 408 (Request Timeout) response.

The behavior of a UAC that receives a 3xx response for a request sent within a dialog is the same as if the
request had been sent outside a dialog. This behavior is described in Section 8.1.3.

Note, however, that when the UAC tries alternative locations, it still uses the route set for the dialog to build the
Route header of the request.

Rosenberg, et al. Standards Track [Page 56]

RFC 3261 SIP: Session Initiation Protocol June 2002

When a UAC receives a 2xx response to a target refresh request, itMUST replace the dialog’s remote target
URI with the URI from theContact header field in that response, if present.

If the response for a request within a dialog is a 481 (Call/Transaction Does Not Exist) or a 408 (Request
Timeout), the UACSHOULD terminate the dialog. A UACSHOULD also terminate a dialog if no response
at all is received for the request (the client transaction would inform the TU about the timeout.)

For INVITE initiated dialogs, terminating the dialog consists of sending aBYE.

12.2.2 UAS Behavior

Requests sent within a dialog, as any other requests, are atomic. If a particular request is accepted by the
UAS, all the state changes associated with it are performed. If the request is rejected, none of the state
changes are performed.

Note that some requests, such asINVITEs, affect several pieces of state.

The UAS will receive the request from the transaction layer. If the request has a tag in theTo header field, the
UAS core computes the dialog identifier corresponding to the request and compares it with existing dialogs.
If there is a match, this is a mid-dialog request. In that case, the UAS first applies the same processing rules
for requests outside of a dialog, discussed in Section 8.2.

If the request has a tag in theTo header field, but the dialog identifier does not match any existing dialogs,
the UAS may have crashed and restarted, or it may have received a request for a different (possibly failed)
UAS (the UASs can construct theTo tags so that a UAS can identify that the tag was for a UAS for which it
is providing recovery). Another possibility is that the incoming request has been simply misrouted. Based
on theTo tag, the UASMAY either accept or reject the request. Accepting the request for acceptableTo tags
provides robustness, so that dialogs can persist even through crashes. UAs wishing to support this capa-
bility must take into consideration some issues such as choosing monotonically increasingCSeq sequence
numbers even across reboots, reconstructing the route set, and accepting out-of-range RTP timestamps and
sequence numbers.

If the UAS wishes to reject the request because it does not wish to recreate the dialog, itMUST respond to
the request with a 481 (Call/Transaction Does Not Exist) status code and pass that to the server transaction.

Requests that do not change in any way the state of a dialog may be received within a dialog (for example,
anOPTIONS request). They are processed as if they had been received outside the dialog.

If the remote sequence number is empty, itMUST be set to the value of the sequence number in theCSeq
header field value in the request. If the remote sequence number was not empty, but the sequence number of
the request is lower than the remote sequence number, the request is out of order andMUST be rejected with
a 500 (Server Internal Error) response. If the remote sequence number was not empty, and the sequence
number of the request is greater than the remote sequence number, the request is in order. It is possible for
theCSeq sequence number to be higher than the remote sequence number by more than one. This is not
an error condition, and a UASSHOULD be prepared to receive and process requests withCSeq values more
than one higher than the previous received request. The UASMUST then set the remote sequence number to
the value of the sequence number in theCSeq header field value in the request.

If a proxy challenges a request generated by the UAC, the UAC has to resubmit the request with credentials. The
resubmitted request will have a newCSeq number. The UAS will never see the first request, and thus, it will notice
a gap in theCSeq number space. Such a gap does not represent any error condition.

Rosenberg, et al. Standards Track [Page 57]

RFC 3261 SIP: Session Initiation Protocol June 2002

When a UAS receives a target refresh request, itMUST replace the dialog’s remote target URI with the URI
from theContact header field in that request, if present.

12.3 Termination of a Dialog

Independent of the method, if a request outside of a dialog generates a non-2xx final response, any early
dialogs created through provisional responses to that request are terminated. The mechanism for terminating
confirmed dialogs is method specific. In this specification, theBYE method terminates a session and the
dialog associated with it. See Section 15 for details.

13 Initiating a Session

13.1 Overview

When a user agent client desires to initiate a session (for example, audio, video, or a game), it formulates an
INVITE request. TheINVITE request asks a server to establish a session. This request may be forwarded by
proxies, eventually arriving at one or more UAS that can potentially accept the invitation. These UASs will
frequently need to query the user about whether to accept the invitation. After some time, those UASs can
accept the invitation (meaning the session is to be established) by sending a 2xx response. If the invitation
is not accepted, a 3xx, 4xx, 5xx or 6xx response is sent, depending on the reason for the rejection. Before
sending a final response, the UAS can also send provisional responses (1xx) to advise the UAC of progress
in contacting the called user.

After possibly receiving one or more provisional responses, the UAC will get one or more 2xx responses or
one non-2xx final response. Because of the protracted amount of time it can take to receive final responses
to INVITE, the reliability mechanisms forINVITE transactions differ from those of other requests (like
OPTIONS). Once it receives a final response, the UAC needs to send anACK for every final response
it receives. The procedure for sending thisACK depends on the type of response. For final responses
between 300 and 699, theACK processing is done in the transaction layer and follows one set of rules (See
Section 17). For 2xx responses, theACK is generated by the UAC core.

A 2xx response to anINVITE establishes a session, and it also creates a dialog between the UA that issued
the INVITE and the UA that generated the 2xx response. Therefore, when multiple 2xx responses are
received from different remote UAs (because theINVITE forked), each 2xx establishes a different dialog.
All these dialogs are part of the same call.

This section provides details on the establishment of a session usingINVITE. A UA that supportsINVITE
MUST also supportACK, CANCEL andBYE.

13.2 UAC Processing

13.2.1 Creating the Initial INVITE

Since the initialINVITE represents a request outside of a dialog, its construction follows the procedures of
Section 8.1.1. Additional processing is required for the specific case ofINVITE.

Rosenberg, et al. Standards Track [Page 58]

RFC 3261 SIP: Session Initiation Protocol June 2002

An Allow header field (Section 20.5)SHOULD be present in theINVITE. It indicates what methods can be
invoked within a dialog, on the UA sending theINVITE, for the duration of the dialog. For example, a UA
capable of receiving INFO requests within a dialog [34]SHOULD include anAllow header field listing the
INFO method.

A Supported header field (Section 20.37)SHOULD be present in theINVITE. It enumerates all the exten-
sions understood by the UAC.

An Accept (Section 20.1) header fieldMAY be present in theINVITE. It indicates which Content-Types are
acceptable to the UA, in both the response received by it, and in any subsequent requests sent to it within
dialogs established by theINVITE. TheAccept header field is especially useful for indicating support of
various session description formats.

The UACMAY add anExpires header field (Section 20.19) to limit the validity of the invitation. If the time
indicated in theExpires header field is reached and no final answer for theINVITE has been received, the
UAC coreSHOULD generate aCANCEL request for theINVITE, as per Section 9.

A UAC MAY also find it useful to add, among others,Subject (Section 20.36),Organization (Section 20.25)
andUser-Agent (Section 20.41) header fields. They all contain information related to theINVITE.

The UACMAY choose to add a message body to theINVITE. Section 8.1.1 deals with how to construct the
header fields –Content-Type among others – needed to describe the message body.

There are special rules for message bodies that contain a session description - their correspondingContent-
Disposition is “session”. SIP uses an offer/answer model where one UA sends a session description, called
the offer, which contains a proposed description of the session. The offer indicates the desired communi-
cations means (audio, video, games), parameters of those means (such as codec types) and addresses for
receiving media from the answerer. The other UA responds with another session description, called the an-
swer, which indicates which communications means are accepted, the parameters that apply to those means,
and addresses for receiving media from the offerer. An offer/answer exchange is within the context of a
dialog, so that if a SIPINVITE results in multiple dialogs, each is a separate offer/answer exchange. The
offer/answer model defines restrictions on when offers and answers can be made (for example, you cannot
make a new offer while one is in progress). This results in restrictions on where the offers and answers can
appear in SIP messages. In this specification, offers and answers can only appear inINVITE requests and re-
sponses, andACK. The usage of offers and answers is further restricted. For the initialINVITE transaction,
the rules are:

• The initial offerMUST be in either anINVITE or, if not there, in the first reliable non-failure message
from the UAS back to the UAC. In this specification, that is the final 2xx response.

• If the initial offer is in anINVITE, the answerMUST be in a reliable non-failure message from UAS
back to UAC which is correlated to thatINVITE. For this specification, that is only the final 2xx
response to thatINVITE. That same exact answerMAY also be placed in any provisional responses
sent prior to the answer. The UACMUST treat the first session description it receives as the answer,
andMUST ignore any session descriptions in subsequent responses to the initialINVITE.

• If the initial offer is in the first reliable non-failure message from the UAS back to UAC, the answer
MUST be in the acknowledgement for that message (in this specification,ACK for a 2xx response).

• After having sent or received an answer to the first offer, the UACMAY generate subsequent offers in

Rosenberg, et al. Standards Track [Page 59]

RFC 3261 SIP: Session Initiation Protocol June 2002

requests based on rules specified for that method, but only if it has received answers to any previous
offers, and has not sent any offers to which it hasn’t gotten an answer.

• Once the UAS has sent or received an answer to the initial offer, itMUST NOT generate subsequent
offers in any responses to the initialINVITE. This means that a UAS based on this specification alone
can never generate subsequent offers until completion of the initial transaction.

Concretely, the above rules specify two exchanges for UAs compliant to this specification alone - the offer
is in theINVITE, and the answer in the 2xx (and possibly in a 1xx as well, with the same value), or the offer
is in the 2xx, and the answer is in theACK. All user agents that supportINVITE MUST support these two
exchanges.

The Session Description Protocol (SDP) (RFC 2327 [1])MUST be supported by all user agents as a means
to describe sessions, and its usage for constructing offers and answersMUST follow the procedures defined
in [12].

The restrictions of the offer-answer model just described only apply to bodies whoseContent-Disposition
header field value is “session”. Therefore, it is possible that both theINVITE and theACK contain a body
message (for example, theINVITE carries a photo (Content-Disposition: render) and theACK a session
description (Content-Disposition: session)).

If the Content-Disposition header field is missing, bodies ofContent-Type application/sdp imply the
disposition “session”, while other content types imply “render”.

Once theINVITE has been created, the UAC follows the procedures defined for sending requests outside
of a dialog (Section 8). This results in the construction of a client transaction that will ultimately send the
request and deliver responses to the UAC.

13.2.2 ProcessingINVITE Responses

Once theINVITE has been passed to theINVITE client transaction, the UAC waits for responses for the
INVITE. If the INVITE client transaction returns a timeout rather than a response the TU acts as if a 408
(Request Timeout) response had been received, as described in Section 8.1.3.

1xx Responses Zero, one or multiple provisional responses may arrive before one or more final responses
are received. Provisional responses for anINVITE request can create “early dialogs”. If a provisional
response has a tag in theTo field, and if the dialog ID of the response does not match an existing dialog, one
is constructed using the procedures defined in Section 12.1.2.

The early dialog will only be needed if the UAC needs to send a request to its peer within the dialog before
the initial INVITE transaction completes. Header fields present in a provisional response are applicable as
long as the dialog is in the early state (for example, anAllow header field in a provisional response contains
the methods that can be used in the dialog while this is in the early state).

3xx Responses A 3xx response may contain one or moreContact header field values providing new
addresses where the callee might be reachable. Depending on the status code of the 3xx response (see
Section 21.3), the UACMAY choose to try those new addresses.

Rosenberg, et al. Standards Track [Page 60]

RFC 3261 SIP: Session Initiation Protocol June 2002

4xx, 5xx and 6xx ResponsesA single non-2xx final response may be received for theINVITE. 4xx,
5xx and 6xx responses may contain aContact header field value indicating the location where additional
information about the error can be found. Subsequent final responses (which would only arrive under error
conditions)MUST be ignored.

All early dialogs are considered terminated upon reception of the non-2xx final response.

After having received the non-2xx final response the UAC core considers theINVITE transaction completed.
TheINVITE client transaction handles the generation ofACKs for the response (see Section 17).

2xx Responses Multiple 2xx responses may arrive at the UAC for a singleINVITE request due to a forking
proxy. Each response is distinguished by the tag parameter in theTo header field, and each represents a
distinct dialog, with a distinct dialog identifier.

If the dialog identifier in the 2xx response matches the dialog identifier of an existing dialog, the dialog
MUST be transitioned to the “confirmed” state, and the route set for the dialogMUST be recomputed based
on the 2xx response using the procedures of Section 12.2.1. Otherwise, a new dialog in the “confirmed”
stateMUST be constructed using the procedures of Section 12.1.2.

Note that the only piece of state that is recomputed is the route set. Other pieces of state such as the highest
sequence numbers (remote and local) sent within the dialog are not recomputed. The route set only is recomputed
for backwards compatibility. RFC 2543 did not mandate mirroring of theRecord-Route header field in a 1xx, only
2xx. However, we cannot update the entire state of the dialog, since mid-dialog requests may have been sent within
the early dialog, modifying the sequence numbers, for example.

The UAC coreMUST generate anACK request for each 2xx received from the transaction layer. The header
fields of theACK are constructed in the same way as for any request sent within a dialog (see Section 12)
with the exception of theCSeq and the header fields related to authentication. The sequence number of the
CSeq header fieldMUST be the same as theINVITE being acknowledged, but theCSeq methodMUST be
ACK. TheACK MUST contain the same credentials as theINVITE. If the 2xx contains an offer (based on the
rules above), theACK MUST carry an answer in its body. If the offer in the 2xx response is not acceptable,
the UAC coreMUST generate a valid answer in theACK and then send aBYE immediately.

Once theACK has been constructed, the procedures of [4] are used to determine the destination address,
port and transport. However, the request is passed to the transport layer directly for transmission, rather than
a client transaction. This is because the UAC core handles retransmissions of theACK, not the transaction
layer. TheACK MUST be passed to the client transport every time a retransmission of the 2xx final response
that triggered theACK arrives.

The UAC core considers theINVITE transaction completed 64*T1 seconds after the reception of the first 2xx
response. At this point all the early dialogs that have not transitioned to established dialogs are terminated.
Once theINVITE transaction is considered completed by the UAC core, no more new 2xx responses are
expected to arrive.

If, after acknowledging any 2xx response to anINVITE, the UAC does not want to continue with that dialog,
then the UACMUST terminate the dialog by sending aBYE request as described in Section 15.

Rosenberg, et al. Standards Track [Page 61]

RFC 3261 SIP: Session Initiation Protocol June 2002

13.3 UAS Processing

13.3.1 Processing of theINVITE

The UAS core will receiveINVITE requests from the transaction layer. It first performs the request process-
ing procedures of Section 8.2, which are applied for both requests inside and outside of a dialog.

Assuming these processing states are completed without generating a response, the UAS core performs the
additional processing steps:

1. If the request is anINVITE that contains anExpires header field, the UAS core sets a timer for
the number of seconds indicated in the header field value. When the timer fires, the invitation is
considered to be expired. If the invitation expires before the UAS has generated a final response, a
487 (Request Terminated) responseSHOULD be generated.

2. If the request is a mid-dialog request, the method-independent processing described in Section 12.2.2
is first applied. It might also modify the session; Section 14 provides details.

3. If the request has a tag in theTo header field but the dialog identifier does not match any of the
existing dialogs, the UAS may have crashed and restarted, or may have received a request for a
different (possibly failed) UAS. Section 12.2.2 provides guidelines to achieve a robust behavior under
such a situation.

Processing from here forward assumes that theINVITE is outside of a dialog, and is thus for the purposes
of establishing a new session.

The INVITE may contain a session description, in which case the UAS is being presented with an offer for
that session. It is possible that the user is already a participant in that session, even though theINVITE is
outside of a dialog. This can happen when a user is invited to the same multicast conference by multiple
other participants. If desired, the UASMAY use identifiers within the session description to detect this
duplication. For example, SDP contains a session id and version number in the origin (o) field. If the user
is already a member of the session, and the session parameters contained in the session description have
not changed, the UASMAY silently accept theINVITE (that is, send a 2xx response without prompting the
user).

If the INVITE does not contain a session description, the UAS is being asked to participate in a session,
and the UAC has asked that the UAS provide the offer of the session. ItMUST provide the offer in its first
non-failure reliable message back to the UAC. In this specification, that is a 2xx response to theINVITE.

The UAS can indicate progress, accept, redirect, or reject the invitation. In all of these cases, it formulates a
response using the procedures described in Section 8.2.6.

Progress If the UAS is not able to answer the invitation immediately, it can choose to indicate some kind
of progress to the UAC (for example, an indication that a phone is ringing). This is accomplished with a
provisional response between 101 and 199. These provisional responses establish early dialogs and therefore
follow the procedures of Section 12.1.1 in addition to those of Section 8.2.6. A UASMAY send as many
provisional responses as it likes. Each of theseMUST indicate the same dialog ID. However, these will not
be delivered reliably.

Rosenberg, et al. Standards Track [Page 62]

RFC 3261 SIP: Session Initiation Protocol June 2002

If the UAS desires an extended period of time to answer theINVITE, it will need to ask for an “extension”
in order to prevent proxies from canceling the transaction. A proxy has the option of canceling a transaction
when there is a gap of 3 minutes between responses in a transaction.To prevent cancellation, the UASMUST

send a non-100 provisional response at every minute, to handle the possibility of lost provisional responses.

An INVITE transaction can go on for extended durations when the user is placed on hold, or when interworking
with PSTN systems which allow communications to take place without answering the call. The latter is common in
Interactive Voice Response (IVR) systems.

The INVITE is Redirected If the UAS decides to redirect the call, a 3xx response is sent. A 300 (Multiple
Choices), 301 (Moved Permanently) or 302 (Moved Temporarily) responseSHOULD contain aContact
header field containing one or more URIs of new addresses to be tried. The response is passed to the
INVITE server transaction, which will deal with its retransmissions.

The INVITE is Rejected A common scenario occurs when the callee is currently not willing or able to
take additional calls at this end system. A 486 (Busy Here)SHOULD be returned in such a scenario. If the
UAS knows that no other end system will be able to accept this call, a 600 (Busy Everywhere) response
SHOULD be sent instead. However, it is unlikely that a UAS will be able to know this in general, and thus
this response will not usually be used. The response is passed to theINVITE server transaction, which will
deal with its retransmissions.

A UAS rejecting an offer contained in anINVITE SHOULD return a 488 (Not Acceptable Here) response.
Such a responseSHOULD include aWarning header field value explaining why the offer was rejected.

The INVITE is Accepted The UAS core generates a 2xx response. This response establishes a dialog, and
therefore follows the procedures of Section 12.1.1 in addition to those of Section 8.2.6.

A 2xx response to anINVITE SHOULD contain theAllow header field and theSupported header field,
andMAY contain theAccept header field. Including these header fields allows the UAC to determine the
features and extensions supported by the UAS for the duration of the call, without probing.

If the INVITE request contained an offer, and the UAS had not yet sent an answer, the 2xxMUST contain an
answer. If theINVITE did not contain an offer, the 2xxMUST contain an offer if the UAS had not yet sent
an offer.

Once the response has been constructed, it is passed to theINVITE server transaction. Note, however, that
the INVITE server transaction will be destroyed as soon as it receives this final response and passes it to
the transport. Therefore, it is necessary to periodically pass the response directly to the transport until the
ACK arrives. The 2xx response is passed to the transport with an interval that starts at T1 seconds and
doubles for each retransmission until it reaches T2 seconds (T1 and T2 are defined in Section 17). Response
retransmissions cease when anACK request for the response is received. This is independent of whatever
transport protocols are used to send the response.

Since 2xx is retransmitted end-to-end, there may be hops between UAS and UAC that are UDP.To ensure reliable
delivery across these hops, the response is retransmitted periodically even if the transport at the UAS is reliable.

If the server retransmits the 2xx response for 64*T1 seconds without receiving anACK, the dialog is con-
firmed, but the sessionSHOULD be terminated. This is accomplished with aBYE, as described in Section 15.

Rosenberg, et al. Standards Track [Page 63]

RFC 3261 SIP: Session Initiation Protocol June 2002

14 Modifying an Existing Session

A successfulINVITE request (see Section 13) establishes both a dialog between two user agents and a
session using the offer-answer model. Section 12 explains how to modify an existing dialog using a target
refresh request (for example, changing the remote target URI of the dialog). This section describes how
to modify the actual session. This modification can involve changing addresses or ports, adding a media
stream, deleting a media stream, and so on. This is accomplished by sending a newINVITE request within
the same dialog that established the session. AnINVITE request sent within an existing dialog is known as
a re-INVITE.

Note that a single re-INVITE can modify the dialog and the parameters of the session at the same time.

Either the caller or callee can modify an existing session.

The behavior of a UA on detection of media failure is a matter of local policy. However, automated gen-
eration of re-INVITE or BYE is NOT RECOMMENDED to avoid flooding the network with traffic when
there is congestion. In any case, if these messages are sent automatically, theySHOULD be sent after some
randomized interval.

Note that the paragraph above refers to automatically generatedBYEs and re-INVITEs. If the user hangs up
upon media failure, the UA would send aBYE request as usual.

14.1 UAC Behavior

The same offer-answer model that applies to session descriptions inINVITEs (Section 13.2.1) applies to
re-INVITEs. As a result, a UAC that wants to add a media stream, for example, will create a new offer that
contains this media stream, and send that in anINVITE request to its peer. It is important to note that the full
description of the session, not just the change, is sent. This supports stateless session processing in various
elements, and supports failover and recovery capabilities. Of course, a UACMAY send a re-INVITE with no
session description, in which case the first reliable non-failure response to the re-INVITE will contain the
offer (in this specification, that is a 2xx response).

If the session description format has the capability for version numbers, the offererSHOULD indicate that
the version of the session description has changed.

TheTo, From, Call-ID, CSeq, andRequest-URI of a re-INVITE are set following the same rules as for
regular requests within an existing dialog, described in Section 12.

A UAC MAY choose not to add anAlert-Info header field or a body withContent-Disposition “alert” to
re-INVITEs because UASs do not typically alert the user upon reception of a re-INVITE.

Unlike anINVITE, which can fork, a re-INVITE will never fork, and therefore, only ever generate a single
final response. The reason a re-INVITE will never fork is that theRequest-URI identifies the target as the
UA instance it established the dialog with, rather than identifying an address-of-record for the user.

Note that a UACMUST NOT initiate a newINVITE transaction within a dialog while anotherINVITE
transaction is in progress in either direction.

1. If there is an ongoingINVITE client transaction, the TUMUST wait until the transaction reaches the
completed or terminated state before initiating the newINVITE.

2. If there is an ongoingINVITE server transaction, the TUMUST wait until the transaction reaches the

Rosenberg, et al. Standards Track [Page 64]

RFC 3261 SIP: Session Initiation Protocol June 2002

confirmed or terminated state before initiating the newINVITE.

However, a UAMAY initiate a regular transaction while anINVITE transaction is in progress. A UAMAY

also initiate anINVITE transaction while a regular transaction is in progress.

If a UA receives a non-2xx final response to a re-INVITE, the session parametersMUST remain unchanged,
as if no re-INVITE had been issued. Note that, as stated in Section 12.2.1, if the non-2xx final response is
a 481 (Call/Transaction Does Not Exist), or a 408 (Request Timeout), or no response at all is received for
the re-INVITE (that is, a timeout is returned by theINVITE client transaction), the UAC will terminate the
dialog.

If a UAC receives a 491 response to a re-INVITE, it SHOULD start a timer with a value T chosen as follows:

1. If the UAC is the owner of theCall-ID of the dialog ID (meaning it generated the value), T has a
randomly chosen value between 2.1 and 4 seconds in units of 10 ms.

2. If the UAC is not the owner of theCall-ID of the dialog ID, T has a randomly chosen value of between
0 and 2 seconds in units of 10 ms.

When the timer fires, the UACSHOULD attempt the re-INVITE once more, if it still desires for that session
modification to take place. For example, if the call was already hung up with aBYE, the re-INVITE would
not take place.

The rules for transmitting a re-INVITE and for generating anACK for a 2xx response to re-INVITE are the
same as for the initialINVITE (Section 13.2.1).

14.2 UAS Behavior

Section 13.3.1 describes the procedure for distinguishing incoming re-INVITEs from incoming initialIN-
VITEs and handling a re-INVITE for an existing dialog.

A UAS that receives a secondINVITE before it sends the final response to a firstINVITE with a lower
CSeq sequence number on the same dialogMUST return a 500 (Server Internal Error) response to the
secondINVITE andMUST include aRetry-After header field with a randomly chosen value of between 0
and 10 seconds.

A UAS that receives anINVITE on a dialog while anINVITE it had sent on that dialog is in progressMUST

return a 491 (Request Pending) response to the receivedINVITE.

If a UA receives a re-INVITE for an existing dialog, itMUST check any version identifiers in the session
description or, if there are no version identifiers, the content of the session description to see if it has changed.
If the session description has changed, the UASMUST adjust the session parameters accordingly, possibly
after asking the user for confirmation.

Versioning of the session description can be used to accommodate the capabilities of new arrivals to a conference,
add or delete media, or change from a unicast to a multicast conference.

If the new session description is not acceptable, the UAS can reject it by returning a 488 (Not Acceptable
Here) response for the re-INVITE. This responseSHOULD include aWarning header field.

Rosenberg, et al. Standards Track [Page 65]

RFC 3261 SIP: Session Initiation Protocol June 2002

If a UAS generates a 2xx response and never receives anACK, it SHOULD generate aBYE to terminate the
dialog.

A UAS MAY choose not to generate 180 (Ringing) responses for a re-INVITE because UACs do not typically
render this information to the user. For the same reason, UASsMAY choose not to use anAlert-Info header
field or a body withContent-Disposition “alert” in responses to a re-INVITE.

A UAS providing an offer in a 2xx (because theINVITE did not contain an offer)SHOULD construct the
offer as if the UAS were making a brand new call, subject to the constraints of sending an offer that updates
an existing session, as described in [12] in the case of SDP. Specifically, this means that itSHOULD include
as many media formats and media types that the UA is willing to support. The UASMUST ensure that
the session description overlaps with its previous session description in media formats, transports, or other
parameters that require support from the peer. This is to avoid the need for the peer to reject the session
description. If, however, it is unacceptable to the UAC, the UACSHOULD generate an answer with a valid
session description, and then send aBYE to terminate the session.

15 Terminating a Session

This section describes the procedures for terminating a session established by SIP. The state of the session
and the state of the dialog are very closely related. When a session is initiated with anINVITE, each 1xx or
2xx response from a distinct UAS creates a dialog, and if that response completes the offer/answer exchange,
it also creates a session. As a result, each session is “associated” with a single dialog - the one which resulted
in its creation. If an initialINVITE generates a non-2xx final response, that terminates all sessions (if any)
and all dialogs (if any) that were created through responses to the request. By virtue of completing the
transaction, a non-2xx final response also prevents further sessions from being created as a result of the
INVITE. The BYE request is used to terminate a specific session or attempted session. In this case, the
specific session is the one with the peer UA on the other side of the dialog. When aBYE is received on a
dialog, any session associated with that dialogSHOULD terminate. A UAMUST NOT send aBYE outside of
a dialog. The caller’s UAMAY send aBYE for either confirmed or early dialogs, and the callee’s UAMAY

send aBYE on confirmed dialogs, butMUST NOT send aBYE on early dialogs. However, the callee’s UA
MUST NOT send aBYE on a confirmed dialog until it has received anACK for its 2xx response or until the
server transaction times out. If no SIP extensions have defined other application layer states associated with
the dialog, theBYE also terminates the dialog.

The impact of a non-2xx final response toINVITE on dialogs and sessions makes the use ofCANCEL
attractive. TheCANCEL attempts to force a non-2xx response to theINVITE (in particular, a 487). There-
fore, if a UAC wishes to give up on its call attempt entirely, it can send aCANCEL. If the INVITE results in
2xx final response(s) to theINVITE, this means that a UAS accepted the invitation while theCANCEL was
in progress. The UACMAY continue with the sessions established by any 2xx responses, orMAY terminate
them withBYE.

The notion of “hanging up” is not well defined within SIP. It is specific to a particular, albeit common, user interface.
Typically, when the user hangs up, it indicates a desire to terminate the attempt to establish a session, and to terminate
any sessions already created. For the caller’s UA, this would imply aCANCEL request if the initialINVITE has
not generated a final response, and aBYE to all confirmed dialogs after a final response. For the callee’s UA, it
would typically imply aBYE; presumably, when the user picked up the phone, a 2xx was generated, and so hanging
up would result in aBYE after theACK is received. This does not mean a user cannot hang up before receipt of
theACK, it just means that the software in his phone needs to maintain state for a short while in order to clean up

Rosenberg, et al. Standards Track [Page 66]

RFC 3261 SIP: Session Initiation Protocol June 2002

properly. If the particular UI allows for the user to reject a call before its answered, a 403 (Forbidden) is a good way
to express that. As per the rules above, aBYE can’t be sent.

15.1 Terminating a Session with aBYE Request

15.1.1 UAC Behavior

A BYE request is constructed as would any other request within a dialog, as described in Section 12.

Once theBYE is constructed, the UAC core creates a new non-INVITE client transaction, and passes it the
BYE request. The UACMUST consider the session terminated (and therefore stop sending or listening for
media) as soon as theBYE request is passed to the client transaction. If the response for theBYE is a 481
(Call/Transaction Does Not Exist) or a 408 (Request Timeout) or no response at all is received for theBYE
(that is, a timeout is returned by the client transaction), the UACMUST consider the session and the dialog
terminated.

15.1.2 UAS Behavior

A UAS first processes theBYE request according to the general UAS processing described in Section 8.2.
A UAS core receiving aBYE request checks if it matches an existing dialog. If theBYE does not match an
existing dialog, the UAS coreSHOULD generate a 481 (Call/Transaction Does Not Exist) response and pass
that to the server transaction.

This rule means that aBYE sent without tags by a UAC will be rejected. This is a change from RFC 2543, which
allowedBYE without tags.

A UAS core receiving aBYE request for an existing dialogMUST follow the procedures of Section 12.2.2
to process the request. Once done, the UASSHOULD terminate the session (and therefore stop sending and
listening for media). The only case where it can elect not to are multicast sessions, where participation is
possible even if the other participant in the dialog has terminated its involvement in the session. Whether
or not it ends its participation on the session, the UAS coreMUST generate a 2xx response to theBYE, and
MUST pass that to the server transaction for transmission.

The UASMUST still respond to any pending requests received for that dialog. It isRECOMMENDED that a
487 (Request Terminated) response be generated to those pending requests.

16 Proxy Behavior

16.1 Overview

SIP proxies are elements that route SIP requests to user agent servers and SIP responses to user agent clients.
A request may traverse several proxies on its way to a UAS. Each will make routing decisions, modifying
the request before forwarding it to the next element. Responses will route through the same set of proxies
traversed by the request in the reverse order.

Being a proxy is a logical role for a SIP element. When a request arrives, an element that can play the role
of a proxy first decides if it needs to respond to the request on its own. For instance, the request may be

Rosenberg, et al. Standards Track [Page 67]

RFC 3261 SIP: Session Initiation Protocol June 2002

malformed or the element may need credentials from the client before acting as a proxy. The elementMAY

respond with any appropriate error code. When responding directly to a request, the element is playing the
role of a UAS andMUST behave as described in Section 8.2.

A proxy can operate in either a stateful or stateless mode for each new request. When stateless, a proxy acts
as a simple forwarding element. It forwards each request downstream to a single element determined by
making a targeting and routing decision based on the request. It simply forwards every response it receives
upstream. A stateless proxy discards information about a message once the message has been forwarded.
A stateful proxy remembers information (specifically, transaction state) about each incoming request and
any requests it sends as a result of processing the incoming request. It uses this information to affect the
processing of future messages associated with that request. A stateful proxyMAY choose to “fork” a request,
routing it to multiple destinations. Any request that is forwarded to more than one locationMUST be handled
statefully.

In some circumstances, a proxyMAY forward requests using stateful transports (such as TCP) without being
transaction-stateful. For instance, a proxyMAY forward a request from one TCP connection to another
transaction statelessly as long as it places enough information in the message to be able to forward the
response down the same connection the request arrived on. Requests forwarded between different types of
transports where the proxy’s TU must take an active role in ensuring reliable delivery on one of the transports
MUST be forwarded transaction statefully.

A stateful proxyMAY transition to stateless operation at any time during the processing of a request, so long
as it did not do anything that would otherwise prevent it from being stateless initially (forking, for example,
or generation of a 100 response). When performing such a transition, all state is simply discarded. The
proxy SHOULD NOT initiate aCANCEL request.

Much of the processing involved when acting statelessly or statefully for a request is identical. The next
several subsections are written from the point of view of a stateful proxy. The last section calls out those
places where a stateless proxy behaves differently.

16.2 Stateful Proxy

When stateful, a proxy is purely a SIP transaction processing engine. Its behavior is modeled here in terms of
the server and client transactions defined in Section 17. A stateful proxy has a server transaction associated
with one or more client transactions by a higher layer proxy processing component (see figure 3, known as a
proxy core. An incoming request is processed by a server transaction. Requests from the server transaction
are passed to a proxy core. The proxy core determines where to route the request, choosing one or more
next-hop locations. An outgoing request for each next-hop location is processed by its own associated
client transaction. The proxy core collects the responses from the client transactions and uses them to send
responses to the server transaction.

A stateful proxy creates a new server transaction for each new request received. Any retransmissions of
the request will then be handled by that server transaction per Section 17. The proxy coreMUST behave
as a UAS with respect to sending an immediate provisional on that server transaction (such as 100 Trying)
as described in Section 8.2.6. Thus, a stateful proxySHOULD NOT generate 100 (Trying) responses to
non-INVITE requests.

This is a model of proxy behavior, not of software. An implementation is free to take any approach that
replicates the external behavior this model defines.

Rosenberg, et al. Standards Track [Page 68]

RFC 3261 SIP: Session Initiation Protocol June 2002

+--------------------+
| | +---+
| | | C |
| | | T |
| | +---+

+---+ | Proxy | +---+ CT = Client Transaction
| S | | "Higher" Layer | | C |
| T | | | | T | ST = Server Transaction
+---+ | | +---+

| | +---+
| | | C |
| | | T |
| | +---+
+--------------------+

Figure 3: Stateful Proxy Model

For all new requests, including any with unknown methods, an element intending to proxy the requestMUST:

1. Validate the request (Section 16.3)

2. Preprocess routing information (Section 16.4)

3. Determine target(s) for the request (Section 16.5)

4. Forward the request to each target (Section 16.6)

5. Process all responses (Section 16.7)

16.3 Request Validation

Before an element can proxy a request, itMUST verify the message’s validity. A valid message must pass
the following checks:

1. Reasonable Syntax

2. URI scheme

3. Max-Forwards

4. (Optional) Loop Detection

5. Proxy-Require

6. Proxy-Authorization

If any of these checks fail, the elementMUST behave as a user agent server (see Section 8.2) and respond
with an error code.

Rosenberg, et al. Standards Track [Page 69]

RFC 3261 SIP: Session Initiation Protocol June 2002

Notice that a proxy is not required to detect merged requests andMUST NOT treat merged requests as an
error condition. The endpoints receiving the requests will resolve the merge as described in Section 8.2.2.

1. Reasonable syntax check

The requestMUST be well-formed enough to be handled with a server transaction. Any components
involved in the remainder of these Request Validation steps or the Request Forwarding sectionMUST

be well-formed. Any other components, well-formed or not,SHOULD be ignored and remain un-
changed when the message is forwarded. For instance, an element would not reject a request because
of a malformedDate header field. Likewise, a proxy would not remove a malformedDate header
field before forwarding a request.

This protocol is designed to be extended. Future extensions may define new methods and header fields
at any time. An elementMUST NOT refuse to proxy a request because it contains a method or header
field it does not know about.

2. URI scheme check

If the Request-URI has a URI whose scheme is not understood by the proxy, the proxySHOULD

reject the request with a 416 (Unsupported URI Scheme) response.

3. Max-Forwards check

TheMax-Forwards header field (Section 20.22) is used to limit the number of elements a SIP request
can traverse.

If the request does not contain aMax-Forwards header field, this check is passed.

If the request contains aMax-Forwards header field with a field value greater than zero, the check is
passed.

If the request contains aMax-Forwards header field with a field value of zero (0), the elementMUST

NOT forward the request. If the request was forOPTIONS, the elementMAY act as the final recipient
and respond per Section 11. Otherwise, the elementMUST return a 483 (Too many hops) response.

4. Optional Loop Detection check

An elementMAY check for forwarding loops before forwarding a request. If the request contains a
Via header field with a sent-by value that equals a value placed into previous requests by the proxy,
the request has been forwarded by this element before. The request has either looped or is legitimately
spiraling through the element.To determine if the request has looped, the elementMAY perform the
branch parameter calculation described in Step 8 of Section 16.6 on this message and compare it to
the parameter received in thatVia header field. If the parameters match, the request has looped. If
they differ, the request is spiraling, and processing continues. If a loop is detected, the elementMAY

return a 482 (Loop Detected) response.

5. Proxy-Require check

Future extensions to this protocol may introduce features that require special handling by proxies.
Endpoints will include aProxy-Require header field in requests that use these features, telling the
proxy not to process the request unless the feature is understood.

If the request contains aProxy-Require header field (Section 20.29) with one or more option-tags this
element does not understand, the elementMUST return a 420 (Bad Extension) response. The response

Rosenberg, et al. Standards Track [Page 70]

RFC 3261 SIP: Session Initiation Protocol June 2002

MUST include anUnsupported (Section 20.40) header field listing those option-tags the element did
not understand.

6. Proxy-Authorization check

If an element requires credentials before forwarding a request, the requestMUST be inspected as
described in Section 22.3. That section also defines what the element must do if the inspection fails.

16.4 Route Information Preprocessing

The proxyMUST inspect theRequest-URI of the request. If theRequest-URI of the request contains a
value this proxy previously placed into aRecord-Route header field (see Section 16.6 item 4), the proxy
MUST replace theRequest-URI in the request with the last value from theRoute header field, and remove
that value from theRoute header field. The proxyMUST then proceed as if it received this modified request.

This will only happen when the element sending the request to the proxy (which may have been an endpoint) is
a strict router. This rewrite on receive is necessary to enable backwards compatibility with those elements. It
also allows elements following this specification to preserve theRequest-URI through strict-routing proxies (see
Section 12.2.1).
This requirement does not obligate a proxy to keep state in order to detect URIs it previously placed inRecord-
Route header fields. Instead, a proxy need only place enough information in those URIs to recognize them as values
it provided when they later appear.

If the Request-URI contains a maddr parameter, the proxyMUST check to see if its value is in the set
of addresses or domains the proxy is configured to be responsible for. If theRequest-URI has a maddr
parameter with a value the proxy is responsible for, and the request was received using the port and transport
indicated (explicitly or by default) in theRequest-URI, the proxyMUST strip the maddr and any non-default
port or transport parameter and continue processing as if those values had not been present in the request.

A request may arrive with a maddr matching the proxy, but on a port or transport different from that indicated in the
URI. Such a request needs to be forwarded to the proxy using the indicated port and transport.

If the first value in theRoute header field indicates this proxy, the proxyMUST remove that value from the
request.

16.5 Determining Request Targets

Next, the proxy calculates the target(s) of the request. The set of targets will either be predetermined by
the contents of the request or will be obtained from an abstract location service. Each target in the set is
represented as a URI.

If the Request-URI of the request contains an maddr parameter, theRequest-URI MUST be placed into
the target set as the only target URI, and the proxyMUST proceed to Section 16.6.

If the domain of theRequest-URI indicates a domain this element is not responsible for, theRequest-URI
MUST be placed into the target set as the only target, and the elementMUST proceed to the task of Request
Forwarding (Section 16.6).

There are many circumstances in which a proxy might receive a request for a domain it is not responsible for. A
firewall proxy handling outgoing calls (the way HTTP proxies handle outgoing requests) is an example of where
this is likely to occur.

Rosenberg, et al. Standards Track [Page 71]

RFC 3261 SIP: Session Initiation Protocol June 2002

If the target set for the request has not been predetermined as described above, this implies that the element
is responsible for the domain in theRequest-URI, and the elementMAY use whatever mechanism it desires
to determine where to send the request. Any of these mechanisms can be modeled as accessing an abstract
Location Service. This may consist of obtaining information from a location service created by a SIP
Registrar, reading a database, consulting a presence server, utilizing other protocols, or simply performing
an algorithmic substitution on theRequest-URI. When accessing the location service constructed by a
registrar, theRequest-URI MUST first be canonicalized as described in Section 10.3 before being used as
an index. The output of these mechanisms is used to construct the target set.

If the Request-URI does not provide sufficient information for the proxy to determine the target set, it
SHOULD return a 485 (Ambiguous) response. This responseSHOULD contain aContact header field con-
taining URIs of new addresses to be tried. For example, anINVITE to sip:John.Smith@company.com may
be ambiguous at a proxy whose location service has multiple John Smiths listed. See Section 21.4.23 for
details.

Any information in or about the request or the current environment of the elementMAY be used in the
construction of the target set. For instance, different sets may be constructed depending on contents or the
presence of header fields and bodies, the time of day of the request’s arrival, the interface on which the
request arrived, failure of previous requests, or even the element’s current level of utilization.

As potential targets are located through these services, their URIs are added to the target set. Targets can
only be placed in the target set once. If a target URI is already present in the set (based on the definition of
equality for the URI type), itMUST NOT be added again.

A proxy MUST NOT add additional targets to the target set if theRequest-URI of the original request does
not indicate a resource this proxy is responsible for.

A proxy can only change theRequest-URI of a request during forwarding if it is responsible for that URI. If the
proxy is not responsible for that URI, it will not recurse on 3xx or 416 responses as described below.

If the Request-URI of the original request indicates a resource this proxy is responsible for, the proxyMAY

continue to add targets to the set after beginning Request Forwarding. ItMAY use any information obtained
during that processing to determine new targets. For instance, a proxy may choose to incorporate contacts
obtained in a redirect response (3xx) into the target set. If a proxy uses a dynamic source of information
while building the target set (for instance, if it consults a SIP Registrar), itSHOULD monitor that source for
the duration of processing the request. New locationsSHOULD be added to the target set as they become
available. As above, any given URIMUST NOT be added to the set more than once.

Allowing a URI to be added to the set only once reduces unnecessary network traffic, and in the case of incorporating
contacts from redirect requests prevents infinite recursion.

For example, a trivial location service is a “no-op”, where the target URI is equal to the incoming request
URI. The request is sent to a specific next hop proxy for further processing. During request forwarding
of Section 16.6, Item 6, the identity of that next hop, expressed as a SIP or SIPS URI, is inserted as the
top-mostRoute header field value into the request.

If the Request-URI indicates a resource at this proxy that does not exist, the proxyMUST return a 404 (Not
Found) response.

If the target set remains empty after applying all of the above, the proxyMUST return an error response,
which SHOULD be the 480 (Temporarily Unavailable) response.

Rosenberg, et al. Standards Track [Page 72]

RFC 3261 SIP: Session Initiation Protocol June 2002

16.6 Request Forwarding

As soon as the target set is non-empty, a proxyMAY begin forwarding the request. A stateful proxyMAY

process the set in any order. ItMAY process multiple targets serially, allowing each client transaction to
complete before starting the next. ItMAY start client transactions with every target in parallel. It alsoMAY

arbitrarily divide the set into groups, processing the groups serially and processing the targets in each group
in parallel.

A common ordering mechanism is to use the qvalue parameter of targets obtained fromContact header
fields (see Section 20.10). Targets are processed from highest qvalue to lowest. Targets with equal qvalues
may be processed in parallel.

A stateful proxy must have a mechanism to maintain the target set as responses are received and associate
the responses to each forwarded request with the original request. For the purposes of this model, this
mechanism is a “response context” created by the proxy layer before forwarding the first request.

For each target, the proxy forwards the request following these steps:

1. Make a copy of the received request

2. Update theRequest-URI

3. Update theMax-Forwards header field

4. Optionally add a Record-route header field value

5. Optionally add additional header fields

6. Postprocess routing information

7. Determine the next-hop address, port, and transport

8. Add aVia header field value

9. Add aContent-Length header field if necessary

10. Forward the new request

11. Set timer C

Each of these steps is detailed below:

1. Copy request

The proxy starts with a copy of the received request. The copyMUST initially contain all of the header
fields from the received request. Fields not detailed in the processing described belowMUST NOT be
removed. The copySHOULD maintain the ordering of the header fields as in the received request.
The proxyMUST NOT reorder field values with a common field name (See Section 7.3.1). The proxy
MUST NOT add to, modify, or remove the message body.

An actual implementation need not perform a copy; the primary requirement is that the processing for
each next hop begin with the same request.

Rosenberg, et al. Standards Track [Page 73]

RFC 3261 SIP: Session Initiation Protocol June 2002

2. Request-URI

TheRequest-URI in the copy’s start lineMUST be replaced with the URI for this target. If the URI
contains any parameters not allowed in aRequest-URI, theyMUST be removed.

This is the essence of a proxy’s role. This is the mechanism through which a proxy routes a request
toward its destination.

In some circumstances, the receivedRequest-URI is placed into the target set without being modi-
fied. For that target, the replacement above is effectively a no-op.

3. Max-Forwards

If the copy contains aMax-Forwards header field, the proxyMUST decrement its value by one (1).

If the copy does not contain aMax-Forwards header field, the proxyMUST add one with a field value,
which SHOULD be 70.

Some existing UAs will not provide aMax-Forwards header field in a request.

4. Record-Route

If this proxy wishes to remain on the path of future requests in a dialog created by this request (as-
suming the request creates a dialog), itMUST insert aRecord-Route header field value into the copy
before any existingRecord-Route header field values, even if aRoute header field is already present.

Requests establishing a dialog may contain a preloadedRoute header field.

If this request is already part of a dialog, the proxySHOULD insert aRecord-Route header field value
if it wishes to remain on the path of future requests in the dialog. In normal endpoint operation as
described in Section 12, theseRecord-Route header field values will not have any effect on the route
sets used by the endpoints.

The proxy will remain on the path if it chooses to not insert aRecord-Route header field value into
requests that are already part of a dialog. However, it would be removed from the path when an
endpoint that has failed reconstitutes the dialog.

A proxy MAY insert aRecord-Route header field value into any request. If the request does not
initiate a dialog, the endpoints will ignore the value. See Section 12 for details on how endpoints use
theRecord-Route header field values to constructRoute header fields.

Each proxy in the path of a request chooses whether to add aRecord-Route header field value
independently - the presence of aRecord-Route header field in a request does not obligate this proxy
to add a value.

The URI placed in theRecord-Route header field valueMUST be a SIP or SIPS URI. This URI
MUST contain an lr parameter (see Section 19.1.1). This URIMAY be different for each destination
the request is forwarded to. The URISHOULD NOT contain the transport parameter unless the proxy
has knowledge (such as in a private network) that the next downstream element that will be in the path
of subsequent requests supports that transport.

The URI this proxy provides will be used by some other element to make a routing decision. This
proxy, in general, has no way of knowing the capabilities of that element, so it must restrict itself to
the mandatory elements of a SIP implementation: SIP URIs and either the TCP or UDP transports.

Rosenberg, et al. Standards Track [Page 74]

RFC 3261 SIP: Session Initiation Protocol June 2002

The URI placed in theRecord-Route header fieldMUST resolve to the element inserting it (or a
suitable stand-in) when the server location procedures of [4] are applied to it, so that subsequent
requests reach the same SIP element. If theRequest-URI contains a SIPS URI, or the topmostRoute
header field value (after the post processing of bullet 6) contains a SIPS URI, the URI placed into the
Record-Route header fieldMUST be a SIPS URI. Furthermore, if the request was not received over
TLS, the proxyMUST insert aRecord-Route header field. In a similar fashion, a proxy that receives a
request over TLS, but generates a request without a SIPS URI in theRequest-URI or topmostRoute
header field value (after the post processing of bullet 6),MUST insert aRecord-Route header field
that is not a SIPS URI.

A proxy at a security perimeter must remain on the perimeter throughout the dialog.

If the URI placed in theRecord-Route header field needs to be rewritten when it passes back through
in a response, the URIMUST be distinct enough to locate at that time. (The request may spiral through
this proxy, resulting in more than oneRecord-Route header field value being added). Item 8 of
Section 16.7 recommends a mechanism to make the URI sufficiently distinct.

The proxyMAY include parameters in theRecord-Route header field value. These will be echoed in
some responses to the request such as the 200 (OK) responses toINVITE. Such parameters may be
useful for keeping state in the message rather than the proxy.

If a proxy needs to be in the path of any type of dialog (such as one straddling a firewall), itSHOULD

add aRecord-Route header field value to every request with a method it does not understand since
that method may have dialog semantics.

The URI a proxy places into aRecord-Route header field is only valid for the lifetime of any dialog
created by the transaction in which it occurs. A dialog-stateful proxy, for example,MAY refuse to
accept future requests with that value in theRequest-URI after the dialog has terminated. Non-
dialog-stateful proxies, of course, have no concept of when the dialog has terminated, but theyMAY

encode enough information in the value to compare it against the dialog identifier of future requests
and MAY reject requests not matching that information. EndpointsMUST NOT use a URI obtained
from aRecord-Route header field outside the dialog in which it was provided. See Section 12 for
more information on an endpoint’s use ofRecord-Route header fields.

Record-routing may be required by certain services where the proxy needs to observe all messages
in a dialog. However, it slows down processing and impairs scalability and thus proxies should only
record-route if required for a particular service.

TheRecord-Route process is designed to work for any SIP request that initiates a dialog.INVITE is
the only such request in this specification, but extensions to the protocolMAY define others.

5. Add Additional Header Fields

The proxyMAY add any other appropriate header fields to the copy at this point.

6. Postprocess routing information

A proxy MAY have a local policy that mandates that a request visit a specific set of proxies before being
delivered to the destination. A proxyMUST ensure that all such proxies are loose routers. Generally,
this can only be known with certainty if the proxies are within the same administrative domain. This
set of proxies is represented by a set of URIs (each of which contains the lr parameter). This set

Rosenberg, et al. Standards Track [Page 75]

RFC 3261 SIP: Session Initiation Protocol June 2002

MUST be pushed into theRoute header field of the copy ahead of any existing values, if present. If
theRoute header field is absent, itMUST be added, containing that list of URIs.

If the proxy has a local policy that mandates that the request visit one specific proxy, an alternative to
pushing aRoute value into theRoute header field is to bypass the forwarding logic of item 10 below,
and instead just send the request to the address, port, and transport for that specific proxy. If the
request has aRoute header field, this alternativeMUST NOT be used unless it is known that next hop
proxy is a loose router. Otherwise, this approachMAY be used, but theRoute insertion mechanism
above is preferred for its robustness, flexibility, generality and consistency of operation. Furthermore,
if the Request-URI contains a SIPS URI, TLSMUST be used to communicate with that proxy.

If the copy contains aRoute header field, the proxyMUST inspect the URI in its first value. If that
URI does not contain an lr parameter, the proxyMUST modify the copy as follows:

• The proxyMUST place theRequest-URI into theRoute header field as the last value.

• The proxyMUST then place the firstRoute header field value into theRequest-URI and remove
that value from theRoute header field.

Appending theRequest-URI to the Route header field is part of a mechanism used to pass the
information in thatRequest-URI through strict-routing elements. “Popping” the firstRoute header
field value into theRequest-URI formats the message the way a strict-routing element expects to
receive it (with its own URI in theRequest-URI and the next location to visit in the firstRoute
header field value).

7. Determine Next-Hop Address, Port, and Transport

The proxyMAY have a local policy to send the request to a specific IP address, port, and transport,
independent of the values of theRoute andRequest-URI. Such a policyMUST NOT be used if the
proxy is not certain that the IP address, port, and transport correspond to a server that is a loose router.
However, this mechanism for sending the request through a specific next hop isNOT RECOMMENDED

; instead aRoute header field should be used for that purpose as described above.

In the absence of such an overriding mechanism, the proxy applies the procedures listed in [4] as
follows to determine where to send the request. If the proxy has reformatted the request to send to
a strict-routing element as described in step 6 above, the proxyMUST apply those procedures to the
Request-URI of the request. Otherwise, the proxyMUST apply the procedures to the first value in the
Route header field, if present, else theRequest-URI. The procedures will produce an ordered set of
(address, port, transport) tuples. Independently of which URI is being used as input to the procedures
of [4], if the Request-URI specifies a SIPS resource, the proxyMUST follow the procedures of [4] as
if the input URI were a SIPS URI.

As described in [4], the proxyMUST attempt to deliver the message to the first tuple in that set, and
proceed through the set in order until the delivery attempt succeeds.

For each tuple attempted, the proxyMUST format the message as appropriate for the tuple and send
the request using a new client transaction as detailed in steps 8 through 10.

Since each attempt uses a new client transaction, it represents a new branch. Thus, the branch param-
eter provided with theVia header field inserted in step 8MUST be different for each attempt.

Rosenberg, et al. Standards Track [Page 76]

RFC 3261 SIP: Session Initiation Protocol June 2002

If the client transaction reports failure to send the request or a timeout from its state machine, the
proxy continues to the next address in that ordered set. If the ordered set is exhausted, the request
cannot be forwarded to this element in the target set. The proxy does not need to place anything in
the response context, but otherwise acts as if this element of the target set returned a 408 (Request
Timeout) final response.

8. Add aVia header field value

The proxyMUST insert aVia header field value into the copy before the existingVia header field
values. The construction of this value follows the same guidelines of Section 8.1.1. This implies that
the proxy will compute its own branch parameter, which will be globally unique for that branch, and
contain the requisite magic cookie. Note that this implies that the branch parameter will be different
for different instances of a spiraled or looped request through a proxy.

Proxies choosing to detect loops have an additional constraint in the value they use for construction of
the branch parameter. A proxy choosing to detect loopsSHOULD create a branch parameter separable
into two parts by the implementation. The first partMUST satisfy the constraints of Section 8.1.1 as
described above. The second is used to perform loop detection and distinguish loops from spirals.

Loop detection is performed by verifying that, when a request returns to a proxy, those fields hav-
ing an impact on the processing of the request have not changed. The value placed in this part
of the branch parameterSHOULD reflect all of those fields (including anyRoute, Proxy-Require
andProxy-Authorization header fields). This is to ensure that if the request is routed back to the
proxy and one of those fields changes, it is treated as a spiral and not a loop (see Section 16.3).
A common way to create this value is to compute a cryptographic hash of theTo tag, From tag,
Call-ID header field, theRequest-URI of the request received (before translation), the topmostVia
header, and the sequence number from theCSeq header field, in addition to anyProxy-Require
andProxy-Authorization header fields that may be present. The algorithm used to compute the hash
is implementation-dependent, but MD5 (RFC 1321 [35]), expressed in hexadecimal, is a reasonable
choice. (Base64 is not permissible for a token.)

If a proxy wishes to detect loops, thebranch parameter it suppliesMUST depend on all information
affecting processing of a request, including the incomingRequest-URI and any header fields affect-
ing the request’s admission or routing. This is necessary to distinguish looped requests from requests
whose routing parameters have changed before returning to this server.

The request methodMUST NOT be included in the calculation of the branch parameter. In particular,
CANCEL andACK requests (for non-2xx responses)MUST have the same branch value as the cor-
responding request they cancel or acknowledge. The branch parameter is used in correlating those
requests at the server handling them (see Sections 17.2.3 and 9.2).

9. Add aContent-Length header field if necessary

If the request will be sent to the next hop using a stream-based transport and the copy contains no
Content-Length header field, the proxyMUST insert one with the correct value for the body of the
request (see Section 20.14).

10. Forward Request

A stateful proxyMUST create a new client transaction for this request as described in Section 17.1 and
instructs the transaction to send the request using the address, port and transport determined in step 7.

Rosenberg, et al. Standards Track [Page 77]

RFC 3261 SIP: Session Initiation Protocol June 2002

11. Set timer C

In order to handle the case where anINVITE request never generates a final response, the TU uses
a timer which is called timer C. Timer CMUST be set for each client transaction when anINVITE
request is proxied. The timerMUST be larger than 3 minutes. Section 16.7 bullet 2 discusses how this
timer is updated with provisional responses, and Section 16.8 discusses processing when it fires.

16.7 Response Processing

When a response is received by an element, it first tries to locate a client transaction (Section 17.1.3) match-
ing the response. If none is found, the elementMUST process the response (even if it is an informational
response) as a stateless proxy (described below). If a match is found, the response is handed to the client
transaction.

Forwarding responses for which a client transaction (or more generally any knowledge of having sent an associated
request) is not found improves robustness. In particular, it ensures that “late” 2xx responses toINVITE requests are
forwarded properly.

As client transactions pass responses to the proxy layer, the following processingMUST take place:

1. Find the appropriate response context

2. Update timer C for provisional responses

3. Remove the topmostVia

4. Add the response to the response context

5. Check to see if this response should be forwarded immediately

6. When necessary, choose the best final response from the response context

If no final response has been forwarded after every client transaction associated with the response
context has been terminated, the proxy must choose and forward the “best” response from those it has
seen so far.

The following processingMUST be performed on each response that is forwarded. It is likely that
more than one response to each request will be forwarded: at least each provisional and one final
response.

7. Aggregate authorization header field values if necessary

8. Optionally rewriteRecord-Route header field values

9. Forward the response

10. Generate any necessaryCANCEL requests

Each of the above steps are detailed below:

Rosenberg, et al. Standards Track [Page 78]

RFC 3261 SIP: Session Initiation Protocol June 2002

• 1. Find Context

The proxy locates the “response context” it created before forwarding the original request using the
key described in Section 16.6. The remaining processing steps take place in this context.

• 2. Update timer C for provisional responses

For anINVITE transaction, if the response is a provisional response with status codes 101 to 199
inclusive (i.e., anything but 100), the proxyMUST reset timer C for that client transaction. The timer
MAY be reset to a different value, but this valueMUST be greater than 3 minutes.

• 3. Via

The proxy removes the topmostVia header field value from the response.

If no Via header field values remain in the response, the response was meant for this element and
MUST NOT be forwarded. The remainder of the processing described in this section is not performed
on this message, the UAC processing rules described in Section 8.1.3 are followed instead (transport
layer processing has already occurred).

This will happen, for instance, when the element generatesCANCEL requests as described in Sec-
tion 10.

• 4. Add response to context

Final responses received are stored in the response context until a final response is generated on the
server transaction associated with this context. The response may be a candidate for the best final
response to be returned on that server transaction. Information from this response may be needed in
forming the best response, even if this response is not chosen.

If the proxy chooses to recurse on any contacts in a 3xx response by adding them to the target set, it
MUST remove them from the response before adding the response to the response context. However,
a proxySHOULD NOT recurse to a non-SIPS URI if theRequest-URI of the original request was a
SIPS URI. If the proxy recurses on all of the contacts in a 3xx response, the proxySHOULD NOT add
the resulting contactless response to the response context.

Removing the contact before adding the response to the response context prevents the next element
upstream from retrying a location this proxy has already attempted.

3xx responses may contain a mixture of SIP, SIPS, and non-SIP URIs. A proxy may choose to recurse
on the SIP and SIPS URIs and place the remainder into the response context to be returned, potentially
in the final response.

If a proxy receives a 416 (Unsupported URI Scheme) response to a request whoseRequest-URI
scheme was not SIP, but the scheme in the original received request was SIP or SIPS (that is, the
proxy changed the scheme from SIP or SIPS to something else when it proxied a request), the proxy
SHOULD add a new URI to the target set. This URISHOULD be a SIP URI version of the non-SIP URI
that was just tried. In the case of the tel URL, this is accomplished by placing the telephone-subscriber
part of the tel URL into the user part of the SIP URI, and setting the hostpart to the domain where the
prior request was sent. See Section 19.1.6 for more detail on forming SIP URIs from tel URLs.

As with a 3xx response, if a proxy “recurses” on the 416 by trying a SIP or SIPS URI instead, the 416
responseSHOULD NOT be added to the response context.

Rosenberg, et al. Standards Track [Page 79]

RFC 3261 SIP: Session Initiation Protocol June 2002

• 5. Check response for forwarding

Until a final response has been sent on the server transaction, the following responsesMUST be for-
warded immediately:

– Any provisional response other than 100 (Trying)

– Any 2xx response

If a 6xx response is received, it is not immediately forwarded, but the stateful proxySHOULD cancel
all client pending transactions as described in Section 10, and itMUST NOT create any new branches
in this context.

This is a change from RFC 2543, which mandated that the proxy was to forward the 6xx response
immediately. For anINVITE transaction, this approach had the problem that a 2xx response could
arrive on another branch, in which case the proxy would have to forward the 2xx. The result was that
the UAC could receive a 6xx response followed by a 2xx response, which should never be allowed
to happen. Under the new rules, upon receiving a 6xx, a proxy will issue aCANCEL request, which
will generally result in 487 responses from all outstanding client transactions, and then at that point
the 6xx is forwarded upstream.

After a final response has been sent on the server transaction, the following responsesMUST be for-
warded immediately:

– Any 2xx response to anINVITE request

A stateful proxyMUST NOT immediately forward any other responses. In particular, a stateful proxy
MUST NOT forward any 100 (Trying) response. Those responses that are candidates for forwarding
later as the “best” response have been gathered as described in step “Add Response to Context”.

Any response chosen for immediate forwardingMUST be processed as described in steps “Aggregate
Authorization Header Field Values” through “Record-Route”.

This step, combined with the next, ensures that a stateful proxy will forward exactly one final response
to a non-INVITE request, and either exactly one non-2xx response or one or more 2xx responses to
an INVITE request.

• 6. Choosing the best response

A stateful proxyMUST send a final response to a response context’s server transaction if no final
responses have been immediately forwarded by the above rules and all client transactions in this
response context have been terminated.

The stateful proxyMUST choose the “best” final response among those received and stored in the
response context.

If there are no final responses in the context, the proxyMUST send a 408 (Request Timeout) response
to the server transaction.

Otherwise, the proxyMUST forward a response from the responses stored in the response context.
It MUST choose from the 6xx class responses if any exist in the context. If no 6xx class responses
are present, the proxySHOULD choose from the lowest response class stored in the response context.
The proxyMAY select any response within that chosen class. The proxySHOULD give preference to

Rosenberg, et al. Standards Track [Page 80]

RFC 3261 SIP: Session Initiation Protocol June 2002

responses that provide information affecting resubmission of this request, such as 401, 407, 415, 420,
and 484 if the 4xx class is chosen.

A proxy which receives a 503 (Service Unavailable) responseSHOULD NOT forward it upstream
unless it can determine that any subsequent requests it might proxy will also generate a 503. In other
words, forwarding a 503 means that the proxy knows it cannot service any requests, not just the one
for theRequest-URI in the request which generated the 503. If the only response that was received
is a 503, the proxySHOULD generate a 500 response and forward that upstream.

The forwarded responseMUST be processed as described in steps “AggregateAuthorization Header
Field Values” through “Record-Route”.

For example, if a proxy forwarded a request to 4 locations, and received 503, 407, 501, and 404
responses, it may choose to forward the 407 (Proxy Authentication Required) response.

1xx and 2xx responses may be involved in the establishment of dialogs. When a request does not
contain aTo tag, theTo tag in the response is used by the UAC to distinguish multiple responses to
a dialog creating request. A proxyMUST NOT insert a tag into theTo header field of a 1xx or 2xx
response if the request did not contain one. A proxyMUST NOT modify the tag in theTo header field
of a 1xx or 2xx response.

Since a proxy may not insert a tag into theTo header field of a 1xx response to a request that did not
contain one, it cannot issue non-100 provisional responses on its own. However, it can branch the
request to a UAS sharing the same element as the proxy. This UAS can return its own provisional
responses, entering into an early dialog with the initiator of the request. The UAS does not have to be
a discreet process from the proxy. It could be a virtual UAS implemented in the same code space as
the proxy.

3-6xx responses are delivered hop-by-hop. When issuing a 3-6xx response, the element is effectively
acting as a UAS, issuing its own response, usually based on the responses received from downstream
elements. An elementSHOULD preserve theTo tag when simply forwarding a 3-6xx response to a
request that did not contain aTo tag.

A proxy MUST NOT modify theTo tag in any forwarded response to a request that contains aTo tag.

While it makes no difference to the upstream elements if the proxy replaced theTo tag in a forwarded
3-6xx response, preserving the original tag may assist with debugging.

When the proxy is aggregating information from several responses, choosing aTo tag from among
them is arbitrary, and generating a newTo tag may make debugging easier. This happens, for in-
stance, when combining 401 (Unauthorized) and 407 (Proxy Authentication Required) challenges, or
combiningContact values from unencrypted and unauthenticated 3xx responses.

• 7. AggregateAuthorization Header Field Values

If the selected response is a 401 (Unauthorized) or 407 (Proxy Authentication Required), the proxy
MUST collect anyWWW-Authenticate andProxy-Authenticate header field values from all other
401 (Unauthorized) and 407 (Proxy Authentication Required) responses received so far in this re-
sponse context and add them to this response without modification before forwarding. The resulting
401 (Unauthorized) or 407 (Proxy Authentication Required) response could have severalWWW-
Authenticate AND Proxy-Authenticate header field values.

Rosenberg, et al. Standards Track [Page 81]

RFC 3261 SIP: Session Initiation Protocol June 2002

This is necessary because any or all of the destinations the request was forwarded to may have re-
quested credentials. The client needs to receive all of those challenges and supply credentials for each
of them when it retries the request. Motivation for this behavior is provided in Section 26.

• 8. Record-Route

If the selected response contains aRecord-Route header field value originally provided by this proxy,
the proxyMAY choose to rewrite the value before forwarding the response. This allows the proxy to
provide different URIs for itself to the next upstream and downstream elements. A proxy may choose
to use this mechanism for any reason. For instance, it is useful for multi-homed hosts.

If the proxy received the request over TLS, and sent it out over a non-TLS connection, the proxy
MUST rewrite the URI in theRecord-Route header field to be a SIPS URI. If the proxy received the
request over a non-TLS connection, and sent it out over TLS, the proxyMUST rewrite the URI in the
Record-Route header field to be a SIP URI.

The new URI provided by the proxyMUST satisfy the same constraints on URIs placed inRecord-
Route header fields in requests (see Step 4 of Section 16.6) with the following modifications:

The URISHOULD NOT contain the transport parameter unless the proxy has knowledge that the next
upstream (as opposed to downstream) element that will be in the path of subsequent requests supports
that transport.

When a proxy does decide to modify theRecord-Route header field in the response, one of the
operations it performs is locating theRecord-Route value that it had inserted. If the request spiraled,
and the proxy inserted aRecord-Route value in each iteration of the spiral, locating the correct value
in the response (which must be the proper iteration in the reverse direction) is tricky. The rules above
recommend that a proxy wishing to rewriteRecord-Route header field values insert sufficiently
distinct URIs into theRecord-Route header field so that the right one may be selected for rewriting.
A RECOMMENDED mechanism to achieve this is for the proxy to append a unique identifier for the
proxy instance to the user portion of the URI.

When the response arrives, the proxy modifies the firstRecord-Route whose identifier matches the
proxy instance. The modification results in a URI without this piece of data appended to the user
portion of the URI. Upon the next iteration, the same algorithm (find the topmostRecord-Route
header field value with the parameter) will correctly extract the nextRecord-Route header field
value inserted by that proxy.

Not every response to a request to which a proxy adds aRecord-Route header field value will contain
a Record-Route header field. If the response does contain aRecord-Route header field, it will
contain the value the proxy added.

• 9. Forward response

After performing the processing described in steps “AggregateAuthorization Header Field Values”
through “Record-Route”, the proxyMAY perform any feature specific manipulations on the selected
response. The proxyMUST NOT add to, modify, or remove the message body. Unless otherwise
specified, the proxyMUST NOT remove any header field values other than theVia header field value
discussed in Section 16.7 Item 3. In particular, the proxyMUST NOT remove anyreceived parameter
it may have added to the nextVia header field value while processing the request associated with this
response. The proxyMUST pass the response to the server transaction associated with the response

Rosenberg, et al. Standards Track [Page 82]

RFC 3261 SIP: Session Initiation Protocol June 2002

context. This will result in the response being sent to the location now indicated in the topmost
Via header field value. If the server transaction is no longer available to handle the transmission,
the elementMUST forward the response statelessly by sending it to the server transport. The server
transaction might indicate failure to send the response or signal a timeout in its state machine. These
errors would be logged for diagnostic purposes as appropriate, but the protocol requires no remedial
action from the proxy.

The proxyMUST maintain the response context until all of its associated transactions have been ter-
minated, even after forwarding a final response.

• 10. GenerateCANCELs

If the forwarded response was a final response, the proxyMUST generate aCANCEL request for all
pending client transactions associated with this response context. A proxySHOULD also generate a
CANCEL request for all pending client transactions associated with this response context when it
receives a 6xx response. A pending client transaction is one that has received a provisional response,
but no final response (it is in the proceeding state) and has not had an associatedCANCEL generated
for it. GeneratingCANCEL requests is described in Section 9.1.

The requirement toCANCEL pending client transactions upon forwarding a final response does not
guarantee that an endpoint will not receive multiple 200 (OK) responses to anINVITE. 200 (OK)
responses on more than one branch may be generated before theCANCEL requests can be sent and
processed. Further, it is reasonable to expect that a future extension may override this requirement to
issueCANCEL requests.

16.8 Processing Timer C

If timer C should fire, the proxyMUST either reset the timer with any value it chooses, or terminate the
client transaction. If the client transaction has received a provisional response, the proxyMUST generate a
CANCEL request matching that transaction. If the client transaction has not received a provisional response,
the proxyMUST behave as if the transaction received a 408 (Request Timeout) response.

Allowing the proxy to reset the timer allows the proxy to dynamically extend the transaction’s lifetime based
on current conditions (such as utilization) when the timer fires.

16.9 Handling Transport Errors

If the transport layer notifies a proxy of an error when it tries to forward a request (see Section 18.4), the
proxy MUST behave as if the forwarded request received a 503 (Service Unavailable) response.

If the proxy is notified of an error when forwarding a response, it drops the response. The proxySHOULD

NOT cancel any outstanding client transactions associated with this response context due to this notification.

If a proxy cancels its outstanding client transactions, a single malicious or misbehaving client can cause all transac-
tions to fail through itsVia header field.

Rosenberg, et al. Standards Track [Page 83]

RFC 3261 SIP: Session Initiation Protocol June 2002

16.10 CANCEL Processing

A stateful proxyMAY generate aCANCEL to any other request it has generated at any time (subject to re-
ceiving a provisional response to that request as described in section 9.1). A proxyMUST cancel any pending
client transactions associated with a response context when it receives a matchingCANCEL request.

A stateful proxyMAY generateCANCEL requests for pendingINVITE client transactions based on the
period specified in theINVITE’s Expires header field elapsing. However, this is generally unnecessary
since the endpoints involved will take care of signaling the end of the transaction.

While a CANCEL request is handled in a stateful proxy by its own server transaction, a new response
context is not created for it. Instead, the proxy layer searches its existing response contexts for the server
transaction handling the request associated with thisCANCEL. If a matching response context is found, the
elementMUST immediately return a 200 (OK) response to theCANCEL request. In this case, the element is
acting as a user agent server as defined in Section 8.2. Furthermore, the elementMUST generateCANCEL
requests for all pending client transactions in the context as described in Section 16.7 step 10.

If a response context is not found, the element does not have any knowledge of the request to apply the
CANCEL to. It MUST statelessly forward theCANCEL request (it may have statelessly forwarded the
associated request previously).

16.11 Stateless Proxy

When acting statelessly, a proxy is a simple message forwarder. Much of the processing performed when
acting statelessly is the same as when behaving statefully. The differences are detailed here.

A stateless proxy does not have any notion of a transaction, or of the response context used to describe
stateful proxy behavior. Instead, the stateless proxy takes messages, both requests and responses, directly
from the transport layer (See section 18). As a result, stateless proxies do not retransmit messages on their
own. They do, however, forward all retransmissions they receive (they do not have the ability to distinguish
a retransmission from the original message). Furthermore, when handling a request statelessly, an element
MUST NOT generate its own 100 (Trying) or any other provisional response.

A stateless proxyMUST validate a request as described in Section 16.3.

A stateless proxyMUST follow the request processing steps described in Sections 16.4 through 16.5 with
the following exception:

• A stateless proxyMUST choose one and only one target from the target set. This choiceMUST only
rely on fields in the message and time-invariant properties of the server. In particular, a retransmitted
requestMUST be forwarded to the same destination each time it is processed. Furthermore,CANCEL
and non-RoutedACK requestsMUST generate the same choice as their associatedINVITE.

A stateless proxyMUST follow the request processing steps described in Section 16.6 with the following
exceptions:

• The requirement for unique branch IDs across space and time applies to stateless proxies as well.
However, a stateless proxy cannot simply use a random number generator to compute the first com-
ponent of the branch ID, as described in Section 16.6 bullet 8. This is because retransmissions of

Rosenberg, et al. Standards Track [Page 84]

RFC 3261 SIP: Session Initiation Protocol June 2002

a request need to have the same value, and a stateless proxy cannot tell a retransmission from the
original request. Therefore, the component of the branch parameter that makes it uniqueMUST be
the same each time a retransmitted request is forwarded. Thus for a stateless proxy, the branch pa-
rameterMUST be computed as a combinatoric function of message parameters which are invariant on
retransmission.

The stateless proxyMAY use any technique it likes to guarantee uniqueness of its branch IDs across
transactions. However, the following procedure isRECOMMENDED .The proxy examines the branch
ID in the topmostVia header field of the received request. If it begins with the magic cookie, the first
component of the branch ID of the outgoing request is computed as a hash of the received branch ID.
Otherwise, the first component of the branch ID is computed as a hash of the topmostVia, the tag in
theTo header field, the tag in theFrom header field, theCall-ID header field, theCSeq number (but
not method), and theRequest-URI from the received request. One of these fields will always vary
across two different transactions.

• All other message transformations specified in Section 16.6MUST result in the same transformation
of a retransmitted request. In particular, if the proxy inserts aRecord-Route value or pushes URIs
into the Route header field, itMUST place the same values in retransmissions of the request. As
for theVia branch parameter, this implies that the transformationsMUST be based on time-invariant
configuration or retransmission-invariant properties of the request.

• A stateless proxy determines where to forward the request as described for stateful proxies in Sec-
tion 16.6 Item 10. The request is sent directly to the transport layer instead of through a client trans-
action.

Since a stateless proxy must forward retransmitted requests to the same destination and add identical
branch parameters to each of them, it can only use information from the message itself and time-
invariant configuration data for those calculations. If the configuration state is not time-invariant (for
example, if a routing table is updated) any requests that could be affected by the change may not be
forwarded statelessly during an interval equal to the transaction timeout window before or after the
change. The method of processing the affected requests in that interval is an implementation decision.
A common solution is to forward them transaction statefully.

Stateless proxiesMUST NOT perform special processing forCANCEL requests. They are processed by
the above rules as any other requests. In particular, a stateless proxy applies the sameRoute header field
processing toCANCEL requests that it applies to any other request.

Response processing as described in Section 16.7 does not apply to a proxy behaving statelessly. When a
response arrives at a stateless proxy, the proxyMUST inspect the sent-by value in the first (topmost)Via
header field value. If that address matches the proxy, (it equals a value this proxy has inserted into previous
requests) the proxyMUST remove that header field value from the response and forward the result to the
location indicated in the nextVia header field value. The proxyMUST NOT add to, modify, or remove the
message body. Unless specified otherwise, the proxyMUST NOT remove any other header field values. If
the address does not match the proxy, the messageMUST be silently discarded.

Rosenberg, et al. Standards Track [Page 85]

RFC 3261 SIP: Session Initiation Protocol June 2002

16.12 Summary of ProxyRoute Processing

In the absence of local policy to the contrary, the processing a proxy performs on a request containing a
Route header field can be summarized in the following steps.

1. The proxy will inspect theRequest-URI. If it indicates a resource owned by this proxy, the proxy
will replace it with the results of running a location service. Otherwise, the proxy will not change the
Request-URI.

2. The proxy will inspect the URI in the topmostRoute header field value. If it indicates this proxy, the
proxy removes it from theRoute header field (this route node has been reached).

3. The proxy will forward the request to the resource indicated by the URI in the topmostRoute header
field value or in theRequest-URI if no Route header field is present. The proxy determines the
address, port and transport to use when forwarding the request by applying the procedures in [4] to
that URI.

If no strict-routing elements are encountered on the path of the request, theRequest-URI will always
indicate the target of the request.

16.12.1 Examples

Basic SIP Trapezoid This scenario is the basic SIP trapezoid, U1→P1→P2→U2, with both proxies
record-routing. Here is the flow.

U1 sends:

INVITE sip:callee@domain.com SIP/2.0
Contact: sip:caller@u1.example.com

to P1. P1 is an outbound proxy. P1 is not responsible for domain.com, so it looks it up in DNS and sends it
there. It also adds aRecord-Route header field value:

INVITE sip:callee@domain.com SIP/2.0
Contact: sip:caller@u1.example.com
Record-Route: <sip:p1.example.com;lr>

P2 gets this. It is responsible for domain.com so it runs a location service and rewrites theRequest-URI.
It also adds aRecord-Route header field value. There is noRoute header field, so it resolves the new
Request-URI to determine where to send the request:

INVITE sip:callee@u2.domain.com SIP/2.0
Contact: sip:caller@u1.example.com
Record-Route: <sip:p2.domain.com;lr>
Record-Route: <sip:p1.example.com;lr>

The callee at u2.domain.com gets this and responds with a 200 OK:

Rosenberg, et al. Standards Track [Page 86]

RFC 3261 SIP: Session Initiation Protocol June 2002

SIP/2.0 200 OK
Contact: sip:callee@u2.domain.com
Record-Route: <sip:p2.domain.com;lr>
Record-Route: <sip:p1.example.com;lr>

The callee at u2 also sets its dialog state’s remote target URI tosip:caller@u1.example.com and
its route set to:

(<sip:p2.domain.com;lr>,<sip:p1.example.com;lr>)

This is forwarded by P2 to P1 to U1 as normal. Now, U1 sets its dialog state’s remote target URI to
sip:callee@u2.domain.com and its route set to:

(<sip:p1.example.com;lr>,<sip:p2.domain.com;lr>)

Since all the route set elements contain the lr parameter, U1 constructs the followingBYE request:

BYE sip:callee@u2.domain.com SIP/2.0
Route: <sip:p1.example.com;lr>,<sip:p2.domain.com;lr>

As any other element (including proxies) would do, it resolves the URI in the topmostRoute header field
value using DNS to determine where to send the request. This goes to P1. P1 notices that it is not responsible
for the resource indicated in theRequest-URI so it doesn’t change it. It does see that it is the first value in
theRoute header field, so it removes that value, and forwards the request to P2:

BYE sip:callee@u2.domain.com SIP/2.0
Route: <sip:p2.domain.com;lr>

P2 also notices it is not responsible for the resource indicated by theRequest-URI (it is responsible for
domain.com, not u2.domain.com), so it doesn’t change it. It does see itself in the firstRoute header field
value, so it removes it and forwards the following to u2.domain.com based on a DNS lookup against the
Request-URI:

BYE sip:callee@u2.domain.com SIP/2.0

Traversing a Strict-Routing Proxy In this scenario, a dialog is established across four proxies, each of
which addsRecord-Route header field values. The third proxy implements the strict-routing procedures
specified in RFC 2543 and many works in progress: U1→P1→P2→P3→P4→U2

TheINVITE arriving at U2 contains:

INVITE sip:callee@u2.domain.com SIP/2.0
Contact: sip:caller@u1.example.com
Record-Route: <sip:p4.domain.com;lr>
Record-Route: <sip:p3.middle.com>
Record-Route: <sip:p2.example.com;lr>
Record-Route: <sip:p1.example.com;lr>

Rosenberg, et al. Standards Track [Page 87]

RFC 3261 SIP: Session Initiation Protocol June 2002

Which U2 responds to with a 200 OK. Later, U2 sends the followingBYE request to P4 based on the first
Route header field value.

BYE sip:caller@u1.example.com SIP/2.0
Route: <sip:p4.domain.com;lr>
Route: <sip:p3.middle.com>
Route: <sip:p2.example.com;lr>
Route: <sip:p1.example.com;lr>

P4 is not responsible for the resource indicated in theRequest-URI so it will leave it alone. It notices that
it is the element in the firstRoute header field value so it removes it. It then prepares to send the request
based on the now firstRoute header field value of sip:p3.middle.com, but it notices that this URI does not
contain the lr parameter, so before sending, it reformats the request to be:

BYE sip:p3.middle.com SIP/2.0
Route: <sip:p2.example.com;lr>
Route: <sip:p1.example.com;lr>
Route: <sip:caller@u1.example.com>

P3 is a strict router, so it forwards the following to P2:

BYE sip:p2.example.com;lr SIP/2.0
Route: <sip:p1.example.com;lr>
Route: <sip:caller@u1.example.com>

P2 sees the request-URI is a value it placed into aRecord-Route header field, so before further processing,
it rewrites the request to be:

BYE sip:caller@u1.example.com SIP/2.0
Route: <sip:p1.example.com;lr>

P2 is not responsible foru1.example.com , so it sends the request to P1 based on the resolution of the
Route header field value.

P1 notices itself in the topmostRoute header field value, so it removes it, resulting in:

BYE sip:caller@u1.example.com SIP/2.0

Since P1 is not responsible foru1.example.com and there is noRoute header field, P1 will forward the
request tou1.example.com based on theRequest-URI.

Rewriting Record-Route Header Field Values In this scenario, U1 and U2 are in different private
namespaces and they enter a dialog through a proxy P1, which acts as a gateway between the namespaces.
U1→P1→U2

U1 sends:

Rosenberg, et al. Standards Track [Page 88]

RFC 3261 SIP: Session Initiation Protocol June 2002

INVITE sip:callee@gateway.leftprivatespace.com SIP/2.0
Contact: <sip:caller@u1.leftprivatespace.com>

P1 uses its location service and sends the following to U2:

INVITE sip:callee@rightprivatespace.com SIP/2.0
Contact: <sip:caller@u1.leftprivatespace.com>
Record-Route: <sip:gateway.rightprivatespace.com;lr>

U2 sends this 200 (OK) back to P1:

SIP/2.0 200 OK
Contact: <sip:callee@u2.rightprivatespace.com>
Record-Route: <sip:gateway.rightprivatespace.com;lr>

P1 rewrites itsRecord-Route header parameter to provide a value that U1 will find useful, and sends the
following to U1:

SIP/2.0 200 OK
Contact: <sip:callee@u2.rightprivatespace.com>
Record-Route: <sip:gateway.leftprivatespace.com;lr>

Later, U1 sends the following BYE request to P1:

BYE sip:callee@u2.rightprivatespace.com SIP/2.0
Route: <sip:gateway.leftprivatespace.com;lr>

which P1 forwards to U2 as:

BYE sip:callee@u2.rightprivatespace.com SIP/2.0

17 Transactions

SIP is a transactional protocol: interactions between components take place in a series of independent
message exchanges. Specifically, a SIP transaction consists of a single request and any responses to that
request, which include zero or more provisional responses and one or more final responses. In the case
of a transaction where the request was anINVITE (known as anINVITE transaction), the transaction also
includes theACK only if the final response was not a 2xx response. If the response was a 2xx, theACK is
not considered part of the transaction.

The reason for this separation is rooted in the importance of delivering all 200 (OK) responses to anINVITE to the
UAC. To deliver them all to the UAC, the UAS alone takes responsibility for retransmitting them (see Section 13.3.1),
and the UAC alone takes responsibility for acknowledging them withACK (see Section 13.2.2). Since thisACK is
retransmitted only by the UAC, it is effectively considered its own transaction.

Rosenberg, et al. Standards Track [Page 89]

RFC 3261 SIP: Session Initiation Protocol June 2002

Transactions have a client side and a server side. The client side is known as a client transaction and the
server side as a server transaction. The client transaction sends the request, and the server transaction sends
the response. The client and server transactions are logical functions that are embedded in any number of
elements. Specifically, they exist within user agents and stateful proxy servers. Consider the example in
Section 4. In this example, the UAC executes the client transaction, and its outbound proxy executes the
server transaction. The outbound proxy also executes a client transaction, which sends the request to a
server transaction in the inbound proxy. That proxy also executes a client transaction, which in turn sends
the request to a server transaction in the UAS. This is shown in Figure 4.

+---------+ +---------+ +---------+ +---------+
+-+	Request	+-+ +-+	Request	+-+ +-+	Request	+-+												
	C		------->		S		C		------->		S		C		------->		S	
	l				e		l				e		l				e	
	i				r		i				r		i				r	
	e				v		e				v		e				v	
	n				e		n				e		n				e	
	t				r		t				r		t				r	
	T				T		T				T		T				T	
	r				r		r				r		r				r	
	a				a		a				a		a				a	
	n				n		n				n		n				n	
	s		Response		s		s		Response		s		s		Response		s	
+-+	<-------	+-+ +-+	<-------	+-+ +-+	<-------	+-+												
+---------+ +---------+ +---------+ +---------+

UAC Outbound Inbound UAS
Proxy Proxy

Figure 4: Transaction relationships

A stateless proxy does not contain a client or server transaction. The transaction exists between the UA or
stateful proxy on one side, and the UA or stateful proxy on the other side. As far as SIP transactions are
concerned, stateless proxies are effectively transparent. The purpose of the client transaction is to receive
a request from the element in which the client is embedded (call this element the “Transaction User” or
TU; it can be a UA or a stateful proxy), and reliably deliver the request to a server transaction. The client
transaction is also responsible for receiving responses and delivering them to the TU, filtering out any re-
sponse retransmissions or disallowed responses (such as a response toACK). Additionally, in the case of an
INVITE request, the client transaction is responsible for generating theACK request for any final response
accepting a 2xx response.

Similarly, the purpose of the server transaction is to receive requests from the transport layer and deliver
them to the TU. The server transaction filters any request retransmissions from the network. The server
transaction accepts responses from the TU and delivers them to the transport layer for transmission over the
network. In the case of anINVITE transaction, it absorbs theACK request for any final response excepting
a 2xx response.

The 2xx response and itsACK receive special treatment. This response is retransmitted only by a UAS,
and itsACK generated only by the UAC. This end-to-end treatment is needed so that a caller knows the

Rosenberg, et al. Standards Track [Page 90]

RFC 3261 SIP: Session Initiation Protocol June 2002

entire set of users that have accepted the call. Because of this special handling, retransmissions of the 2xx
response are handled by the UA core, not the transaction layer. Similarly, generation of theACK for the 2xx
is handled by the UA core. Each proxy along the path merely forwards each 2xx response toINVITE and
its correspondingACK.

17.1 Client Transaction

The client transaction provides its functionality through the maintenance of a state machine.

The TU communicates with the client transaction through a simple interface. When the TU wishes to
initiate a new transaction, it creates a client transaction and passes it the SIP request to send and an IP
address, port, and transport to which to send it. The client transaction begins execution of its state machine.
Valid responses are passed up to the TU from the client transaction.

There are two types of client transaction state machines, depending on the method of the request passed
by the TU. One handles client transactions forINVITE requests. This type of machine is referred to as
an INVITE client transaction. Another type handles client transactions for all requests exceptINVITE and
ACK. This is referred to as a non-INVITE client transaction. There is no client transaction forACK. If the
TU wishes to send anACK, it passes one directly to the transport layer for transmission.

TheINVITE transaction is different from those of other methods because of its extended duration. Normally,
human input is required in order to respond to anINVITE. The long delays expected for sending a response
argue for a three-way handshake. On the other hand, requests of other methods are expected to complete
rapidly. Because of the non-INVITE transaction’s reliance on a two-way handshake, TUsSHOULD respond
immediately to non-INVITE requests.

17.1.1 INVITE Client Transaction

Overview of INVITE Transaction TheINVITE transaction consists of a three-way handshake. The client
transaction sends anINVITE, the server transaction sends responses, and the client transaction sends an
ACK. For unreliable transports (such as UDP), the client transaction retransmits requests at an interval that
starts at T1 seconds and doubles after every retransmission. T1 is an estimate of the round-trip time (RTT),
and it defaults to 500 ms. Nearly all of the transaction timers described here scale with T1, and changing T1
adjusts their values. The request is not retransmitted over reliable transports. After receiving a 1xx response,
any retransmissions cease altogether, and the client waits for further responses. The server transaction can
send additional 1xx responses, which are not transmitted reliably by the server transaction. Eventually, the
server transaction decides to send a final response. For unreliable transports, that response is retransmitted
periodically, and for reliable transports, it is sent once. For each final response that is received at the client
transaction, the client transaction sends anACK, the purpose of which is to quench retransmissions of the
response.

Formal Description The state machine for theINVITE client transaction is shown in Figure 5. The initial
state, “calling”,MUST be entered when the TU initiates a new client transaction with anINVITE request.
The client transactionMUST pass the request to the transport layer for transmission (see Section 18). If
an unreliable transport is being used, the client transactionMUST start timer A with a value of T1. If a
reliable transport is being used, the client transactionSHOULD NOT start timer A (Timer A controls request

Rosenberg, et al. Standards Track [Page 91]

RFC 3261 SIP: Session Initiation Protocol June 2002

retransmissions). For any transport, the client transactionMUST start timer B with a value of 64*T1 seconds
(Timer B controls transaction timeouts).

When timer A fires, the client transactionMUST retransmit the request by passing it to the transport layer,
andMUST reset the timer with a value of 2*T1. The formal definition of retransmit within the context of
the transaction layer is to take the message previously sent to the transport layer and pass it to the transport
layer once more.

When timer A fires 2*T1 seconds later, the requestMUST be retransmitted again (assuming the client trans-
action is still in this state). This processMUST continue so that the request is retransmitted with intervals that
double after each transmission. These retransmissionsSHOULD only be done while the client transaction is
in the “calling” state.

The default value for T1 is 500 ms. T1 is an estimate of the RTT between the client and server transactions.
ElementsMAY (though it isNOT RECOMMENDED) use smaller values of T1 within closed, private networks
that do not permit general Internet connection. T1MAY be chosen larger, and this isRECOMMENDED if it
is known in advance (such as on high latency access links) that the RTT is larger. Whatever the value of T1,
the exponential backoffs on retransmissions described in this sectionMUST be used.

If the client transaction is still in the “Calling” state when timer B fires, the client transactionSHOULD

inform the TU that a timeout has occurred. The client transactionMUST NOT generate anACK. The value of
64*T1 is equal to the amount of time required to send seven requests in the case of an unreliable transport.

If the client transaction receives a provisional response while in the “Calling” state, it transitions to the
“Proceeding” state. In the “Proceeding” state, the client transactionSHOULD NOTretransmit the request any
longer. Furthermore, the provisional responseMUST be passed to the TU. Any further provisional responses
MUST be passed up to the TU while in the “Proceeding” state.

When in either the “Calling” or “Proceeding” states, reception of a response with status code from 300-
699 MUST cause the client transaction to transition to “Completed”. The client transactionMUST pass the
received response up to the TU, and the client transactionMUST generate anACK request, even if the
transport is reliable (guidelines for constructing theACK from the response are given in Section 17.1.1) and
then pass theACK to the transport layer for transmission. TheACK MUST be sent to the same address, port,
and transport to which the original request was sent. The client transactionSHOULD start timer D when it
enters the “Completed” state, with a value of at least 32 seconds for unreliable transports, and a value of zero
seconds for reliable transports. Timer D reflects the amount of time that the server transaction can remain in
the “Completed” state when unreliable transports are used. This is equal to Timer H in theINVITE server
transaction, whose default is 64*T1. However, the client transaction does not know the value of T1 in use
by the server transaction, so an absolute minimum of 32s is used instead of basing Timer D on T1.

Any retransmissions of the final response that are received while in the “Completed” stateMUST cause the
ACK to be re-passed to the transport layer for retransmission, but the newly received responseMUST NOT

be passed up to the TU. A retransmission of the response is defined as any response which would match the
same client transaction based on the rules of Section 17.1.3.

If timer D fires while the client transaction is in the “Completed” state, the client transactionMUST move to
the terminated state.

When in either the “Calling” or “Proceeding” states, reception of a 2xx responseMUST cause the client
transaction to enter the “Terminated” state, and the responseMUST be passed up to the TU. The handling of
this response depends on whether the TU is a proxy core or a UAC core. A UAC core will handle generation

Rosenberg, et al. Standards Track [Page 92]

RFC 3261 SIP: Session Initiation Protocol June 2002

|INVITE from TU
Timer A fires |INVITE sent
Reset A, V Timer B fires
INVITE sent +-----------+ or Transport Err.

+---------| |---------------+inform TU
| | Calling | |
+-------->| |-------------->|

+-----------+ 2xx |
| | 2xx to TU |
| |1xx |

300-699 +---------------+ |1xx to TU |
ACK sent | | |

resp. to TU | 1xx V |
| 1xx to TU -----------+ |
+---------			
		Proceeding	-------------->
+-------->		2xx	
+-----------+ 2xx to TU			
300-699			
ACK sent,			
resp. to TU			
		NOTE:	
300-699 V			
ACK sent +-----------+Transport Err.	transitions		
+---------		Inform TU	labeled with
		Completed	-------------->
+-------->			over the action
+-----------+	to take		
ˆ			
		Timer D fires	
+--------------+ | - |

| |
V |

+-----------+ |
| | |
| Terminated|<--------------+
| |
+-----------+

Figure 5:INVITE client transaction

of theACK for this response, while a proxy core will always forward the 200 (OK) upstream. The differing
treatment of 200 (OK) between proxy and UAC is the reason that handling of it does not take place in the
transaction layer.

Rosenberg, et al. Standards Track [Page 93]

RFC 3261 SIP: Session Initiation Protocol June 2002

The client transactionMUST be destroyed the instant it enters the “Terminated” state. This is actually nec-
essary to guarantee correct operation. The reason is that 2xx responses to anINVITE are treated differently;
each one is forwarded by proxies, and theACK handling in a UAC is different. Thus, each 2xx needs to be
passed to a proxy core (so that it can be forwarded) and to a UAC core (so it can be acknowledged). No
transaction layer processing takes place. Whenever a response is received by the transport, if the transport
layer finds no matching client transaction (using the rules of Section 17.1.3), the response is passed directly
to the core. Since the matching client transaction is destroyed by the first 2xx, subsequent 2xx will find no
match and therefore be passed to the core.

Construction of the ACK Request This section specifies the construction ofACK requests sent within
the client transaction. A UAC core that generates anACK for 2xx MUST instead follow the rules described
in Section 13.

The ACK request constructed by the client transactionMUST contain values for theCall-ID, From, and
Request-URI that are equal to the values of those header fields in the request passed to the transport by
the client transaction (call this the “original request”). TheTo header field in theACK MUST equal theTo
header field in the response being acknowledged, and therefore will usually differ from theTo header field
in the original request by the addition of the tag parameter. TheACK MUST contain a singleVia header
field, and thisMUST be equal to the topVia header field of the original request. TheCSeq header field in
theACK MUST contain the same value for the sequence number as was present in the original request, but
the method parameterMUST be equal to “ACK”.

If the INVITE request whose response is being acknowledged hadRoute header fields, those header fields
MUST appear in theACK. This is to ensure that theACK can be routed properly through any downstream
stateless proxies.

Although any requestMAY contain a body, a body in anACK is special since the request cannot be rejected
if the body is not understood. Therefore, placement of bodies inACK for non-2xx isNOT RECOMMENDED

, but if done, the body types are restricted to any that appeared in theINVITE, assuming that the response to
the INVITE was not 415. If it was, the body in theACK MAY be any type listed in theAccept header field
in the 415.

For example, consider the following request:

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKkjshdyff
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=88sja8x
Max-Forwards: 70
Call-ID: 987asjd97y7atg
CSeq: 986759 INVITE

TheACK request for a non-2xx final response to this request would look like this:

ACK sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKkjshdyff
To: Bob <sip:bob@biloxi.com>;tag=99sa0xk

Rosenberg, et al. Standards Track [Page 94]

RFC 3261 SIP: Session Initiation Protocol June 2002

From: Alice <sip:alice@atlanta.com>;tag=88sja8x
Max-Forwards: 70
Call-ID: 987asjd97y7atg
CSeq: 986759 ACK

17.1.2 Non-INVITE Client Transaction

Overview of the non-INVITE Transaction Non-INVITE transactions do not make use ofACK. They
are simple request-response interactions. For unreliable transports, requests are retransmitted at an interval
which starts at T1 and doubles until it hits T2. If a provisional response is received, retransmissions continue
for unreliable transports, but at an interval of T2. The server transaction retransmits the last response it sent,
which can be a provisional or final response, only when a retransmission of the request is received. This is
why request retransmissions need to continue even after a provisional response; they are to ensure reliable
delivery of the final response.

Unlike anINVITE transaction, a non-INVITE transaction has no special handling for the 2xx response. The
result is that only a single 2xx response to a non-INVITE is ever delivered to a UAC.

Formal Description The state machine for the non-INVITE client transaction is shown in Figure 6. It is
very similar to the state machine forINVITE.

The “Trying” state is entered when the TU initiates a new client transaction with a request. When entering
this state, the client transactionSHOULD set timer F to fire in 64*T1 seconds. The requestMUST be passed
to the transport layer for transmission. If an unreliable transport is in use, the client transactionMUST set
timer E to fire in T1 seconds. If timer E fires while still in this state, the timer is reset, but this time with a
value of MIN(2*T1, T2). When the timer fires again, it is reset to a MIN(4*T1, T2). This process continues
so that retransmissions occur with an exponentially increasing interval that caps at T2. The default value
of T2 is 4s, and it represents the amount of time a non-INVITE server transaction will take to respond to a
request, if it does not respond immediately. For the default values of T1 and T2, this results in intervals of
500 ms, 1 s, 2 s, 4 s, 4 s, 4 s, etc.

If Timer F fires while the client transaction is still in the “Trying” state, the client transactionSHOULD inform
the TU about the timeout, and then itSHOULD enter the “Terminated” state. If a provisional response is
received while in the “Trying” state, the responseMUST be passed to the TU, and then the client transaction
SHOULD move to the “Proceeding” state. If a final response (status codes 200-699) is received while in the
“Trying” state, the responseMUST be passed to the TU, and the client transactionMUST transition to the
“Completed” state.

If Timer E fires while in the “Proceeding” state, the requestMUST be passed to the transport layer for retrans-
mission, and Timer EMUST be reset with a value of T2 seconds. If timer F fires while in the “Proceeding”
state, the TUMUST be informed of a timeout, and the client transactionMUST transition to the terminated
state. If a final response (status codes 200-699) is received while in the “Proceeding” state, the response
MUST be passed to the TU, and the client transactionMUST transition to the “Completed” state.

Once the client transaction enters the “Completed” state, itMUST set Timer K to fire in T4 seconds for
unreliable transports, and zero seconds for reliable transports. The “Completed” state exists to buffer any
additional response retransmissions that may be received (which is why the client transaction remains there
only for unreliable transports). T4 represents the amount of time the network will take to clear messages

Rosenberg, et al. Standards Track [Page 95]

RFC 3261 SIP: Session Initiation Protocol June 2002

between client and server transactions. The default value of T4 is 5s. A response is a retransmission when it
matches the same transaction, using the rules specified in Section 17.1.3. If Timer K fires while in this state,
the client transactionMUST transition to the “Terminated” state.

Once the transaction is in the terminated state, itMUST be destroyed immediately.

17.1.3 Matching Responses to Client Transactions

When the transport layer in the client receives a response, it has to determine which client transaction
will handle the response, so that the processing of Sections 17.1.1 and 17.1.2 can take place. The branch
parameter in the topVia header field is used for this purpose. A response matches a client transaction under
two conditions:

1. If the response has the same value of the branch parameter in the topVia header field as the branch
parameter in the topVia header field of the request that created the transaction.

2. If the method parameter in theCSeq header field matches the method of the request that created the
transaction. The method is needed since aCANCEL request constitutes a different transaction, but
shares the same value of the branch parameter.

If a request is sent via multicast, it is possible that it will generate multiple responses from different servers.
These responses will all have the same branch parameter in the topmostVia, but vary in theTo tag. The
first response received, based on the rules above, will be used, and others will be viewed as retransmissions.
That is not an error; multicast SIP provides only a rudimentary “single-hop-discovery-like” service that is
limited to processing a single response. See Section 18.1.1 for details.

17.1.4 Handling Transport Errors

When the client transaction sends a request to the transport layer to be sent, the following procedures are
followed if the transport layer indicates a failure.

The client transactionSHOULD inform the TU that a transport failure has occurred, and the client transaction
SHOULD transition directly to the “Terminated” state. The TU will handle the failover mechanisms described
in [4].

17.2 Server Transaction

The server transaction is responsible for the delivery of requests to the TU and the reliable transmission of
responses. It accomplishes this through a state machine.Server transactions are created by the core when
a request is received, and transaction handling is desired for that request (this is not always the case).

As with the client transactions, the state machine depends on whether the received request is anINVITE
request.

17.2.1 INVITE Server Transaction

The state diagram for theINVITE server transaction is shown in Figure 7.

Rosenberg, et al. Standards Track [Page 96]

RFC 3261 SIP: Session Initiation Protocol June 2002

|Request from TU
|send request

Timer E V
send request +-----------+

+---------| |-------------------+
| | Trying | Timer F |
+-------->| | or Transport Err.|

+-----------+ inform TU |
200-699 | | |
resp. to TU | |1xx |
+---------------+ |resp. to TU |
| | |
| Timer E V Timer F |
| send req +-----------+ or Transport Err. |
+---------		inform TU	
		Proceeding	------------------>
+-------->		-----+	
+-----------+	1xx		
	ˆ	resp to TU	
200-699	+--------+		
resp. to TU			
V			
+-----------+			
	Completed		
+-----------+			
ˆ			
		Timer K	
+--------------+ | - |

| |
V |

NOTE: +-----------+ |
| | |

transitions | Terminated|<------------------+
labeled with | |
the event +-----------+
over the action
to take

Figure 6: non-INVITE client transaction

Rosenberg, et al. Standards Track [Page 97]

RFC 3261 SIP: Session Initiation Protocol June 2002

When a server transaction is constructed for a request, it enters the “Proceeding” state. The server transaction
MUST generate a 100 (Trying) response unless it knows that the TU will generate a provisional or final
response within 200 ms, in which case itMAY generate a 100 (Trying) response. This provisional response
is needed to quench request retransmissions rapidly in order to avoid network congestion. The 100 (Trying)
response is constructed according to the procedures in Section 8.2.6, except that the insertion of tags in the
To header field of the response (when none was present in the request) is downgraded fromMAY to SHOULD

NOT. The requestMUST be passed to the TU.

The TU passes any number of provisional responses to the server transaction. So long as the server transac-
tion is in the “Proceeding” state, each of theseMUST be passed to the transport layer for transmission. They
are not sent reliably by the transaction layer (they are not retransmitted by it) and do not cause a change in
the state of the server transaction. If a request retransmission is received while in the “Proceeding” state, the
most recent provisional response that was received from the TUMUST be passed to the transport layer for
retransmission. A request is a retransmission if it matches the same server transaction based on the rules of
Section 17.2.3.

If, while in the “Proceeding” state, the TU passes a 2xx response to the server transaction, the server trans-
actionMUST pass this response to the transport layer for transmission. It is not retransmitted by the server
transaction; retransmissions of 2xx responses are handled by the TU. The server transactionMUST then
transition to the “Terminated” state.

While in the “Proceeding” state, if the TU passes a response with status code from 300 to 699 to the server
transaction, the responseMUST be passed to the transport layer for transmission, and the state machine
MUST enter the “Completed” state. For unreliable transports, timer G is set to fire in T1 seconds, and is not
set to fire for reliable transports.

This is a change from RFC 2543, where responses were always retransmitted, even over reliable transports.

When the “Completed” state is entered, timer HMUST be set to fire in 64*T1 seconds for all transports.
Timer H determines when the server transaction abandons retransmitting the response. Its value is chosen
to equal Timer B, the amount of time a client transaction will continue to retry sending a request. If timer G
fires, the response is passed to the transport layer once more for retransmission, and timer G is set to fire in
MIN(2*T1, T2) seconds.From then on, when timer G fires, the response is passed to the transport again for
transmission, and timer G is reset with a value that doubles, unless that value exceeds T2, in which case it
is reset with the value of T2. This is identical to the retransmit behavior for requests in the “Trying” state of
the non-INVITE client transaction. Furthermore, while in the “Completed” state, if a request retransmission
is received, the serverSHOULD pass the response to the transport for retransmission.

If an ACK is received while the server transaction is in the “Completed” state, the server transactionMUST

transition to the “Confirmed” state. As Timer G is ignored in this state, any retransmissions of the response
will cease.

If timer H fires while in the “Completed” state, it implies that theACK was never received. In this case, the
server transactionMUST transition to the “Terminated” state, andMUST indicate to the TU that a transaction
failure has occurred.

The purpose of the “Confirmed” state is to absorb any additionalACK messages that arrive, triggered from
retransmissions of the final response. When this state is entered, timer I is set to fire in T4 seconds for
unreliable transports, and zero seconds for reliable transports. Once timer I fires, the serverMUST transition
to the “Terminated” state.

Rosenberg, et al. Standards Track [Page 98]

RFC 3261 SIP: Session Initiation Protocol June 2002

|INVITE
|pass INV to TU

INVITE V send 100 if TU won’t in 200ms
send response+-----------+

+--------| |--------+101-199 from TU
| | Proceeding| |send response
+------->| |<-------+

| | Transport Err.
| | Inform TU
| |--------------->+
+-----------+ |

300-699 from TU | |2xx from TU |
send response | |send response |

| +------------------>+
| |

INVITE V Timer G fires |
send response+-----------+ send response |

+--------| |--------+ |
| | Completed | | |
+------->| |<-------+ |

+-----------+ |
| | |

ACK | | |
- | +------------------>+

| Timer H fires |
V or Transport Err.|

+-----------+ Inform TU |
Confirmed	
+-----------+ |

| |
Timer I fires
V |

+-----------+ |
| | |
| Terminated|<---------------+
| |
+-----------+

Figure 7:INVITE server transaction

Rosenberg, et al. Standards Track [Page 99]

RFC 3261 SIP: Session Initiation Protocol June 2002

Once the transaction is in the “Terminated” state, itMUST be destroyed immediately. As with client trans-
actions, this is needed to ensure reliability of the 2xx responses toINVITE.

17.2.2 Non-INVITE Server Transaction

The state machine for the non-INVITE server transaction is shown in Figure 8.

The state machine is initialized in the “Trying” state and is passed a request other thanINVITE or ACK
when initialized. This request is passed up to the TU. Once in the “Trying” state, any further request
retransmissions are discarded. A request is a retransmission if it matches the same server transaction, using
the rules specified in Section 17.2.3.

While in the “Trying” state, if the TU passes a provisional response to the server transaction, the server
transactionMUST enter the “Proceeding” state. The responseMUST be passed to the transport layer for
transmission. Any further provisional responses that are received from the TU while in the “Proceeding”
stateMUST be passed to the transport layer for transmission. If a retransmission of the request is received
while in the “Proceeding” state, the most recently sent provisional responseMUST be passed to the transport
layer for retransmission. If the TU passes a final response (status codes 200-699) to the server while in the
“Proceeding” state, the transactionMUST enter the “Completed” state, and the responseMUST be passed to
the transport layer for transmission.

When the server transaction enters the “Completed” state, itMUST set Timer J to fire in 64*T1 seconds for
unreliable transports, and zero seconds for reliable transports. While in the “Completed” state, the server
transactionMUST pass the final response to the transport layer for retransmission whenever a retransmission
of the request is received. Any other final responses passed by the TU to the server transactionMUST be
discarded while in the “Completed” state. The server transaction remains in this state until Timer J fires, at
which point itMUST transition to the “Terminated” state.

The server transactionMUST be destroyed the instant it enters the “Terminated” state.

17.2.3 Matching Requests toServer Transactions

When a request is received from the network by the server, it has to be matched to an existing transaction.
This is accomplished in the following manner.

The branch parameter in the topmostVia header field of the request is examined. If it is present and begins
with the magic cookie “z9hG4bK”, the request was generated by a client transaction compliant to this
specification. Therefore, the branch parameter will be unique across all transactions sent by that client. The
request matches a transaction if:

1. the branch parameter in the request is equal to the one in the topVia header field of the request that
created the transaction, and

2. the sent-by value in the topVia of the request is equal to the one in the request that created the
transaction, and

3. the method of the request matches the one that created the transaction, except forACK, where the
method of the request that created the transaction isINVITE.

Rosenberg, et al. Standards Track [Page 100]

RFC 3261 SIP: Session Initiation Protocol June 2002

This matching rule applies to bothINVITE and non-INVITE transactions alike.

Thesent-by value is used as part of the matching process because there could be accidental or malicious duplication
of branch parameters from different clients.

If the branch parameter in the topVia header field is not present, or does not contain the magic cookie, the
following procedures are used. These exist to handle backwards compatibility with RFC 2543 compliant
implementations.

The INVITE request matches a transaction if theRequest-URI, To tag,From tag,Call-ID, CSeq, and top
Via header field match those of theINVITE request which created the transaction. In this case, theINVITE
is a retransmission of the original one that created the transaction. TheACK request matches a transaction
if the Request-URI, From tag,Call-ID, CSeq number (not the method), and topVia header field match
those of theINVITE request which created the transaction, and theTo tag of theACK matches theTo
tag of the response sent by the server transaction. Matching is done based on the matching rules defined
for each of those header fields. Inclusion of the tag in theTo header field in theACK matching process
helps disambiguateACK for 2xx from ACK for other responses at a proxy, which may have forwarded
both responses (This can occur in unusual conditions. Specifically, when a proxy forked a request, and then
crashes, the responses may be delivered to another proxy, which might end up forwarding multiple responses
upstream). AnACK request that matches anINVITE transaction matched by a previousACK is considered
a retransmission of that previousACK.

For all other request methods, a request is matched to a transaction if theRequest-URI, To tag,From tag,
Call-ID, CSeq (including the method), and topVia header field match those of the request that created the
transaction. Matching is done based on the matching rules defined for each of those header fields. When a
non-INVITE request matches an existing transaction, it is a retransmission of the request that created that
transaction.

Because the matching rules include theRequest-URI, the server cannot match a response to a transaction.
When the TU passes a response to the server transaction, it must pass it to the specific server transaction for
which the response is targeted.

17.2.4 Handling Transport Errors

When the server transaction sends a response to the transport layer to be sent, the following procedures are
followed if the transport layer indicates a failure.

First, the procedures in [4] are followed, which attempt to deliver the response to a backup. If those should
all fail, based on the definition of failure in [4], the server transactionSHOULD inform the TU that a failure
has occurred, andSHOULD transition to the terminated state.

18 Transport

The transport layer is responsible for the actual transmission of requests and responses over network trans-
ports. This includes determination of the connection to use for a request or response in the case of connection-
oriented transports.

The transport layer is responsible for managing persistent connections for transport protocols like TCP and
SCTP, or TLS over those, including ones opened to the transport layer. This includes connections opened by

Rosenberg, et al. Standards Track [Page 101]

RFC 3261 SIP: Session Initiation Protocol June 2002

|Request received
|pass to TU
V

+-----------+
| |
| Trying |-------------+
| | |
+-----------+ |200-699 from TU

| |send response
|1xx from TU |
|send response |
| |

Request V 1xx from TU |
send response+-----------+send response|

+--------| |--------+ |
| | Proceeding| | |
+------->| |<-------+ |

+<--------------| | |
|Trnsprt Err +-----------+ |
Inform TU	
	200-699 from TU
	send response
Request V	
send response+-----------+	
+--------	
+------->	
+<--------------	
Trnsprt Err +-----------+	
Inform TU	
	Timer J fires
	-
V	
+-----------+	
+-------------->| Terminated|

| |
+-----------+

Figure 8: non-INVITE server transaction

Rosenberg, et al. Standards Track [Page 102]

RFC 3261 SIP: Session Initiation Protocol June 2002

the client or server transports, so that connections are shared between client and server transport functions.
These connections are indexed by the tuple formed from the address, port, and transport protocol at the
far end of the connection. When a connection is opened by the transport layer, this index is set to the
destination IP, port and transport. When the connection is accepted by the transport layer, this index is set to
the source IP address, port number, and transport. Note that, because the source port is often ephemeral, but
it cannot be known whether it is ephemeral or selected through procedures in [4], connections accepted by
the transport layer will frequently not be reused. The result is that two proxies in a “peering” relationship
using a connection-oriented transport frequently will have two connections in use, one for transactions
initiated in each direction.

It is RECOMMENDED that connections be kept open for some implementation-defined duration after the last
message was sent or received over that connection. This durationSHOULD at least equal the longest amount
of time the element would need in order to bring a transaction from instantiation to the terminated state. This
is to make it likely that transactions are completed over the same connection on which they are initiated (for
example, request, response, and in the case ofINVITE, ACK for non-2xx responses). This usually means at
least 64*T1 (see Section 17.1.1 for a definition of T1). However, it could be larger in an element that has a
TU using a large value for timer C (bullet 11 of Section 16.6), for example.

All SIP elementsMUST implement UDP and TCP. SIP elementsMAY implement other protocols.

Making TCP mandatory for the UA is a substantial change from RFC 2543. It has arisen out of the need to handle
larger messages, whichMUST use TCP, as discussed below. Thus, even if an element never sends large messages, it
may receive one and needs to be able to handle them.

18.1 Clients

18.1.1 Sending Requests

The client side of the transport layer is responsible for sending the request and receiving responses. The
user of the transport layer passes the client transport the request, an IP address, port, transport, and possibly
TTL for multicast destinations.

If a request is within 200 bytes of the path MTU, or if it is larger than 1300 bytes and the path MTU
is unknown, the requestMUST be sent using an RFC 2914 [36] congestion controlled transport protocol,
such as TCP. If this causes a change in the transport protocol from the one indicated in the topVia, the
value in the topVia MUST be changed. This prevents fragmentation of messages over UDP and provides
congestion control for larger messages. However, implementationsMUST be able to handle messages up to
the maximum datagram packet size. For UDP, this size is 65,535 bytes, including IP and UDP headers.

The 200 byte “buffer” between the message size and the MTU accommodates the fact that the response in SIP can
be larger than the request. This happens due to the addition ofRecord-Route header field values to the responses
to INVITE, for example. With the extra buffer, the response can be about 170 bytes larger than the request, and still
not be fragmented on IPv4 (about 30 bytes is consumed by IP/UDP, assuming no IPSec). 1300 is chosen when path
MTU is not known, based on the assumption of a 1500 byte Ethernet MTU.

If an element sends a request over TCP because of these message size constraints, and that request would
have otherwise been sent over UDP, if the attempt to establish the connection generates either an ICMP
Protocol NotSupported, or results in a TCP reset, the elementSHOULD retry the request, using UDP. This
is only to provide backwards compatibility with RFC 2543 compliant implementations that do not support
TCP. It is anticipated that this behavior will be deprecated in a future revision of this specification.

Rosenberg, et al. Standards Track [Page 103]

RFC 3261 SIP: Session Initiation Protocol June 2002

A client that sends a request to a multicast addressMUST add themaddr parameter to itsVia header field
value containing the destination multicast address, and for IPv4,SHOULD add thettl parameter with a
value of 1. Usage of IPv6 multicast is not defined in this specification, and will be a subject of future
standardization when the need arises.

These rules result in a purposeful limitation of multicast in SIP. Its primary function is to provide a “single-
hop-discovery-like” service, delivering a request to a group of homogeneous servers, where it is only re-
quired to process the response from any one of them. This functionality is most useful for registrations. In
fact, based on the transaction processing rules in Section 17.1.3, the client transaction will accept the first
response, and view any others as retransmissions because they all contain the sameVia branch identifier.

Before a request is sent, the client transportMUST insert a value of thesent-by field into theVia header
field. This field contains an IP address or host name, and port. The usage of an FQDN isRECOMMENDED

.This field is used for sending responses under certain conditions, described below. If the port is absent, the
default value depends on the transport. It is 5060 for UDP, TCP and SCTP, 5061 for TLS.

For reliable transports, the response is normally sent on the connection on which the request was received.
Therefore, the client transportMUST be prepared to receive the response on the same connection used to
send the request. Under error conditions, the server may attempt to open a new connection to send the
response.To handle this case, the transport layerMUST also be prepared to receive an incoming connection
on the source IP address from which the request was sent and port number in thesent-by field. It also
MUST be prepared to receive incoming connections on any address and port that would be selected by a
server based on the procedures described in Section 5 of [4].

For unreliable unicast transports, the client transportMUST be prepared to receive responses on the source
IP address from which the request is sent (as responses are sent back to the source address) and the port
number in thesent-by field. Furthermore, as with reliable transports, in certain cases the response will be
sent elsewhere. The clientMUST be prepared to receive responses on any address and port that would be
selected by a server based on the procedures described in Section 5 of [4].

For multicast, the client transportMUST be prepared to receive responses on the same multicast group and
port to which the request is sent (that is, it needs to be a member of the multicast group it sent the request
to.)

If a request is destined to an IP address, port, and transport to which an existing connection is open, it is
RECOMMENDED that this connection be used to send the request, but another connectionMAY be opened
and used.

If a request is sent using multicast, it is sent to the group address, port, and TTL provided by the transport
user. If a request is sent using unicast unreliable transports, it is sent to the IP address and port provided by
the transport user.

18.1.2 Receiving Responses

When a response is received, the client transport examines the topVia header field value. If the value of
thesent-by parameter in that header field value does not correspond to a value that the client transport is
configured to insert into requests, the responseMUST be silently discarded.

If there are any client transactions in existence, the client transport uses the matching procedures of Sec-
tion 17.1.3 to attempt to match the response to an existing transaction. If there is a match, the responseMUST

Rosenberg, et al. Standards Track [Page 104]

RFC 3261 SIP: Session Initiation Protocol June 2002

be passed to that transaction. Otherwise, the responseMUST be passed to the core (whether it be stateless
proxy, stateful proxy, or UA) for further processing. Handling of these “stray” responses is dependent on
the core (a proxy will forward them, while a UA will discard, for example).

18.2 Servers

18.2.1 Receiving Requests

A serverSHOULD be prepared to receive requests on any IP address, port and transport combination that can
be the result of a DNS lookup on a SIP or SIPS URI [4] that is handed out for the purposes of communicating
with that server. In this context, “handing out” includes placing a URI in aContact header field in a
REGISTER request or a redirect response, or in aRecord-Route header field in a request or response. A
URI can also be “handed out” by placing it on a web page or business card. It is alsoRECOMMENDED that
a server listen for requests on the default SIP ports (5060 for TCP and UDP, 5061 for TLS over TCP) on
all public interfaces. The typical exception would be private networks, or when multiple server instances
are running on the same host. For any port and interface that a server listens on for UDP, itMUST listen on
that same port and interface for TCP. This is because a message may need to be sent using TCP, rather than
UDP, if it is too large. As a result, the converse is not true. A server need not listen for UDP on a particular
address and port just because it is listening on that same address and port for TCP. There may, of course, be
other reasons why a server needs to listen for UDP on a particular address and port.

When the server transport receives a request over any transport, itMUST examine the value of thesent-by
parameter in the topVia header field value. If the host portion of thesent-by parameter contains a domain
name, or if it contains an IP address that differs from the packet source address, the serverMUST add a
received parameter to thatVia header field value. This parameterMUST contain the source address from
which the packet was received. This is to assist the server transport layer in sending the response, since it
must be sent to the source IP address from which the request came.

Consider a request received by the server transport which looks like, in part:

INVITE sip:bob@Biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060

The request is received with a source IP address of 192.0.2.4. Before passing the request up, the transport
adds areceived parameter, so that the request would look like, in part:

INVITE sip:bob@Biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060;received=192.0.2.4

Next, the server transport attempts to match the request to a server transaction. It does so using the matching
rules described in Section 17.2.3. If a matching server transaction is found, the request is passed to that
transaction for processing. If no match is found, the request is passed to the core, which may decide to
construct a new server transaction for that request. Note that when a UAS core sends a 2xx response
to INVITE, the server transaction is destroyed. This means that when theACK arrives, there will be no
matching server transaction, and based on this rule, theACK is passed to the UAS core, where it is processed.

Rosenberg, et al. Standards Track [Page 105]

RFC 3261 SIP: Session Initiation Protocol June 2002

18.2.2 Sending Responses

The server transport uses the value of the topVia header field in order to determine where to send a response.
It MUST follow the following process:

• If the “sent-protocol” is a reliable transport protocol such as TCP or SCTP, or TLS over those, the
responseMUST be sent using the existing connection to the source of the original request that created
the transaction, if that connection is still open. This requires the server transport to maintain an
association between server transactions and transport connections. If that connection is no longer
open, the serverSHOULD open a connection to the IP address in thereceived parameter, if present,
using the port in thesent-by value, or the default port for that transport, if no port is specified. If that
connection attempt fails, the serverSHOULD use the procedures in [4] for servers in order to determine
the IP address and port to open the connection and send the response to.

• Otherwise, if theVia header field value contains amaddr parameter, the responseMUST be forwarded
to the address listed there, using the port indicated insent-by , or port 5060 if none is present. If
the address is a multicast address, the responseSHOULD be sent using the TTL indicated in thettl
parameter, or with a TTL of 1 if that parameter is not present.

• Otherwise (for unreliable unicast transports), if the topVia has areceived parameter, the response
MUST be sent to the address in thereceived parameter, using the port indicated in thesent-by value,
or using port 5060 if none is specified explicitly. If this fails, for example, elicits an ICMP “port
unreachable” response, the procedures of Section 5 of [4]SHOULD be used to determine where to
send the response.

• Otherwise, if it is not receiver-tagged, the responseMUST be sent to the address indicated by the
sent-by value, using the procedures in Section 5 of [4].

18.3 Framing

In the case of message-oriented transports (such as UDP), if the message has aContent-Length header
field, the message body is assumed to contain that many bytes. If there are additional bytes in the transport
packet beyond the end of the body, theyMUST be discarded. If the transport packet ends before the end of
the message body, this is considered an error. If the message is a response, itMUST be discarded. If the
message is a request, the elementSHOULD generate a 400 (Bad Request) response. If the message has no
Content-Length header field, the message body is assumed to end at the end of the transport packet.

In the case of stream-oriented transports such as TCP, theContent-Length header field indicates the size of
the body. TheContent-Length header fieldMUST be used with stream oriented transports.

18.4 Error Handling

Error handling is independent of whether the message was a request or response.

If the transport user asks for a message to be sent over an unreliable transport, and the result is an ICMP
error, the behavior depends on the type of ICMP error. Host, network, port or protocol unreachable errors,

Rosenberg, et al. Standards Track [Page 106]

RFC 3261 SIP: Session Initiation Protocol June 2002

or parameter problem errorsSHOULD cause the transport layer to inform the transport user of a failure in
sending. Source quench and TTL exceeded ICMP errorsSHOULD be ignored.

If the transport user asks for a request to be sent over a reliable transport, and the result is a connection
failure, the transport layerSHOULD inform the transport user of a failure in sending.

19 Common Message Components

There are certain components of SIP messages that appear in various places within SIP messages (and
sometimes, outside of them) that merit separate discussion.

19.1 SIP and SIPS Uniform Resource Indicators

A SIP or SIPS URI identifies a communications resource. Like all URIs, SIP and SIPS URIs may be placed
in web pages, email messages, or printed literature. They contain sufficient information to initiate and
maintain a communication session with the resource.

Examples of communications resources include the following:

• a user of an online service

• an appearance on a multi-line phone

• a mailbox on a messaging system

• a PSTN number at a gateway service

• a group (such as “sales” or “helpdesk”) in an organization

A SIPS URI specifies that the resource be contacted securely. This means, in particular, that TLS is to be
used between the UAC and the domain that owns the URI.From there, secure communications are used to
reach the user, where the specific security mechanism depends on the policy of the domain. Any resource
described by a SIP URI can be “upgraded” to a SIPS URI by just changing the scheme, if it is desired to
communicate with that resource securely.

19.1.1 SIP and SIPS URI Components

The “sip:” and “sips:” schemes follow the guidelines in RFC 2396 [5]. They use a form similar to the
mailto URL, allowing the specification of SIP request-header fields and the SIP message-body. This makes
it possible to specify the subject, media type, or urgency of sessions initiated by using a URI on a web page
or in an email message. The formal syntax for a SIP or SIPS URI is presented in Section 25. Its general
form, in the case of a SIP URI, is:

sip:user:password@host:port;uri-parameters?headers

The format for a SIPS URI is the same, except that the scheme is “sips” instead of sip. These tokens, and
some of the tokens in their expansions, have the following meanings:

Rosenberg, et al. Standards Track [Page 107]

RFC 3261 SIP: Session Initiation Protocol June 2002

user: The identifier of a particular resource at the host being addressed. The term “host” in this context
frequently refers to a domain. Theuserinfo of a URI consists of this user field, the password field,
and the @ sign following them. The userinfo part of a URI is optional andMAY be absent when the
destination host does not have a notion of users or when the host itself is the resource being identified.
If the @ sign is present in a SIP or SIPS URI, the user fieldMUST NOT be empty.

If the host being addressed can process telephone numbers, for instance, an Internet telephony gate-
way, a telephone- subscriber field defined in RFC 2806 [8]MAY be used to populate the user field.
There are special escaping rules for encoding telephone-subscriber fields in SIP and SIPS URIs de-
scribed in Section 19.1.2.

password: A password associated with the user. While the SIP and SIPS URI syntax allows this field to be
present, its use isNOT RECOMMENDED , because the passing of authentication information in clear
text (such as URIs) has proven to be a security risk in almost every case where it has been used. For
instance, transporting a PIN number in this field exposes the PIN.

Note that the password field is just an extension of the user portion. Implementations not wishing to
give special significance to the password portion of the fieldMAY simply treat “user:password” as a
single string.

host: The host providing the SIP resource. The host part contains either a fully-qualified domain name
or numeric IPv4 or IPv6 address. Using the fully-qualified domain name form isRECOMMENDED

whenever possible.

port: The port number where the request is to be sent.

URI parameters: Parameters affecting a request constructed from the URI.

URI parameters are added after the hostport component and are separated by semi-colons.

URI parameters take the form:

parameter-name = parameter-value

Even though an arbitrary number of URI parameters may be included in a URI, any given parameter-
nameMUST NOT appear more than once.

This extensible mechanism includes the transport, maddr, ttl, user, method and lr parameters.

The transport parameter determines the transport mechanism to be used for sending SIP messages, as
specified in [4]. SIP can use any network transport protocol. Parameter names are defined for UDP
(RFC 768 [13]), TCP (RFC 761 [14]), and SCTP (RFC 2960 [15]). For a SIPS URI, the transport
parameterMUST indicate a reliable transport.

Themaddr parameter indicates the server address to be contacted for this user, overriding any address
derived from the host field. When an maddr parameter is present, the port and transport components
of the URI apply to the address indicated in the maddr parameter value. [4] describes the proper
interpretation of thetransport, maddr, andhostport in order to obtain the destination address, port,
and transport for sending a request.

Themaddr field has been used as a simple form of loose source routing. It allows a URI to specify a
proxy that must be traversed en-route to the destination. Continuing to use the maddr parameter this

Rosenberg, et al. Standards Track [Page 108]

RFC 3261 SIP: Session Initiation Protocol June 2002

way is strongly discouraged (the mechanisms that enable it are deprecated). Implementations should
instead use theRoute mechanism described in this document, establishing a pre-existing route set if
necessary (see Section 8.1.1). This provides a full URI to describe the node to be traversed.

The ttl parameter determines the time-to-live value of the UDP multicast packet andMUST only be
used if maddr is a multicast address and the transport protocol is UDP. For example, to specify a call to
alice@atlanta.com using multicast to 239.255.255.1 with a ttl of 15, the following URI would
be used:

sip:alice@atlanta.com;maddr=239.255.255.1;ttl=15

The set of validtelephone-subscriber strings is a subset of valid user strings. The user URI pa-
rameter exists to distinguish telephone numbers from user names that happen to look like telephone
numbers. If the user string contains a telephone number formatted as atelephone-subscriber , the
user parameter value “phone”SHOULD be present. Even without this parameter, recipients of SIP and
SIPS URIsMAY interpret the pre-@ part as a telephone number if local restrictions on the name space
for user name allow it.

The method of the SIP request constructed from the URI can be specified with the method parameter.

The lr parameter, when present, indicates that the element responsible for this resource implements
the routing mechanisms specified in this document. This parameter will be used in the URIs proxies
place intoRecord-Route header field values, and may appear in the URIs in a pre-existing route set.

This parameter is used to achieve backwards compatibility with systems implementing the strict-
routing mechanisms of RFC 2543 and the rfc2543bis drafts up to bis-05. An element preparing
to send a request based on a URI not containing this parameter can assume the receiving element
implements strict-routing and reformat the message to preserve the information in theRequest-URI.

Since the uri-parameter mechanism is extensible, SIP elementsMUST silently ignore any uri-parameters
that they do not understand.

Headers: Header fields to be included in a request constructed from the URI.

Headers fields in the SIP request can be specified with the “?” mechanism within a URI. The header
names and values are encoded in ampersand separated hname = hvalue pairs. The special hname
“body” indicates that the associated hvalue is the message-body of the SIP request.

Table 1 summarizes the use of SIP and SIPS URI components based on the context in which the URI
appears. The external column describes URIs appearing anywhere outside of a SIP message, for instance on
a web page or business card. Entries marked “m” are mandatory, those marked “o” are optional, and those
marked “-” are not allowed. Elements processing URIsSHOULD ignore any disallowed components if they
are present. The second column indicates the default value of an optional element if it is not present. “–”
indicates that the element is either not optional, or has no default value.

URIs in Contact header fields have different restrictions depending on the context in which the header
field appears. One set applies to messages that establish and maintain dialogs (INVITE and its 200 (OK)
response). The other applies to registration and redirection messages (REGISTER, its 200 (OK) response,
and 3xx class responses to any method).

Rosenberg, et al. Standards Track [Page 109]

RFC 3261 SIP: Session Initiation Protocol June 2002

19.1.2 Character Escaping Requirements

dialog
reg./redir. Contact/

default Req.-URI To From Contact R-R/Route external
user -- o o o o o o
password -- o o o o o o
host -- m m m m m m
port (1) o - - o o o
user-param ip o o o o o o
method INVITE - - - - - o
maddr-param -- o - - o o o
ttl-param 1 o - - o - o
transp.-param (2) o - - o o o
lr-param -- o - - - o o
other-param -- o o o o o o
headers -- - - - o - o

(1): The default port value is transport and scheme dependent. The default is 5060 for sip: using UDP, TCP,
or SCTP. The default is 5061 for sip: using TLS over TCP and sips: over TCP.
(2): The default transport is scheme dependent. For sip:, it is UDP. For sips:, it is TCP.

Table 1: Use and default values of URI components for SIP header field values,Request-URI and refer-
ences

SIP follows the requirements and guidelines of RFC 2396 [5] when defining the set of characters that must
be escaped in a SIP URI, and uses its “escaping. From RFC 2396 [5]:

The set of characters actually reserved within any given URI component is defined by that component. In general,
a character is reserved if the semantics of the URI changes if the character is replaced with its escaped US-ASCII
encoding [5]. Excluded US-ASCII characters (RFC 2396 [5]), such as space and control characters and characters
used as URI delimiters, alsoMUST be escaped. URIsMUST NOT contain unescaped space and control characters.

For each component, the set of valid BNF expansions defines exactly which characters may appear un-
escaped. All other charactersMUST be escaped.

For example, “@” is not in the set of characters in the user component, so the user “j@s0n” must have at
least the @ sign encoded, as in “j

Expanding the hname and hvalue tokens in Section 25 show that all URI reserved characters in header field
names and valuesMUST be escaped.

The telephone-subscriber subset of the user component has special escaping considerations. The set of char-
acters not reserved in the RFC 2806 [8] description of telephone-subscriber contains a number of characters
in various syntax elements that need to be escaped when used in SIP URIs. Any characters occurring in a
telephone-subscriber that do not appear in an expansion of the BNF for the user ruleMUST be escaped.

Note that character escaping is not allowed in the host component of a SIP or SIPS URI (the is likely to
change in the future as requirements for Internationalized Domain Names are finalized. Current imple-
mentationsMUST NOT attempt to improve robustness by treating received escaped characters in the host

Rosenberg, et al. Standards Track [Page 110]

RFC 3261 SIP: Session Initiation Protocol June 2002

component as literally equivalent to their unescaped counterpart. The behavior required to meet the require-
ments of IDN may be significantly different.

19.1.3 Example SIP and SIPS URIs

sip:alice@atlanta.com
sip:alice:secretword@atlanta.com;transport=tcp
sips:alice@atlanta.com?subject=project%20x&priority=urgent
sip:+1-212-555-1212:1234@gateway.com;user=phone
sips:1212@gateway.com
sip:alice@192.0.2.4
sip:atlanta.com;method=REGISTER?to=alice%40atlanta.com
sip:alice;day=tuesday@atlanta.com

The last sample URI above has a user field value of “alice;day=tuesday”. The escaping rules defined above
allow a semicolon to appear unescaped in this field. For the purposes of this protocol, the field is opaque.
The structure of that value is only useful to the SIP element responsible for the resource.

19.1.4 URI Comparison

Some operations in this specification require determining whether two SIP or SIPS URIs are equivalent.
In this specification, registrars need to compare bindings inContact URIs in REGISTER requests (see
Section 10.3.). SIP and SIPS URIs are compared for equality according to the following rules:

• A SIP and SIPS URI are never equivalent.

• Comparison of the userinfo of SIP and SIPS URIs is case-sensitive. This includes userinfo containing
passwords or formatted as telephone-subscribers. Comparison of all other components of the URI is
case-insensitive unless explicitly defined otherwise.

• The ordering of parameters and header fields is not significant in comparing SIP and SIPS URIs.

• Characters other than those in the “reserved” set (see RFC 2396 [5]) are equivalent to their “encoding.

• An IP address that is the result of a DNS lookup of a host name does not match that host name.

• For two URIs to be equal, the user, password, host, and port components must match.

A URI omitting the user component will not match a URI that includes one. A URI omitting the
password component will not match a URI that includes one.

A URI omitting any component with a default value will not match a URI explicitly containing that
component with its default value. For instance, a URI omitting the optional port component will
not match a URI explicitly declaring port 5060. The same is true for the transport-parameter, ttl-
parameter, user-parameter, and method components.

Defining sip:user@host to not be equivalent to sip:user@host:5060 is a change from RFC 2543. When deriving
addresses from URIs, equivalent addresses are expected from equivalent URIs. The URI sip:user@host:5060
will always resolve to port 5060. The URI sip:user@host may resolve to other ports through the DNS SRV
mechanisms detailed in [4].

Rosenberg, et al. Standards Track [Page 111]

RFC 3261 SIP: Session Initiation Protocol June 2002

URI uri-parameter components are compared as follows:

– Any uri-parameter appearing in both URIs must match.

– A user, ttl, or method uri-parameter appearing in only one URI never matches, even if it contains
the default value.

– A URI that includes an maddr parameter will not match a URI that contains no maddr parameter.

– All other uri-parameters appearing in only one URI are ignored when comparing the URIs.

– URI header components are never ignored. Any present header componentMUST be present in
both URIs and match for the URIs to match. The matching rules are defined for each header
field in Section 20.

The URIs within each of the following sets are equivalent:

sip:%61lice@atlanta.com;transport=TCP
sip:alice@AtLanTa.CoM;Transport=tcp

sip:carol@chicago.com
sip:carol@chicago.com;newparam=5
sip:carol@chicago.com;security=on

sip:biloxi.com;transport=tcp;method=REGISTER?to=sip:bob%40biloxi.com
sip:biloxi.com;method=REGISTER;transport=tcp?to=sip:bob%40biloxi.com

sip:alice@atlanta.com?subject=project%20x&priority=urgent
sip:alice@atlanta.com?priority=urgent&subject=project%20x

The URIs within each of the following sets are not equivalent:

SIP:ALICE@AtLanTa.CoM;Transport=udp (different usernames)
sip:alice@AtLanTa.CoM;Transport=UDP

sip:bob@biloxi.com (can resolve to different ports)
sip:bob@biloxi.com:5060

sip:bob@biloxi.com (can resolve to different transports)
sip:bob@biloxi.com;transport=udp

sip:bob@biloxi.com (can resolve to different port and transports)
sip:bob@biloxi.com:6000;transport=tcp

sip:carol@chicago.com (different header component)
sip:carol@chicago.com?Subject=next%20meeting

sip:bob@phone21.boxesbybob.com (even though that’s what
sip:bob@192.0.2.4 phone21.boxesbybob.com resolves to)

Rosenberg, et al. Standards Track [Page 112]

RFC 3261 SIP: Session Initiation Protocol June 2002

Note that equality is not transitive:

• sip:carol@chicago.com and sip:carol@chicago.com;security=on are equivalent

• sip:carol@chicago.com and sip:carol@chicago.com;security=off are equivalent

• sip:carol@chicago.com;security=on and sip:carol@chicago.com;security=off are not equivalent

19.1.5 Forming Requests from a URI

An implementation needs to take care when forming requests directly from a URI. URIs from business cards,
web pages, and even from sources inside the protocol such as registered contacts may contain inappropriate
header fields or body parts.

An implementationMUST include any provided transport, maddr, ttl, or user parameter in theRequest-URI
of the formed request. If the URI contains a method parameter, its valueMUST be used as the method of
the request. The method parameterMUST NOT be placed in theRequest-URI. Unknown URI parameters
MUST be placed in the message’sRequest-URI.

An implementationSHOULD treat the presence of any headers or body parts in the URI as a desire to include
them in the message, and choose to honor the request on a per-component basis.

An implementationSHOULD NOT honor these obviously dangerous header fields:From, Call-ID, CSeq,
Via, andRecord-Route.

An implementationSHOULD NOT honor any requestedRoute header field values in order to not be used as
an unwitting agent in malicious attacks.

An implementationSHOULD NOT honor requests to include header fields that may cause it to falsely ad-
vertise its location or capabilities. These include:Accept, Accept-Encoding, Accept-Language, Allow,
Contact (in its dialog usage),Organization, Supported, andUser-Agent.

An implementationSHOULD verify the accuracy of any requested descriptive header fields, including:
Content-Disposition, Content-Encoding, Content-Language, Content-Length, Content-Type, Date,
Mime-Version, andTimestamp.

If the request formed from constructing a message from a given URI is not a valid SIP request, the URI is
invalid. An implementationMUST NOT proceed with transmitting the request. It should instead pursue the
course of action due an invalid URI in the context it occurs.

The constructed request can be invalid in many ways. These include, but are not limited to, syntax error in header
fields, invalid combinations of URI parameters, or an incorrect description of the message body.

Sending a request formed from a given URI may require capabilities unavailable to the implementation.
The URI might indicate use of an unimplemented transport or extension, for example. An implementation
SHOULD refuse to send these requests rather than modifying them to match their capabilities. An imple-
mentationMUST NOT send a request requiring an extension that it does not support.

For example, such a request can be formed through the presence of aRequire header parameter or a method URI
parameter with an unknown or explicitly unsupported value.

Rosenberg, et al. Standards Track [Page 113]

RFC 3261 SIP: Session Initiation Protocol June 2002

19.1.6 Relating SIP URIs and tel URLs

When a tel URL (RFC 2806 [8]) is converted to a SIP or SIPS URI, the entire telephone-subscriber portion
of the tel URL, including any parameters, is placed into the userinfo part of the SIP or SIPS URI.

Thus, tel:+358-555-1234567;postd=pp22 becomes

sip:+358-555-1234567;postd=pp22@foo.com;user=phone

or sips:+358-555-1234567;postd=pp22@foo.com;user=phone

not sip:+358-555-1234567@foo.com;postd=pp22;user=phone

or

sips:+358-555-1234567@foo.com;postd=pp22;user=phone

In general, equivalent “tel” URLs converted to SIP or SIPS URIs in this fashion may not produce equivalent
SIP or SIPS URIs. The userinfo of SIP and SIPS URIs are compared as a case-sensitive string. Variance
in case-insensitive portions of tel URLs and reordering of tel URL parameters does not affect tel URL
equivalence, but does affect the equivalence of SIP URIs formed from them.

For example,

tel:+358-555-1234567;postd=pp22
tel:+358-555-1234567;POSTD=PP22

are equivalent, while

sip:+358-555-1234567;postd=pp22@foo.com;user=phone
sip:+358-555-1234567;POSTD=PP22@foo.com;user=phone

are not.

Likewise,

tel:+358-555-1234567;postd=pp22;isub=1411
tel:+358-555-1234567;isub=1411;postd=pp22

are equivalent, while

sip:+358-555-1234567;postd=pp22;isub=1411@foo.com;user=phone
sip:+358-555-1234567;isub=1411;postd=pp22@foo.com;user=phone

are not.

To mitigate this problem, elements constructing telephone-subscriber fields to place in the userinfo part of a
SIP or SIPS URISHOULD fold any case-insensitive portion of telephone-subscriber to lower case, and order
the telephone-subscriber parameters lexically by parameter name, excepting isdn-subaddress and post-dial,
which occur first and in that order. (All components of a tel URL except for future-extension parameters are
defined to be compared case-insensitive.)

Following this suggestion, both

Rosenberg, et al. Standards Track [Page 114]

RFC 3261 SIP: Session Initiation Protocol June 2002

tel:+358-555-1234567;postd=pp22
tel:+358-555-1234567;POSTD=PP22

become

sip:+358-555-1234567;postd=pp22@foo.com;user=phone

and both

tel:+358-555-1234567;tsp=a.b;phone-context=5
tel:+358-555-1234567;phone-context=5;tsp=a.b

become

sip:+358-555-1234567;phone-context=5;tsp=a.b@foo.com;user=phone

19.2 Option Tags

Option tags are unique identifiers used to designate new options (extensions) in SIP. These tags are used in
Require (Section 20.32),Proxy-Require (Section 20.29),Supported (Section 20.37) andUnsupported
(Section 20.40) header fields. Note that these options appear as parameters in those header fields in an
option-tag = token form (see Section 25 for the definition of token).

Option tags are defined in standards track RFCs. This is a change from past practice, and is instituted to
ensure continuing multi-vendor interoperability (see discussion in Section 20.32 and Section 20.37). An
IANA registry of option tags is used to ensure easy reference.

19.3 Tags

The tag parameter is used in theTo andFrom header fields of SIP messages. It serves as a general mech-
anism to identify a dialog, which is the combination of theCall-ID along with two tags, one from each
participant in the dialog. When a UA sends a request outside of a dialog, it contains aFrom tag only,
providing “half” of the dialog ID. The dialog is completed from the response(s), each of which contributes
the second half in theTo header field. The forking of SIP requests means that multiple dialogs can be es-
tablished from a single request. This also explains the need for the two-sided dialog identifier; without a
contribution from the recipients, the originator could not disambiguate the multiple dialogs established from
a single request.

When a tag is generated by a UA for insertion into a request or response, itMUST be globally unique and
cryptographically random with at least 32 bits of randomness. A property of this selection requirement is
that a UA will place a different tag into theFrom header of anINVITE than it would place into theTo
header of the response to the sameINVITE. This is needed in order for a UA to invite itself to a session, a
common case for “hairpinning” of calls in PSTN gateways. Similarly, twoINVITEs for different calls will
have differentFrom tags, and two responses for different calls will have differentTo tags.

Besides the requirement for global uniqueness, the algorithm for generating a tag is implementation-specific.
Tags are helpful in fault tolerant systems, where a dialog is to be recovered on an alternate server after a

Rosenberg, et al. Standards Track [Page 115]

RFC 3261 SIP: Session Initiation Protocol June 2002

failure. A UAS can select the tag in such a way that a backup can recognize a request as part of a dialog
on the failed server, and therefore determine that it should attempt to recover the dialog and any other state
associated with it.

20 Header Fields

The general syntax for header fields is covered in Section 7.3. This section lists the full set of header fields
along with notes on syntax, meaning, and usage. Throughout this section, we use [HX.Y] to refer to Section
X.Y of the current HTTP/1.1 specification RFC 2616 [7]. Examples of each header field are given.

Information about header fields in relation to methods and proxy processing is summarized in Tables 2 and
3.

The “where” column describes the request and response types in which the header field can be used. Values
in this column are:

R: header field may only appear in requests;

r: header field may only appear in responses;

2xx, 4xx, etc.: A numerical value or range indicates response codes with which the header field can be used;

c: header field is copied from the request to the response.

• An empty entry in the “where” column indicates that the header field may be present in all requests
and responses.

The “proxy” column describes the operations a proxy may perform on a header field:

a: A proxy can add or concatenate the header field if not present.

m: A proxy can modify an existing header field value.

d: A proxy can delete a header field value.

r: A proxy must be able to read the header field, and thus this header field cannot be encrypted.

The next six columns relate to the presence of a header field in a method:

c: Conditional; requirements on the header field depend on the context of the message.

m: The header field is mandatory.

m*: The header fieldSHOULD be sent, but clients/servers need to be prepared to receive messages without
that header field.

o: The header field is optional.

Rosenberg, et al. Standards Track [Page 116]

RFC 3261 SIP: Session Initiation Protocol June 2002

t: The header fieldSHOULD be sent, but clients/servers need to be prepared to receive messages without
that header field.

If a stream-based protocol (such as TCP) is used as a transport, then the header fieldMUST be sent.

*: The header field is required if the message body is not empty. See Sections 20.14, 20.15 and 7.4 for
details.

–: The header field is not applicable.

“Optional” means that an elementMAY include the header field in a request or response, and a UAMAY

ignore the header field if present in the request or response (The exception to this rule is theRequire header
field discussed in 20.32). A “mandatory” header fieldMUST be present in a request, andMUST be understood
by the UAS receiving the request. A mandatory response header fieldMUST be present in the response, and
the header fieldMUST be understood by the UAC processing the response. “Not applicable” means that the
header fieldMUST NOT be present in a request. If one is placed in a request by mistake, itMUST be ignored
by the UAS receiving the request. Similarly, a header field labeled “not applicable” for a response means
that the UASMUST NOT place the header field in the response, and the UACMUST ignore the header field
in the response.

A UA SHOULD ignore extension header parameters that are not understood.

A compact form of some common header field names is also defined for use when overall message size is
an issue.

TheContact, From, andTo header fields contain a URI. If the URI contains a comma, question mark or
semicolon, the URIMUST be enclosed in angle brackets (< and>). Any URI parameters are contained
within these brackets. If the URI is not enclosed in angle brackets, any semicolon-delimited parameters are
header-parameters, not URI parameters.

20.1 Accept

TheAccept header field follows the syntax defined in [H14.1]. The semantics are also identical, with the
exception that if noAccept header field is present, the serverSHOULD assume a default value of applica-
tion/sdp.

An emptyAccept header field means that no formats are acceptable.

Example:

Accept: application/sdp;level=1, application/x-private, text/html

20.2 Accept-Encoding

The Accept-Encoding header field is similar toAccept, but restricts the content-codings [H3.5] that are
acceptable in the response. See [H14.3]. The semantics in SIP are identical to those defined in [H14.3].

An emptyAccept-Encoding header field is permissible. It is equivalent toAccept-Encoding: identity,
that is, only the identity encoding, meaning no encoding, is permissible.

If no Accept-Encoding header field is present, the serverSHOULD assume a default value of identity.

Rosenberg, et al. Standards Track [Page 117]

RFC 3261 SIP: Session Initiation Protocol June 2002

Header field where proxy ACK BYE CAN INV OPT REG

Accept R - o - o m* o
Accept 2xx - - - o m* o
Accept 415 - c - c c c
Accept-Encoding R - o - o o o
Accept-Encoding 2xx - - - o m* o
Accept-Encoding 415 - c - c c c
Accept-Language R - o - o o o
Accept-Language 2xx - - - o m* o
Accept-Language 415 - c - c c c
Alert-Info R ar - - - o - -
Alert-Info 180 ar - - - o - -
Allow R - o - o o o
Allow 2xx - o - m* m* o
Allow r - o - o o o
Allow 405 - m - m m m
Authentication-Info 2xx - o - o o o
Authorization R o o o o o o
Call-ID c r m m m m m m
Call-Info ar - - - o o o
Contact R o - - m o o
Contact 1xx - - - o - -
Contact 2xx - - - m o o
Contact 3xx d - o - o o o
Contact 485 - o - o o o
Content-Disposition o o - o o o
Content-Encoding o o - o o o
Content-Language o o - o o o
Content-Length ar t t t t t t
Content-Type * * - * * *
CSeq c r m m m m m m
Date a o o o o o o
Error-Info 300-699 a - o o o o o
Expires - - - o - o
From c r m m m m m m
In-Reply-To R - - - o - -
Max-Forwards R amr m m m m m m
Min-Expires 423 - - - - - m
MIME-Version o o - o o o
Organization ar - - - o o o

Table 2: Summary of header fields, A–O

Rosenberg, et al. Standards Track [Page 118]

RFC 3261 SIP: Session Initiation Protocol June 2002

Header field where proxy ACK BYE CAN INV OPT REG

Priority R ar - - - o - -
Proxy-Authenticate 407 ar - m - m m m
Proxy-Authenticate 401 ar - o o o o o
Proxy-Authorization R dr o o - o o o
Proxy-Require R ar - o - o o o
Record-Route R ar o o o o o -
Record-Route 2xx,18x mr - o o o o -
Reply-To - - - o - -
Require ar - c - c c c
Retry-After 404,413,480,486 - o o o o o

500,503 - o o o o o
600,603 - o o o o o

Route R ad r c c c c c c
Server r - o o o o o
Subject R - - - o - -
Supported R - o o m* o o
Supported 2xx - o o m* m* o
Timestamp o o o o o o
To c(1) r m m m m m m
Unsupported 420 - m - m m m
User-Agent o o o o o o
Via R amr m m m m m m
Via rc dr m m m m m m
Warning r - o o o o o
WWW-Authenticate 401 ar - m - m m m
WWW-Authenticate 407 ar - o - o o o

Table 3: Summary of header fields, P–Z; (1): copied with possible addition of tag

This differs slightly from the HTTP definition, which indicates that when not present, any encoding can be
used, but the identity encoding is preferred.

Example:

Accept-Encoding: gzip

20.3 Accept-Language

The Accept-Language header field is used in requests to indicate the preferred languages for reason
phrases, session descriptions, or status responses carried as message bodies in the response. If noAccept-
Language header field is present, the serverSHOULD assume all languages are acceptable to the client.

The Accept-Language header field follows the syntax defined in [H14.4]. The rules for ordering the

Rosenberg, et al. Standards Track [Page 119]

RFC 3261 SIP: Session Initiation Protocol June 2002

languages based on the “q” parameter apply to SIP as well.

Example:

Accept-Language: da, en-gb;q=0.8, en;q=0.7

20.4 Alert-Info

When present in anINVITE request, theAlert-Info header field specifies an alternative ring tone to the UAS.
When present in a 180 (Ringing) response, theAlert-Info header field specifies an alternative ringback tone
to the UAC. A typical usage is for a proxy to insert this header field to provide a distinctive ring feature.

The Alert-Info header field can introduce security risks. These risks and the ways to handle them are
discussed in Section 20.9, which discusses theCall-Info header field since the risks are identical.

In addition, a userSHOULD be able to disable this feature selectively.

This helps prevent disruptions that could result from the use of this header field by untrusted elements.

Example:

Alert-Info: <http://www.example.com/sounds/moo.wav>

20.5 Allow

TheAllow header field lists the set of methods supported by the UA generating the message.

All methods, includingACK andCANCEL, understood by the UAMUST be included in the list of methods
in theAllow header field, when present. The absence of anAllow header fieldMUST NOT be interpreted to
mean that the UA sending the message supports no methods. Rather, it implies that the UA is not providing
any information on what methods it supports.

Supplying anAllow header field in responses to methods other thanOPTIONS reduces the number of
messages needed.

Example:

Allow: INVITE, ACK, OPTIONS, CANCEL, BYE

20.6 Authentication-Info

TheAuthentication-Info header field provides for mutual authentication with HTTP Digest. A UASMAY

include this header field in a 2xx response to a request that was successfully authenticated using digest based
on theAuthorization header field.

Syntax and semantics follow those specified in RFC 2617 [16].

Example:

Authentication-Info: nextnonce="47364c23432d2e131a5fb210812c"

Rosenberg, et al. Standards Track [Page 120]

RFC 3261 SIP: Session Initiation Protocol June 2002

20.7 Authorization

TheAuthorization header field contains authentication credentials of a UA. Section 22.2 overviews the use
of the Authorization header field, and Section 22.4 describes the syntax and semantics when used with
HTTP authentication.

This header field, along withProxy-Authorization, breaks the general rules about multiple header field
values. Although not a comma-separated list, this header field name may be present multiple times, and
MUST NOT be combined into a single header line using the usual rules described in Section 7.3.

In the example below, there are no quotes around the Digest parameter:

Authorization: Digest username="Alice", realm="atlanta.com",
nonce="84a4cc6f3082121f32b42a2187831a9e",
response="7587245234b3434cc3412213e5f113a5432"

20.8 Call-ID

TheCall-ID header field uniquely identifies a particular invitation or all registrations of a particular client.
A single multimedia conference can give rise to several calls with different Call-IDs, for example, if a user
invites a single individual several times to the same (long-running) conference. Call-IDs are case-sensitive
and are simply compared byte-by-byte.

The compact form of theCall-ID header field is i.

Examples:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6@biloxi.com
i:f81d4fae-7dec-11d0-a765-00a0c91e6bf6@192.0.2.4

20.9 Call-Info

TheCall-Info header field provides additional information about the caller or callee, depending on whether it
is found in a request or response. The purpose of the URI is described by thepurpose parameter. Theicon
parameter designates an image suitable as an iconic representation of the caller or callee. Theinfo parameter
describes the caller or callee in general, for example, through a web page. Thecard parameter provides a
business card, for example, in vCard [37] or LDIF [38] formats. Additional tokens can be registered using
IANA and the procedures in Section 27.

Use of theCall-Info header field can pose a security risk. If a callee fetches the URIs provided by a mali-
cious caller, the callee may be at risk for displaying inappropriate or offensive content, dangerous or illegal
content, and so on. Therefore, it isRECOMMENDED that a UA only render the information in theCall-Info
header field if it can verify the authenticity of the element that originated the header field and trusts that
element. This need not be the peer UA; a proxy can insert this header field into requests.

Example:

Call-Info: <http://wwww.example.com/alice/photo.jpg>
;purpose=icon,
<http://www.example.com/alice/> ;purpose=info

Rosenberg, et al. Standards Track [Page 121]

RFC 3261 SIP: Session Initiation Protocol June 2002

20.10 Contact

A Contact header field value provides a URI whose meaning depends on the type of request or response it
is in.

A Contact header field value can contain a display name, a URI with URI parameters, and header parame-
ters.

This document defines theContact parametersq andexpires. These parameters are only used when the
Contact is present in aREGISTER request or response, or in a 3xx response. Additional parameters may
be defined in other specifications.

When the header field value contains a display name, the URI including all URI parameters is enclosed in
“<” and “>”. If no “ <” and “>” are present, all parameters after the URI are header parameters, not URI
parameters. The display name can be tokens, or a quoted string, if a larger character set is desired.

Even if thedisplay-name is empty, thename-addr form MUST be used if theaddr-spec contains a
comma, semicolon, or question mark. There may or may not be LWS between the display-name and the
“<”.

These rules for parsing a display name, URI and URI parameters, and header parameters also apply for the
header fieldsTo andFrom.

TheContact header field has a role similar to the Location header field in HTTP. However, the HTTP header field
only allows one address, unquoted. Since URIs can contain commas and semicolons as reserved characters, they
can be mistaken for header or parameter delimiters, respectively.

The compact form of theContact header field is m (for “moved”).

Examples:

Contact: "Mr. Watson" <sip:watson@worcester.bell-telephone.com>
;q=0.7; expires=3600,
"Mr. Watson" <mailto:watson@bell-telephone.com> ;q=0.1

m: <sips:bob@192.0.2.4>;expires=60

20.11 Content-Disposition

TheContent-Disposition header field describes how the message body or, for multipart messages, a mes-
sage body part is to be interpreted by the UAC or UAS. This SIP header field extends the MIMEContent-
Type (RFC 2183 [17]).

Several newdisposition-types of theContent-Disposition header are defined by SIP. The valuesession
indicates that the body part describes a session, for either calls or early (pre-call) media. The valuerender
indicates that the body part should be displayed or otherwise rendered to the user. Note that the valuerender
is used rather thaninline to avoid the connotation that the MIME body is displayed as a part of the rendering
of the entire message (since the MIME bodies of SIP messages oftentimes are not displayed to users). For
backward-compatibility, if theContent-Disposition header field is missing, the serverSHOULD assume
bodies ofContent-Type application/sdp are the dispositionsession, while other content types arerender.

The disposition typeicon indicates that the body part contains an image suitable as an iconic representation
of the caller or callee that could be rendered informationally by a user agent when a message has been

Rosenberg, et al. Standards Track [Page 122]

RFC 3261 SIP: Session Initiation Protocol June 2002

received, or persistently while a dialog takes place. The valuealert indicates that the body part contains
information, such as an audio clip, that should be rendered by the user agent in an attempt to alert the user
to the receipt of a request, generally a request that initiates a dialog; this alerting body could for example be
rendered as a ring tone for a phone call after a 180 Ringing provisional response has been sent.

Any MIME body with adisposition-type that renders content to the user should only be processed when a
message has been properly authenticated.

The handling parameter, handling-param, describes how the UAS should react if it receives a message body
whose content type or disposition type it does not understand. The parameter has defined values ofoptional
andrequired. If the handling parameter is missing, the valuerequired SHOULD be assumed. The handling
parameter is described in RFC 3204 [18].

If this header field is missing, the MIME type determines the default content disposition. If there is none,
“render” is assumed.

Example:

Content-Disposition: session

20.12 Content-Encoding

The Content-Encoding header field is used as a modifier to themedia-type. When present, its value
indicates what additional content codings have been applied to the entity-body, and thus what decoding
mechanismsMUST be applied in order to obtain the media-type referenced by theContent-Type header
field. Content-Encoding is primarily used to allow a body to be compressed without losing the identity of
its underlying media type.

If multiple encodings have been applied to an entity-body, the content codingsMUST be listed in the order
in which they were applied.

All content-coding values are case-insensitive. IANA acts as a registry for content-coding value tokens. See
[H3.5] for a definition of the syntax for content-coding.

ClientsMAY apply content encodings to the body in requests. A serverMAY apply content encodings to the
bodies in responses. The serverMUST only use encodings listed in theAccept-Encoding header field in
the request.

The compact form of theContent-Encoding header field is e. Examples:

Content-Encoding: gzip
e: tar

20.13 Content-Language

See [H14.12]. Example:

Content-Language: fr

Rosenberg, et al. Standards Track [Page 123]

RFC 3261 SIP: Session Initiation Protocol June 2002

20.14 Content-Length

The Content-Length header field indicates the size of the message-body, in decimal number of octets,
sent to the recipient. ApplicationsSHOULD use this field to indicate the size of the message-body to be
transferred, regardless of the media type of the entity. If a stream-based protocol (such as TCP) is used as
transport, the header fieldMUST be used.

The size of the message-body does not include the CRLF separating header fields and body. AnyContent-
Length greater than or equal to zero is a valid value. If no body is present in a message, then theContent-
Length header field valueMUST be set to zero.

The ability to omitContent-Length simplifies the creation of cgi-like scripts that dynamically generate responses.

The compact form of the header field is l.

Examples:

Content-Length: 349
l: 173

20.15 Content-Type

The Content-Type header field indicates the media type of the message-body sent to the recipient. The
“media-type” element is defined in [H3.7]. TheContent-Type header fieldMUST be present if the body is
not empty. If the body is empty, and aContent-Type header field is present, it indicates that the body of the
specific type has zero length (for example, an empty audio file).

The compact form of the header field is c.

Examples:

Content-Type: application/sdp
c: text/html; charset=ISO-8859-4

20.16 CSeq

A CSeq header field in a request contains a single decimal sequence number and the request method.
The sequence numberMUST be expressible as a 32-bit unsigned integer. The method part ofCSeq is
case-sensitive. TheCSeq header field serves to order transactions within a dialog, to provide a means to
uniquely identify transactions, and to differentiate between new requests and request retransmissions. Two
CSeq header fields are considered equal if the sequence number and the request method are identical.

Example:

CSeq: 4711 INVITE

20.17 Date

The Date header field contains the date and time. Unlike HTTP/1.1, SIP only supports the most recent
RFC 1123 [19] format for dates. As in [H3.3], SIP restricts the time zone in SIP-date to “GMT”, while

Rosenberg, et al. Standards Track [Page 124]

RFC 3261 SIP: Session Initiation Protocol June 2002

RFC 1123 allows any time zone. An RFC 1123 date is case-sensitive.

TheDate header field reflects the time when the request or response is first sent.

The Date header field can be used by simple end systems without a battery-backed clock to acquire a notion of
current time. However, in its GMT form, it requires clients to know their offset from GMT.

Example:

Date: Sat, 13 Nov 2010 23:29:00 GMT

20.18 Error-Info

TheError-Info header field provides a pointer to additional information about the error status response.

SIP UACs have user interface capabilities ranging from pop-up windows and audio on PC softclients to audio-only
on “black” phones or endpoints connected via gateways. Rather than forcing a server generating an error to choose
between sending an error status code with a detailed reason phrase and playing an audio recording, theError-Info
header field allows both to be sent. The UAC then has the choice of which error indicator to render to the caller.

A UAC MAY treat a SIP or SIPS URI in anError-Info header field as if it were aContact in a redirect and
generate a newINVITE, resulting in a recorded announcement session being established. A non-SIP URI
MAY be rendered to the user.

Examples:

SIP/2.0 404 The number you have dialed is not in service
Error-Info: <sip:not-in-service-recording@atlanta.com>

20.19 Expires

TheExpires header field gives the relative time after which the message (or content) expires.

The precise meaning of this is method dependent.

The expiration time in anINVITE does not affect the duration of the actual session that may result from the
invitation. Session description protocols may offer the ability to express time limits on the session duration,
however.

The value of this field is an integral number of seconds (in decimal) between 0 and (2**32)-1, measured
from the receipt of the request.

Example:

Expires: 5

20.20 From

TheFrom header field indicates the initiator of the request. This may be different from the initiator of the
dialog. Requests sent by the callee to the caller use the callee’s address in theFrom header field.

Rosenberg, et al. Standards Track [Page 125]

RFC 3261 SIP: Session Initiation Protocol June 2002

The optionaldisplay-name is meant to be rendered by a human user interface. A systemSHOULD use
the display name “Anonymous” if the identity of the client is to remain hidden. Even if thedisplay-name
is empty, thename-addr form MUST be used if theaddr-spec contains a comma, question mark, or
semicolon. Syntax issues are discussed in Section 7.3.1.

Two From header fields are equivalent if their URIs match, and their parameters match. Extension parame-
ters in one header field, not present in the other are ignored for the purposes of comparison. This means that
the display name and presence or absence of angle brackets do not affect matching.

See Section 20.10 for the rules for parsing a display name, URI and URI parameters, and header field
parameters.

The compact form of theFrom header field is f.

Examples:

From: "A. G. Bell" <sip:agb@bell-telephone.com> ;tag=a48s
From: sip:+12125551212@server.phone2net.com;tag=887s
f: Anonymous <sip:c8oqz84zk7z@privacy.org>;tag=hyh8

20.21 In-Reply-To

The In-Reply-To header field enumerates the Call-IDs that this call references or returns. These Call-IDs
may have been cached by the client then included in this header field in a return call.

This allows automatic call distribution systems to route return calls to the originator of the first call. This also allows
callees to filter calls, so that only return calls for calls they originated will be accepted. This field is not a substitute
for request authentication.

Example:

In-Reply-To: 70710@saturn.bell-tel.com, 17320@saturn.bell-tel.com

20.22 Max-Forwards

The Max-Forwards header field must be used with any SIP method to limit the number of proxies or
gateways that can forward the request to the next downstream server. This can also be useful when the client
is attempting to trace a request chain that appears to be failing or looping in mid-chain.

The Max-Forwards value is an integer in the range 0-255 indicating the remaining number of times this
request message is allowed to be forwarded. This count is decremented by each server that forwards the
request. The recommended initial value is 70.

This header field should be inserted by elements that can not otherwise guarantee loop detection. For
example, a B2BUA should insert aMax-Forwards header field.

Example:

Max-Forwards: 6

Rosenberg, et al. Standards Track [Page 126]

RFC 3261 SIP: Session Initiation Protocol June 2002

20.23 Min-Expires

TheMin-Expires header field conveys the minimum refresh interval supported for soft-state elements man-
aged by that server. This includesContact header fields that are stored by a registrar. The header field
contains a decimal integer number of seconds from 0 to (2**32)-1. The use of the header field in a 423
(Interval Too Brief) response is described in Sections 10.2.8, 10.3, and 21.4.17.

Example:

Min-Expires: 60

20.24 MIME-Version

See [H19.4.1].

Example:

MIME-Version: 1.0

20.25 Organization

TheOrganization header field conveys the name of the organization to which the SIP element issuing the
request or response belongs.

The fieldMAY be used by client software to filter calls.

Example:

Organization: Boxes by Bob

20.26 Priority

ThePriority header field indicates the urgency of the request as perceived by the client. ThePriority header
field describes the priority that the SIP request should have to the receiving human or its agent. For ex-
ample, it may be factored into decisions about call routing and acceptance. For these decisions, a message
containing noPriority header fieldSHOULD be treated as if it specified aPriority of normal. ThePriority
header field does not influence the use of communications resources such as packet forwarding priority in
routers or access to circuits in PSTN gateways. The header field can have the valuesnon-urgent, normal,
urgent, andemergency, but additional values can be defined elsewhere. It isRECOMMENDED that the
value ofemergency only be used when life, limb, or property are in imminent danger. Otherwise, there are
no semantics defined for this header field.

These are the values of RFC 2076 [39], with the addition of “emergency”.

Examples:

Subject: A tornado is heading our way!
Priority: emergency

Rosenberg, et al. Standards Track [Page 127]

RFC 3261 SIP: Session Initiation Protocol June 2002

or

Subject: Weekend plans
Priority: non-urgent

20.27 Proxy-Authenticate

A Proxy-Authenticate header field value contains an authentication challenge.

The use of this header field is defined in [H14.33]. See Section 22.3 for further details on its usage.

Example:

Proxy-Authenticate: Digest realm="atlanta.com",
domain="sip:ss1.carrier.com", qop="auth",
nonce="f84f1cec41e6cbe5aea9c8e88d359",
opaque="", stale=FALSE, algorithm=MD5

20.28 Proxy-Authorization

TheProxy-Authorization header field allows the client to identify itself (or its user) to a proxy that requires
authentication. AProxy-Authorization field value consists of credentials containing the authentication
information of the user agent for the proxy and/or realm of the resource being requested.

See Section 22.3 for a definition of the usage of this header field.

This header field, along withAuthorization, breaks the general rules about multiple header field names.
Although not a comma-separated list, this header field name may be present multiple times, andMUST NOT

be combined into a single header line using the usual rules described in Section 7.3.1.

Example:

Proxy-Authorization: Digest username="Alice", realm="atlanta.com",
nonce="c60f3082ee1212b402a21831ae",
response="245f23415f11432b3434341c022"

20.29 Proxy-Require

TheProxy-Require header field is used to indicate proxy-sensitive features that must be supported by the
proxy. See Section 20.32 for more details on the mechanics of this message and a usage example.

Example:

Proxy-Require: foo

20.30 Record-Route

TheRecord-Route header field is inserted by proxies in a request to force future requests in the dialog to
be routed through the proxy.

Rosenberg, et al. Standards Track [Page 128]

RFC 3261 SIP: Session Initiation Protocol June 2002

Examples of its use with theRoute header field are described in Sections 16.12.1.

Example:

Record-Route: <sip:server10.biloxi.com;lr>,
<sip:bigbox3.site3.atlanta.com;lr>

20.31 Reply-To

TheReply-To header field contains a logical return URI that may be different from theFrom header field.
For example, the URIMAY be used to return missed calls or unestablished sessions. If the user wished to
remain anonymous, the header fieldSHOULD either be omitted from the request or populated in such a way
that does not reveal any private information.

Even if thedisplay-name is empty, thename-addr form MUST be used if theaddr-spec contains a
comma, question mark, or semicolon. Syntax issues are discussed in Section 7.3.1.

Example:

Reply-To: Bob <sip:bob@biloxi.com>

20.32 Require

The Require header field is used by UACs to tell UASs about options that the UAC expects the UAS to
support in order to process the request. Although an optional header field, theRequire MUST NOT be
ignored if it is present.

TheRequire header field contains a list of option tags, described in Section 19.2. Each option tag defines
a SIP extension thatMUST be understood to process the request. Frequently, this is used to indicate that a
specific set of extension header fields need to be understood. A UAC compliant to this specificationMUST

only include option tags corresponding to standards-track RFCs.

Example:

Require: 100rel

20.33 Retry-After

TheRetry-After header field can be used with a 500 (Server Internal Error) or 503 (Service Unavailable)
response to indicate how long the service is expected to be unavailable to the requesting client and with a
404 (Not Found), 413 (Request Entity Too Large), 480 (Temporarily Unavailable), 486 (Busy Here), 600
(Busy), or 603 (Decline) response to indicate when the called party anticipates being available again. The
value of this field is a positive integer number of seconds (in decimal) after the time of the response.

An optional comment can be used to indicate additional information about the time of callback. An optional
duration parameter indicates how long the called party will be reachable starting at the initial time of
availability. If no duration parameter is given, the service is assumed to be available indefinitely.

Examples:

Rosenberg, et al. Standards Track [Page 129]

RFC 3261 SIP: Session Initiation Protocol June 2002

Retry-After: 18000;duration=3600
Retry-After: 120 (I’m in a meeting)

20.34 Route

TheRoute header field is used to force routing for a request through the listed set of proxies. Examples of
the use of theRoute header field are in Section 16.12.1.

Example:

Route: <sip:bigbox3.site3.atlanta.com;lr>,
<sip:server10.biloxi.com;lr>

20.35 Server

TheServer header field contains information about the software used by the UAS to handle the request.

Revealing the specific software version of the server might allow the server to become more vulnerable to
attacks against software that is known to contain security holes. ImplementersSHOULD make theServer
header field a configurable option.

Example:

Server: HomeServer v2

20.36 Subject

The Subject header field provides a summary or indicates the nature of the call, allowing call filtering
without having to parse the session description. The session description does not have to use the same
subject indication as the invitation.

The compact form of theSubject header field is s.

Example:

Subject: Need more boxes
s: Tech Support

20.37 Supported

TheSupported header field enumerates all the extensions supported by the UAC or UAS.

The Supported header field contains a list of option tags, described in Section 19.2, that are understood
by the UAC or UAS. A UA compliant to this specificationMUST only include option tags corresponding to
standards-track RFCs. If empty, it means that no extensions are supported.

The compact form of theSupported header field is k.

Example:

Supported: 100rel

Rosenberg, et al. Standards Track [Page 130]

RFC 3261 SIP: Session Initiation Protocol June 2002

20.38 Timestamp

TheTimestamp header field describes when the UAC sent the request to the UAS.

See Section 8.2.6 for details on how to generate a response to a request that contains the header field.
Although there is no normative behavior defined here that makes use of the header, it allows for extensions
or SIP applications to obtain RTT estimates.

Example:

Timestamp: 54

20.39 To

TheTo header field specifies the logical recipient of the request.

The optionaldisplay-name is meant to be rendered by a human-user interface. Thetag parameter serves
as a general mechanism for dialog identification.

See Section 19.3 for details of thetag parameter.

Comparison ofTo header fields for equality is identical to comparison ofFrom header fields. See Sec-
tion 20.10 for the rules for parsing a display name, URI and URI parameters, and header field parameters.

The compact form of theTo header field is t.

The following are examples of validTo header fields:

To: The Operator <sip:operator@cs.columbia.edu>;tag=287447
t: sip:+12125551212@server.phone2net.com

20.40 Unsupported

TheUnsupported header field lists the features not supported by the UAS. See Section 20.32 for motivation.

Example:

Unsupported: foo

20.41 User-Agent

TheUser-Agent header field contains information about the UAC originating the request. The semantics
of this header field are defined in [H14.43].

Revealing the specific software version of the user agent might allow the user agent to become more vul-
nerable to attacks against software that is known to contain security holes. ImplementersSHOULD make the
User-Agent header field a configurable option.

Example:

User-Agent: Softphone Beta1.5

Rosenberg, et al. Standards Track [Page 131]

RFC 3261 SIP: Session Initiation Protocol June 2002

20.42 Via

The Via header field indicates the path taken by the request so far and indicates the path that should be
followed in routing responses. The branch ID parameter in theVia header field values serves as a transaction
identifier, and is used by proxies to detect loops.

A Via header field value contains the transport protocol used to send the message, the client’s host name
or network address, and possibly the port number at which it wishes to receive responses. AVia header
field value can also contain parameters such asmaddr, ttl, received, andbranch, whose meaning and use
are described in other sections. For implementations compliant to this specification, the value of the branch
parameterMUST start with the magic cookie “z9hG4bK”, as discussed in Section 8.1.1.

Transport protocols defined here areUDP, TCP, TLS, andSCTP. TLS means TLS over TCP. When a
request is sent to a SIPS URI, the protocol still indicates “SIP”, and the transport protocol is TLS.

Via: SIP/2.0/UDP erlang.bell-telephone.com:5060;branch=z9hG4bK87asdks7
Via: SIP/2.0/UDP 192.0.2.1:5060 ;received=192.0.2.207

;branch=z9hG4bK77asjd

The compact form of theVia header field is v.

In this example, the message originated from a multi-homed host with two addresses, 192.0.2.1 and 192.0.2.207.
The sender guessed wrong as to which network interface would be used. Erlang.bell-telephone.com noticed
the mismatch and added a parameter to the previous hop’sVia header field value, containing the address
that the packet actually came from.

The host or network address and port number are not required to follow the SIP URI syntax. Specifically,
LWS on either side of the “:” or “/” is allowed, as shown here:

Via: SIP / 2.0 / UDP first.example.com: 4000;ttl=16
;maddr=224.2.0.1 ;branch=z9hG4bKa7c6a8dlze.1

Even though this specification mandates that the branch parameter be present in all requests, the BNF for
the header field indicates that it is optional. This allows interoperation with RFC 2543 elements, which did
not have to insert the branch parameter.

Two Via header fields are equal if their sent-protocol and sent-by fields are equal, both have the same set of
parameters, and the values of all parameters are equal.

20.43 Warning

TheWarning header field is used to carry additional information about the status of a response.Warning
header field values are sent with responses and contain a three-digit warning code, host name, and warning
text.

The “warn-text” should be in a natural language that is most likely to be intelligible to the human user
receiving the response. This decision can be based on any available knowledge, such as the location of the
user, theAccept-Language field in a request, or theContent-Language field in a response. The default
language is i-default [20].

Rosenberg, et al. Standards Track [Page 132]

RFC 3261 SIP: Session Initiation Protocol June 2002

The currently-defined “warn-code”s are listed below, with a recommended warn-text in English and a de-
scription of their meaning. These warnings describe failures induced by the session description. The first
digit of warning codes beginning with “3” indicates warnings specific to SIP. Warnings 300 through 329 are
reserved for indicating problems with keywords in the session description, 330 through 339 are warnings
related to basic network services requested in the session description, 370 through 379 are warnings related
to quantitative QoS parameters requested in the session description, and 390 through 399 are miscellaneous
warnings that do not fall into one of the above categories.

300 Incompatible network protocol: One or more network protocols contained in the session description
are not available.

301 Incompatible network address formats: One or more network address formats contained in the ses-
sion description are not available.

302 Incompatible transport protocol: One or more transport protocols described in the session descrip-
tion are not available.

303 Incompatible bandwidth units: One or more bandwidth measurement units contained in the session
description were not understood.

304 Media type not available: One or more media types contained in the session description are not avail-
able.

305 Incompatible media format: One or more media formats contained in the session description are not
available.

306 Attribute not understood: One or more of the media attributes in the session description are not sup-
ported.

307 Session description parameter not understood:A parameter other than those listed above was not
understood.

330 Multicast not available: The site where the user is located does not support multicast.

331 Unicast not available: The site where the user is located does not support unicast communication (usu-
ally due to the presence of a firewall).

370 Insufficient bandwidth: The bandwidth specified in the session description or defined by the media
exceeds that known to be available.

399 Miscellaneous warning:The warning text can include arbitrary information to be presented to a hu-
man user or logged. A system receiving this warningMUST NOT take any automated action.

1xx and 2xx have been taken by HTTP/1.1.

Additional “warn-code”s can be defined through IANA, as defined in Section 27.2.

Examples:

Warning: 307 isi.edu "Session parameter ’foo’ not understood"
Warning: 301 isi.edu "Incompatible network address type ’E.164’"

Rosenberg, et al. Standards Track [Page 133]

RFC 3261 SIP: Session Initiation Protocol June 2002

20.44 WWW-Authenticate

A WWW-Authenticate header field value contains an authentication challenge. See Section 22.2 for further
details on its usage.

Example:

WWW-Authenticate: Digest realm="atlanta.com",
domain="sip:boxesbybob.com", qop="auth",
nonce="f84f1cec41e6cbe5aea9c8e88d359",
opaque="", stale=FALSE, algorithm=MD5

21 Response Codes

The response codes are consistent with, and extend, HTTP/1.1 response codes. Not all HTTP/1.1 response
codes are appropriate, and only those that are appropriate are given here. Other HTTP/1.1 response codes
SHOULD NOT be used. Also, SIP defines a new class, 6xx.

21.1 Provisional 1xx

Provisional responses, also known as informational responses, indicate that the server contacted is perform-
ing some further action and does not yet have a definitive response. A server sends a 1xx response if it
expects to take more than 200 ms to obtain a final response. Note that 1xx responses are not transmitted
reliably. They never cause the client to send anACK. Provisional (1xx) responsesMAY contain message
bodies, including session descriptions.

21.1.1 100 Trying

This response indicates that the request has been received by the next-hop server and that some unspecified
action is being taken on behalf of this call (for example, a database is being consulted). This response, like
all other provisional responses, stops retransmissions of anINVITE by a UAC. The 100 (Trying) response
is different from other provisional responses, in that it is never forwarded upstream by a stateful proxy.

21.1.2 180 Ringing

The UA receiving theINVITE is trying to alert the user. This responseMAY be used to initiate local ringback.

21.1.3 181 Call Is Being Forwarded

A serverMAY use this status code to indicate that the call is being forwarded to a different set of destinations.

Rosenberg, et al. Standards Track [Page 134]

RFC 3261 SIP: Session Initiation Protocol June 2002

21.1.4 182 Queued

The called party is temporarily unavailable, but the server has decided to queue the call rather than reject it.
When the callee becomes available, it will return the appropriate final status response. The reason phrase
MAY give further details about the status of the call, for example, “5 calls queued; expected waiting time is
15 minutes”. The serverMAY issue several 182 (Queued) responses to update the caller about the status of
the queued call.

21.1.5 183 Session Progress

The 183 (Session Progress) response is used to convey information about the progress of the call that is
not otherwise classified. The Reason-Phrase, header fields, or message bodyMAY be used to convey more
details about the call progress.

21.2 Successful 2xx

The request was successful.

21.2.1 200 OK

The request has succeeded. The information returned with the response depends on the method used in the
request.

21.3 Redirection 3xx

3xx responses give information about the user’s new location, or about alternative services that might be
able to satisfy the call.

21.3.1 300 Multiple Choices

The address in the request resolved to several choices, each with its own specific location, and the user (or
UA) can select a preferred communication end point and redirect its request to that location.

The responseMAY include a message body containing a list of resource characteristics and location(s) from
which the user or UA can choose the one most appropriate, if allowed by theAccept request header field.
However, no MIME types have been defined for this message body.

The choicesSHOULD also be listed asContact fields (Section 20.10). Unlike HTTP, the SIP responseMAY

contain severalContact fields or a list of addresses in aContact field. UAs MAY use theContact header
field value for automatic redirection orMAY ask the user to confirm a choice. However, this specification
does not define any standard for such automatic selection.

This status response is appropriate if the callee can be reached at several different locations and the server cannot or
prefers not to proxy the request.

Rosenberg, et al. Standards Track [Page 135]

RFC 3261 SIP: Session Initiation Protocol June 2002

21.3.2 301 Moved Permanently

The user can no longer be found at the address in theRequest-URI, and the requesting clientSHOULD retry
at the new address given by theContact header field (Section 20.10). The requestorSHOULD update any
local directories, address books, and user location caches with this new value and redirect future requests to
the address(es) listed.

21.3.3 302 Moved Temporarily

The requesting clientSHOULD retry the request at the new address(es) given by theContact header field
(Section 20.10). TheRequest-URI of the new request uses the value of theContact header field in the
response.

The duration of the validity of theContact URI can be indicated through anExpires (Section 20.19) header
field or an expires parameter in theContact header field. Both proxies and UAsMAY cache this URI for
the duration of the expiration time. If there is no explicit expiration time, the address is only valid once for
recursing, andMUST NOT be cached for future transactions.

If the URI cached from theContact header field fails, theRequest-URI from the redirected requestMAY

be tried again a single time.

The temporary URI may have become out-of-date sooner than the expiration time, and a new temporary URI may
be available.

21.3.4 305 Use Proxy

The requested resourceMUST be accessed through the proxy given by theContact field. TheContact field
gives the URI of the proxy. The recipient is expected to repeat this single request via the proxy. 305 (Use
Proxy) responsesMUST only be generated by UASs.

21.3.5 380 Alternative Service

The call was not successful, but alternative services are possible.

The alternative services are described in the message body of the response. Formats for such bodies are not
defined here, and may be the subject of future standardization.

21.4 Request Failure 4xx

4xx responses are definite failure responses from a particular server. The clientSHOULD NOTretry the same
request without modification (for example, adding appropriate authorization). However, the same request to
a different server might be successful.

21.4.1 400 Bad Request

The request could not be understood due to malformed syntax. The Reason-PhraseSHOULD identify the
syntax problem in more detail, for example, “MissingCall-ID header field”.

Rosenberg, et al. Standards Track [Page 136]

RFC 3261 SIP: Session Initiation Protocol June 2002

21.4.2 401 Unauthorized

The request requires user authentication. This response is issued by UASs and registrars, while 407 (Proxy
Authentication Required) is used by proxy servers.

21.4.3 402 Payment Required

Reserved for future use.

21.4.4 403 Forbidden

The server understood the request, but is refusing to fulfill it.Authorization will not help, and the request
SHOULD NOT be repeated.

21.4.5 404 Not Found

The server has definitive information that the user does not exist at the domain specified in theRequest-
URI. This status is also returned if the domain in theRequest-URI does not match any of the domains
handled by the recipient of the request.

21.4.6 405 Method Not Allowed

The method specified in the Request-Line is understood, but not allowed for the address identified by the
Request-URI.

The responseMUST include anAllow header field containing a list of valid methods for the indicated address.

21.4.7 406 Not Acceptable

The resource identified by the request is only capable of generating response entities that have content
characteristics not acceptable according to theAccept header field sent in the request.

21.4.8 407 Proxy Authentication Required

This code is similar to 401 (Unauthorized), but indicates that the clientMUST first authenticate itself with
the proxy. SIP access authentication is explained in Sections 26 and 22.3.

This status code can be used for applications where access to the communication channel (for example, a
telephony gateway) rather than the callee requires authentication.

21.4.9 408 Request Timeout

The server could not produce a response within a suitable amount of time, for example, if it could not
determine the location of the user in time. The clientMAY repeat the request without modifications at any
later time.

Rosenberg, et al. Standards Track [Page 137]

RFC 3261 SIP: Session Initiation Protocol June 2002

21.4.10 410 Gone

The requested resource is no longer available at the server and no forwarding address is known. This
condition is expected to be considered permanent. If the server does not know, or has no facility to determine,
whether or not the condition is permanent, the status code 404 (Not Found)SHOULD be used instead.

21.4.11 413 Request Entity Too Large

The server is refusing to process a request because the request entity-body is larger than the server is willing
or able to process. The serverMAY close the connection to prevent the client from continuing the request.

If the condition is temporary, the serverSHOULD include aRetry-After header field to indicate that it is
temporary and after what time the clientMAY try again.

21.4.12 414Request-URI Too Long

The server is refusing to service the request because theRequest-URI is longer than the server is willing
to interpret.

21.4.13 415Unsupported Media Type

The server is refusing to service the request because the message body of the request is in a format not
supported by the server for the requested method. The serverMUST return a list of acceptable formats using
theAccept, Accept-Encoding, or Accept-Language header field, depending on the specific problem with
the content. UAC processing of this response is described in Section 8.1.3.

21.4.14 416Unsupported URI Scheme

The server cannot process the request because the scheme of the URI in theRequest-URI is unknown to
the server. Client processing of this response is described in Section 8.1.3.

21.4.15 420 Bad Extension

The server did not understand the protocol extension specified in aProxy-Require (Section 20.29) orRe-
quire (Section 20.32) header field. The serverMUST include a list of the unsupported extensions in an
Unsupported header field in the response. UAC processing of this response is described in Section 8.1.3.

21.4.16 421 Extension Required

The UAS needs a particular extension to process the request, but this extension is not listed in aSupported
header field in the request. Responses with this status codeMUST contain aRequire header field listing the
required extensions.

Rosenberg, et al. Standards Track [Page 138]

RFC 3261 SIP: Session Initiation Protocol June 2002

A UAS SHOULD NOTuse this response unless it truly cannot provide any useful service to the client. Instead,
if a desirable extension is not listed in theSupported header field, serversSHOULD process the request using
baseline SIP capabilities and any extensions supported by the client.

21.4.17 423 Interval Too Brief

The server is rejecting the request because the expiration time of the resource refreshed by the request is too
short. This response can be used by a registrar to reject a registration whoseContact header field expiration
time was too small. The use of this response and the relatedMin-Expires header field are described in
Sections 10.2.8, 10.3, and 20.23.

21.4.18 480 Temporarily Unavailable

The callee’s end system was contacted successfully but the callee is currently unavailable (for example, is
not logged in, logged in but in a state that precludes communication with the callee, or has activated the “do
not disturb” feature). The responseMAY indicate a better time to call in theRetry-After header field. The
user could also be available elsewhere (unbeknownst to this server). The reason phraseSHOULD indicate a
more precise cause as to why the callee is unavailable. This valueSHOULD be settable by the UA. Status
486 (Busy Here)MAY be used to more precisely indicate a particular reason for the call failure.

This status is also returned by a redirect or proxy server that recognizes the user identified by theRequest-
URI, but does not currently have a valid forwarding location for that user.

21.4.19 481 Call/Transaction Does Not Exist

This status indicates that the UAS received a request that does not match any existing dialog or transaction.

21.4.20 482 Loop Detected

The server has detected a loop (Section 16.3 Item 4).

21.4.21 483 Too Many Hops

The server received a request that contains aMax-Forwards (Section 20.22) header field with the value
zero.

21.4.22 484 Address Incomplete

The server received a request with aRequest-URI that was incomplete. Additional informationSHOULD

be provided in the reason phrase.

This status code allows overlapped dialing. With overlapped dialing, the client does not know the length of the
dialing string. It sends strings of increasing lengths, prompting the user for more input, until it no longer receives a
484 (Address Incomplete) status response.

Rosenberg, et al. Standards Track [Page 139]

RFC 3261 SIP: Session Initiation Protocol June 2002

21.4.23 485 Ambiguous

TheRequest-URI was ambiguous. The responseMAY contain a listing of possible unambiguous addresses
in Contact header fields. Revealing alternatives can infringe on privacy of the user or the organization. It
MUST be possible to configure a server to respond with status 404 (Not Found) or to suppress the listing of
possible choices for ambiguous Request-URIs.

Example response to a request with theRequest-URI sip:lee@example.com :

SIP/2.0 485 Ambiguous
Contact: Carol Lee <sip:carol.lee@example.com>
Contact: Ping Lee <sip:p.lee@example.com>
Contact: Lee M. Foote <sips:lee.foote@example.com>

Some email and voice mail systems provide this functionality. A status code separate from 3xx is used since the
semantics are different: for 300, it is assumed that the same person or service will be reached by the choices provided.
While an automated choice or sequential search makes sense for a 3xx response, user intervention is required for a
485 (Ambiguous) response.

21.4.24 486 Busy Here

The callee’s end system was contacted successfully, but the callee is currently not willing or able to take
additional calls at this end system. The responseMAY indicate a better time to call in theRetry-After header
field. The user could also be available elsewhere, such as through a voice mail service. Status 600 (Busy
Everywhere)SHOULD be used if the client knows that no other end system will be able to accept this call.

21.4.25 487 Request Terminated

The request was terminated by aBYE or CANCEL request. This response is never returned for aCANCEL
request itself.

21.4.26 488 Not Acceptable Here

The response has the same meaning as 606 (Not Acceptable), but only applies to the specific resource
addressed by theRequest-URI and the request may succeed elsewhere.

A message body containing a description of media capabilitiesMAY be present in the response, which is
formatted according to theAccept header field in theINVITE (or application/sdp if not present), the same
as a message body in a 200 (OK) response to anOPTIONS request.

21.4.27 491 Request Pending

The request was received by a UAS that had a pending request within the same dialog. Section 14.2 describes
how such “glare” situations are resolved.

Rosenberg, et al. Standards Track [Page 140]

RFC 3261 SIP: Session Initiation Protocol June 2002

21.4.28 493 Undecipherable

The request was received by a UAS that contained an encrypted MIME body for which the recipient does not
possess or will not provide an appropriate decryption key. This responseMAY have a single body containing
an appropriate public key that should be used to encrypt MIME bodies sent to this UA. Details of the usage
of this response code can be found in Section 23.2.

21.5 Server Failure 5xx

5xx responses are failure responses given when a server itself has erred.

21.5.1 500Server Internal Error

The server encountered an unexpected condition that prevented it from fulfilling the request. The clientMAY

display the specific error condition andMAY retry the request after several seconds.

If the condition is temporary, the serverMAY indicate when the client may retry the request using theRetry-
After header field.

21.5.2 501 Not Implemented

The server does not support the functionality required to fulfill the request. This is the appropriate response
when a UAS does not recognize the request method and is not capable of supporting it for any user. (Proxies
forward all requests regardless of method.)

Note that a 405 (Method Not Allowed) is sent when the server recognizes the request method, but that
method is not allowed or supported.

21.5.3 502 Bad Gateway

The server, while acting as a gateway or proxy, received an invalid response from the downstream server it
accessed in attempting to fulfill the request.

21.5.4 503 Service Unavailable

The server is temporarily unable to process the request due to a temporary overloading or maintenance of
the server. The serverMAY indicate when the client should retry the request in aRetry-After header field.
If no Retry-After is given, the clientMUST act as if it had received a 500 (Server Internal Error) response.

A client (proxy or UAC) receiving a 503 (Service Unavailable)SHOULD attempt to forward the request to
an alternate server. ItSHOULD NOT forward any other requests to that server for the duration specified in
theRetry-After header field, if present.

ServersMAY refuse the connection or drop the request instead of responding with 503 (Service Unavailable).

Rosenberg, et al. Standards Track [Page 141]

RFC 3261 SIP: Session Initiation Protocol June 2002

21.5.5 504Server Time-out

The server did not receive a timely response from an external server it accessed in attempting to process the
request. 408 (Request Timeout) should be used instead if there was no response within the period specified
in theExpires header field from the upstream server.

21.5.6 505 Version NotSupported

The server does not support, or refuses to support, the SIP protocol version that was used in the request. The
server is indicating that it is unable or unwilling to complete the request using the same major version as the
client, other than with this error message.

21.5.7 513 Message Too Large

The server was unable to process the request since the message length exceeded its capabilities.

21.6 Global Failures 6xx

6xx responses indicate that a server has definitive information about a particular user, not just the particular
instance indicated in theRequest-URI.

21.6.1 600 Busy Everywhere

The callee’s end system was contacted successfully but the callee is busy and does not wish to take the call
at this time. The responseMAY indicate a better time to call in theRetry-After header field. If the callee
does not wish to reveal the reason for declining the call, the callee uses status code 603 (Decline) instead.
This status response is returned only if the client knows that no other end point (such as a voice mail system)
will answer the request. Otherwise, 486 (Busy Here) should be returned.

21.6.2 603 Decline

The callee’s machine was successfully contacted but the user explicitly does not wish to or cannot partici-
pate. The responseMAY indicate a better time to call in theRetry-After header field. This status response
is returned only if the client knows that no other end point will answer the request.

21.6.3 604 Does Not Exist Anywhere

The server has authoritative information that the user indicated in theRequest-URI does not exist any-
where.

21.6.4 606 Not Acceptable

The user’s agent was contacted successfully but some aspects of the session description such as the requested
media, bandwidth, or addressing style were not acceptable.

Rosenberg, et al. Standards Track [Page 142]

RFC 3261 SIP: Session Initiation Protocol June 2002

A 606 (Not Acceptable) response means that the user wishes to communicate, but cannot adequately support
the session described. The 606 (Not Acceptable) responseMAY contain a list of reasons in aWarning
header field describing why the session described cannot be supported.Warning reason codes are listed in
Section 20.43.

A message body containing a description of media capabilitiesMAY be present in the response, which is
formatted according to theAccept header field in theINVITE (or application/sdp if not present), the same
as a message body in a 200 (OK) response to anOPTIONS request.

It is hoped that negotiation will not frequently be needed, and when a new user is being invited to join an
already existing conference, negotiation may not be possible. It is up to the invitation initiator to decide
whether or not to act on a 606 (Not Acceptable) response.

This status response is returned only if the client knows that no other end point will answer the request.

22 Usage of HTTP Authentication

SIP provides a stateless, challenge-based mechanism for authentication that is based on authentication in
HTTP. Any time that a proxy server or UA receives a request (with the exceptions given in Section 22.1), it
MAY challenge the initiator of the request to provide assurance of its identity. Once the originator has been
identified, the recipient of the requestSHOULD ascertain whether or not this user is authorized to make the
request in question. No authorization systems are recommended or discussed in this document.

The “Digest” authentication mechanism described in this section provides message authentication and replay
protection only, without message integrity or confidentiality. Protective measures above and beyond those
provided by Digest need to be taken to prevent active attackers from modifying SIP requests and responses.

Note that due to its weak security, the usage of “Basic” authentication has been deprecated. ServersMUST

NOT accept credentials using the “Basic” authorization scheme, and servers alsoMUST NOT challenge with
“Basic”. This is a change from RFC 2543.

22.1 Framework

The framework for SIP authentication closely parallels that of HTTP (RFC 2617 [16]). In particular, the
BNF for auth-scheme, auth-param, challenge, realm, realm-value, and credentials is identical (although
the usage of “Basic” as a scheme is not permitted). In SIP, a UAS uses the 401 (Unauthorized) response
to challenge the identity of a UAC. Additionally, registrars and redirect serversMAY make use of 401
(Unauthorized) responses for authentication, but proxiesMUST NOT, and insteadMAY use the 407 (Proxy
Authentication Required) response. The requirements for inclusion of theProxy-Authenticate, Proxy-
Authorization, WWW-Authenticate, and Authorization in the various messages are identical to those
described in RFC 2617 [16].

Since SIP does not have the concept of a canonical root URL, the notion of protection spaces is interpreted
differently in SIP. The realm string alone defines the protection domain. This is a change from RFC 2543,
in which theRequest-URI and the realm together defined the protection domain.

This previous definition of protection domain caused some amount of confusion since theRequest-URI sent by
the UAC and theRequest-URI received by the challenging server might be different, and indeed the final form of

Rosenberg, et al. Standards Track [Page 143]

RFC 3261 SIP: Session Initiation Protocol June 2002

theRequest-URI might not be known to the UAC. Also, the previous definition depended on the presence of a SIP
URI in theRequest-URI and seemed to rule out alternative URI schemes (for example, the tel URL).

Operators of user agents or proxy servers that will authenticate received requestsMUST adhere to the fol-
lowing guidelines for creation of a realm string for their server:

• Realm stringsMUST be globally unique. It isRECOMMENDED that a realm string contain a hostname
or domain name, following the recommendation in Section 3.2.1 of RFC 2617 [16].

• Realm stringsSHOULD present a human-readable identifier that can be rendered to a user.

For example:

INVITE sip:bob@biloxi.com SIP/2.0
Authorization: Digest realm="biloxi.com", <...>

Generally, SIP authentication is meaningful for a specific realm, a protection domain. Thus, for Digest
authentication, each such protection domain has its own set of usernames and passwords. If a server does
not require authentication for a particular request, itMAY accept a default username, “anonymous”, which
has no password (password of “”). Similarly, UACs representing many users, such as PSTN gateways,MAY

have their own device-specific username and password, rather than accounts for particular users, for their
realm.

While a server can legitimately challenge most SIP requests, there are two requests defined by this document
that require special handling for authentication:ACK andCANCEL.

Under an authentication scheme that uses responses to carry values used to compute nonces (such as Di-
gest), some problems come up for any requests that take no response, includingACK. For this reason, any
credentials in theINVITE that were accepted by a serverMUST be accepted by that server for theACK.
UACs creating anACK message will duplicate all of theAuthorization andProxy-Authorization header
field values that appeared in theINVITE to which theACK corresponds. ServersMUST NOT attempt to
challenge anACK.

Although theCANCEL method does take a response (a 2xx), serversMUST NOT attempt to challenge
CANCEL requests since these requests cannot be resubmitted. Generally, aCANCEL requestSHOULD be
accepted by a server if it comes from the same hop that sent the request being canceled (provided that some
sort of transport or network layer security association, as described in Section 26.2.1, is in place).

When a UAC receives a challenge, itSHOULD render to the user the contents of therealm parameter in the
challenge (which appears in either aWWW-Authenticate header field orProxy-Authenticate header field)
if the UAC device does not already know of a credential for the realm in question. A service provider that
pre-configures UAs with credentials for its realm should be aware that users will not have the opportunity to
present their own credentials for this realm when challenged at a pre-configured device.

Finally, note that even if a UAC can locate credentials that are associated with the proper realm, the potential
exists that these credentials may no longer be valid or that the challenging server will not accept these
credentials for whatever reason (especially when “anonymous” with no password is submitted). In this
instance a server may repeat its challenge, or it may respond with a 403 Forbidden. A UACMUST NOT

re-attempt requests with the credentials that have just been rejected (though the request may be retried if the
nonce was stale).

Rosenberg, et al. Standards Track [Page 144]

RFC 3261 SIP: Session Initiation Protocol June 2002

22.2 User-to-User Authentication

When a UAS receives a request from a UAC, the UASMAY authenticate the originator before the request
is processed. If no credentials (in theAuthorization header field) are provided in the request, the UAS
can challenge the originator to provide credentials by rejecting the request with a 401 (Unauthorized) status
code.

The WWW-Authenticate response-header fieldMUST be included in 401 (Unauthorized) response mes-
sages. The field value consists of at least one challenge that indicates the authentication scheme(s) and
parameters applicable to the realm.

An example of theWWW-Authenticate header field in a 401 challenge is:

WWW-Authenticate: Digest
realm="biloxi.com",
qop="auth,auth-int",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
opaque="5ccc069c403ebaf9f0171e9517f40e41"

When the originating UAC receives the 401 (Unauthorized), itSHOULD , if it is able, re-originate the re-
quest with the proper credentials. The UAC may require input from the originating user before proceeding.
Once authentication credentials have been supplied (either directly by the user, or discovered in an internal
keyring), UAsSHOULD cache the credentials for a given value of theTo header field andrealm and attempt
to re-use these values on the next request for that destination. UAsMAY cache credentials in any way they
would like.

If no credentials for a realm can be located, UACsMAY attempt to retry the request with a username of
“anonymous” and no password (a password of “”).

Once credentials have been located, any UA that wishes to authenticate itself with a UAS or registrar –
usually, but not necessarily, after receiving a 401 (Unauthorized) response –MAY do so by including an
Authorization header field with the request. TheAuthorization field value consists of credentials containing
the authentication information of the UA for the realm of the resource being requested as well as parameters
required in support of authentication and replay protection.

An example of theAuthorization header field is:

Authorization: Digest username="bob",
realm="biloxi.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri="sip:bob@biloxi.com",
qop=auth,
nc=00000001,
cnonce="0a4f113b",
response="6629fae49393a05397450978507c4ef1",
opaque="5ccc069c403ebaf9f0171e9517f40e41"

When a UAC resubmits a request with its credentials after receiving a 401 (Unauthorized) or 407 (Proxy
Authentication Required) response, itMUST increment theCSeq header field value as it would normally
when sending an updated request.

Rosenberg, et al. Standards Track [Page 145]

RFC 3261 SIP: Session Initiation Protocol June 2002

22.3 Proxy-to-User Authentication

Similarly, when a UAC sends a request to a proxy server, the proxy serverMAY authenticate the originator
before the request is processed. If no credentials (in theProxy-Authorization header field) are provided
in the request, the proxy can challenge the originator to provide credentials by rejecting the request with a
407 (Proxy Authentication Required) status code. The proxyMUST populate the 407 (Proxy Authentication
Required) message with aProxy-Authenticate header field value applicable to the proxy for the requested
resource.

The use ofProxy-Authenticate andProxy-Authorization parallel that described in [16], with one differ-
ence. ProxiesMUST NOT add values to theProxy-Authorization header field. All 407 (Proxy Authentica-
tion Required) responsesMUST be forwarded upstream toward the UAC following the procedures for any
other response. It is the UAC’s responsibility to add theProxy-Authorization header field value containing
credentials for the realm of the proxy that has asked for authentication.

If a proxy were to resubmit a request adding aProxy-Authorization header field value, it would need to increment
theCSeq in the new request. However, this would cause the UAC that submitted the original request to discard a
response from the UAS, as theCSeq value would be different.

When the originating UAC receives the 407 (Proxy Authentication Required) itSHOULD ,if it is able, re-
originate the request with the proper credentials. It should follow the same procedures for the display of the
realm parameter that are given above for responding to 401.

If no credentials for a realm can be located, UACsMAY attempt to retry the request with a username of
“anonymous” and no password (a password of “”).

The UACSHOULD also cache the credentials used in the re-originated request.

The following rule isRECOMMENDED for proxy credential caching:

If a UA receives aProxy-Authenticate header field value in a 401/407 response to a request with a particular
Call-ID, it should incorporate credentials for that realm in all subsequent requests that contain the sameCall-
ID. These credentialsMUST NOT be cached across dialogs; however, if a UA is configured with the realm of
its local outbound proxy, when one exists, then the UAMAY cache credentials for that realm across dialogs.
Note that this does mean a future request in a dialog could contain credentials that are not needed by any
proxy along theRoute header path.

Any UA that wishes to authenticate itself to a proxy server – usually, but not necessarily, after receiving
a 407 (Proxy Authentication Required) response –MAY do so by including aProxy-Authorization header
field value with the request. TheProxy-Authorization request-header field allows the client to identify itself
(or its user) to a proxy that requires authentication. TheProxy-Authorization header field value consists of
credentials containing the authentication information of the UA for the proxy and/or realm of the resource
being requested.

A Proxy-Authorization header field value applies only to the proxy whose realm is identified in therealm
parameter (this proxy may previously have demanded authentication using theProxy-Authenticate field).
When multiple proxies are used in a chain, aProxy-Authorization header field valueMUST NOT be con-
sumed by any proxy whose realm does not match therealm parameter specified in that value.

Note that if an authentication scheme that does not support realms is used in theProxy-Authorization
header field, a proxy serverMUST attempt to parse allProxy-Authorization header field values to determine
whether one of them has what the proxy server considers to be valid credentials. Because this is potentially

Rosenberg, et al. Standards Track [Page 146]

RFC 3261 SIP: Session Initiation Protocol June 2002

very time-consuming in large networks, proxy serversSHOULD use an authentication scheme that supports
realms in theProxy-Authorization header field.

If a request is forked (as described in Section 16.7), various proxy servers and/or UAs may wish to challenge
the UAC. In this case, the forking proxy server is responsible for aggregating these challenges into a single
response. EachWWW-Authenticate andProxy-Authenticate value received in responses to the forked
requestMUST be placed into the single response that is sent by the forking proxy to the UA; the ordering of
these header field values is not significant.

When a proxy server issues a challenge in response to a request, it will not proxy the request until the UAC has
retried the request with valid credentials. A forking proxy may forward a request simultaneously to multiple proxy
servers that require authentication, each of which in turn will not forward the request until the originating UAC has
authenticated itself in their respective realm. If the UAC does not provide credentials for each challenge, the proxy
servers that issued the challenges will not forward requests to the UA where the destination user might be located,
and therefore, the virtues of forking are largely lost.

When resubmitting its request in response to a 401 (Unauthorized) or 407 (Proxy Authentication Re-
quired) that contains multiple challenges, a UACMAY include anAuthorization value for eachWWW-
Authenticate value and aProxy-Authorization value for eachProxy-Authenticate value for which the
UAC wishes to supply a credential. As noted above, multiple credentials in a requestSHOULD be differen-
tiated by therealm parameter.

It is possible for multiple challenges associated with the same realm to appear in the same 401 (Unautho-
rized) or 407 (Proxy Authentication Required). This can occur, for example, when multiple proxies within
the same administrative domain, which use a common realm, are reached by a forking request. When it re-
tries a request, a UACMAY therefore supply multiple credentials inAuthorization or Proxy-Authorization
header fields with the samerealm parameter value. The same credentialsSHOULD be used for the same
realm.

22.4 The Digest Authentication Scheme

This section describes the modifications and clarifications required to apply the HTTP Digest authentication
scheme to SIP. The SIP scheme usage is almost completely identical to that for HTTP [16].

Since RFC 2543 is based on HTTP Digest as defined in RFC 2069 [40], SIP servers supporting RFC 2617
MUST ensure they are backwards compatible with RFC 2069. Procedures for this backwards compatibility
are specified in RFC 2617. Note, however, that SIP serversMUST NOT accept or request Basic authentica-
tion.

The rules for Digest authentication follow those defined in [16], with “HTTP/1.1” replaced by “SIP/2.0” in
addition to the following differences:

1. The URI included in the challenge has the following BNF:

URI = SIP-URI / SIPS-URI

2. The BNF in RFC 2617 has an error in that the `uri’ parameter of theAuthorization header field for
HTTP Digest authentication is not enclosed in quotation marks. (The example in Section 3.5 of
RFC 2617 is correct.) For SIP, the `uri’ MUST be enclosed in quotation marks.

Rosenberg, et al. Standards Track [Page 147]

RFC 3261 SIP: Session Initiation Protocol June 2002

3. The BNF for digest-uri-value is:

digest-uri-value = Request-URI ; as defined in Section˜25

4. The example procedure for choosing a nonce based on Etag does not work for SIP.

5. The text in RFC 2617 [16] regarding cache operation does not apply to SIP.

6. RFC 2617 [16] requires that a server check that the URI in the request line and the URI included in
theAuthorization header field point to the same resource. In a SIP context, these two URIs may refer
to different users, due to forwarding at some proxy. Therefore, in SIP, a serverMAY check that the
Request-URI in theAuthorization header field value corresponds to a user for whom the server is
willing to accept forwarded or direct requests, but it is not necessarily a failure if the two fields are
not equivalent.

7. As a clarification to the calculation of the A2 value for message integrity assurance in the Digest
authentication scheme, implementers should assume, when the entity-body is empty (that is, when
SIP messages have no body) that the hash of the entity-body resolves to the MD5 hash of an empty
string, or:

H(entity-body) = MD5("") = "d41d8cd98f00b204e9800998ecf8427e"

8. RFC 2617 notes that a cnonce valueMUST NOT be sent in anAuthorization (and by extensionProxy-
Authorization) header field if no qop directive has been sent. Therefore, any algorithms that have a
dependency on the cnonce (including “MD5-Sess”) require that the qop directive be sent. Use of the
qop parameter is optional in RFC 2617 for the purposes of backwards compatibility with RFC 2069;
since RFC 2543 was based on RFC 2069, theqop parameter must unfortunately remain optional
for clients and servers to receive. However, serversMUST always send aqop parameter inWWW-
Authenticate andProxy-Authenticate header field values. If a client receives aqop parameter in a
challenge header field, itMUST send theqop parameter in any resulting authorization header field.

RFC 2543 did not allow usage of theAuthentication-Info header field (it effectively used RFC 2069).
However, we now allow usage of this header field, since it provides integrity checks over the bodies and
provides mutual authentication. RFC 2617 [16] defines mechanisms for backwards compatibility using the
qop attribute in the request. These mechanismsMUST be used by a server to determine if the client supports
the new mechanisms in RFC 2617 that were not specified in RFC 2069.

23 S/MIME

SIP messages carry MIME bodies and the MIME standard includes mechanisms for securing MIME con-
tents to ensure both integrity and confidentiality (including the `multipart/signed’ and `application/pkcs7-
mime’ MIME types, see RFC 1847 [21], RFC 2630 [22] and RFC 2633 [23]). Implementers should note,
however, that there may be rare network intermediaries (not typical proxy servers) that rely on viewing or
modifying the bodies of SIP messages (especially SDP), and that secure MIME may prevent these sorts of
intermediaries from functioning.

Rosenberg, et al. Standards Track [Page 148]

RFC 3261 SIP: Session Initiation Protocol June 2002

This applies particularly to certain types of firewalls.

The PGP mechanism for encrypting the header fields and bodies of SIP messages described in RFC 2543
has been deprecated.

23.1 S/MIME Certificates

The certificates that are used to identify an end-user for the purposes of S/MIME differ from those used
by servers in one important respect - rather than asserting that the identity of the holder corresponds to a
particular hostname, these certificates assert that the holder is identified by an end-user address. This address
is composed of the concatenation of theuserinfo “@” and domainname portions of a SIP or SIPS URI (in
other words, an email address of the formbob@biloxi.com), most commonly corresponding to a user’s
address-of-record.

These certificates are also associated with keys that are used to sign or encrypt bodies of SIP messages.
Bodies are signed with the private key of the sender (who may include their public key with the message
as appropriate), but bodies are encrypted with the public key of the intended recipient. Obviously, senders
must have foreknowledge of the public key of recipients in order to encrypt message bodies. Public keys
can be stored within a UA on a virtual keyring.

Each user agent that supports S/MIMEMUST contain a keyring specifically for end-users’ certificates. This
keyring should map between addresses of record and corresponding certificates. Over time, usersSHOULD

use the same certificate when they populate the originating URI of signaling (theFrom header field) with
the same address-of-record.

Any mechanisms depending on the existence of end-user certificates are seriously limited in that there is
virtually no consolidated authority today that provides certificates for end-user applications. However, users
SHOULD acquire certificates from known public certificate authorities. As an alternative, usersMAY create
self-signed certificates. The implications of self-signed certificates are explored further in Section 26.4.2.
Implementations may also use pre-configured certificates in deployments in which a previous trust relation-
ship exists between all SIP entities.

Above and beyond the problem of acquiring an end-user certificate, there are few well-known centralized
directories that distribute end-user certificates. However, the holder of a certificateSHOULD publish their
certificate in any public directories as appropriate. Similarly, UACsSHOULD support a mechanism for im-
porting (manually or automatically) certificates discovered in public directories corresponding to the target
URIs of SIP requests.

23.2 S/MIME Key Exchange

SIP itself can also be used as a means to distribute public keys in the following manner.

Whenever the CMS SignedData message is used in S/MIME for SIP, itMUST contain the certificate bearing
the public key necessary to verify the signature.

When a UAC sends a request containing an S/MIME body that initiates a dialog, or sends a non-INVITE
request outside the context of a dialog, the UACSHOULD structure the body as an S/MIME `multipart/signed’
CMS SignedData body. If the desired CMS service is EnvelopedData (and the public key of the target user
is known), the UACSHOULD send the EnvelopedData message encapsulated within a SignedData message.

Rosenberg, et al. Standards Track [Page 149]

RFC 3261 SIP: Session Initiation Protocol June 2002

When a UAS receives a request containing an S/MIME CMS body that includes a certificate, the UAS
SHOULD first validate the certificate, if possible, with any available root certificates for certificate authorities.
The UAS SHOULD also determine the subject of the certificate (for S/MIME, the SubjectAltName will
contain the appropriate identity) and compare this value to theFrom header field of the request. If the
certificate cannot be verified, because it is self-signed, or signed by no known authority, or if it is verifiable
but its subject does not correspond to theFrom header field of request, the UASMUST notify its user
of the status of the certificate (including the subject of the certificate, its signer, and any key fingerprint
information) and request explicit permission before proceeding. If the certificate was successfully verified
and the subject of the certificate corresponds to theFrom header field of the SIP request, or if the user (after
notification) explicitly authorizes the use of the certificate, the UASSHOULD add this certificate to a local
keyring, indexed by the address-of-record of the holder of the certificate.

When a UAS sends a response containing an S/MIME body that answers the first request in a dialog, or a
response to a non-INVITE request outside the context of a dialog, the UASSHOULD structure the body as an
S/MIME m̀ultipart/signed’ CMS SignedData body. If the desired CMS service is EnvelopedData, the UAS
SHOULD send the EnvelopedData message encapsulated within a SignedData message.

When a UAC receives a response containing an S/MIME CMS body that includes a certificate, the UAC
SHOULD first validate the certificate, if possible, with any appropriate root certificate. The UACSHOULD

also determine the subject of the certificate and compare this value to theTo field of the response; although
the two may very well be different, and this is not necessarily indicative of a security breach. If the certificate
cannot be verified because it is self-signed, or signed by no known authority, the UACMUST notify its user
of the status of the certificate (including the subject of the certificate, its signator, and any key fingerprint
information) and request explicit permission before proceeding. If the certificate was successfully verified,
and the subject of the certificate corresponds to theTo header field in the response, or if the user (after
notification) explicitly authorizes the use of the certificate, the UACSHOULD add this certificate to a local
keyring, indexed by the address-of-record of the holder of the certificate. If the UAC had not transmitted its
own certificate to the UAS in any previous transaction, itSHOULD use a CMS SignedData body for its next
request or response.

On future occasions, when the UA receives requests or responses that contain aFrom header field corre-
sponding to a value in its keyring, the UASHOULD compare the certificate offered in these messages with
the existing certificate in its keyring. If there is a discrepancy, the UAMUST notify its user of a change of
the certificate (preferably in terms that indicate that this is a potential security breach) and acquire the user’s
permission before continuing to process the signaling. If the user authorizes this certificate, itSHOULD be
added to the keyring alongside any previous value(s) for this address-of-record.

Note well however, that this key exchange mechanism does not guarantee the secure exchange of keys when
self-signed certificates, or certificates signed by an obscure authority, are used - it is vulnerable to well-
known attacks. In the opinion of the authors, however, the security it provides is proverbially better than
nothing; it is in fact comparable to the widely used SSH application. These limitations are explored in
greater detail in Section 26.4.2.

If a UA receives an S/MIME body that has been encrypted with a public key unknown to the recipient,
it MUST reject the request with a 493 (Undecipherable) response. This responseSHOULD contain a valid
certificate for the respondent (corresponding, if possible, to any address of record given in theTo header
field of the rejected request) within a MIME body with a `certs-only’ “smime-type” parameter.

A 493 (Undecipherable) sent without any certificate indicates that the respondent cannot or will not utilize

Rosenberg, et al. Standards Track [Page 150]

RFC 3261 SIP: Session Initiation Protocol June 2002

S/MIME encrypted messages, though they may still support S/MIME signatures.

Note that a user agent that receives a request containing an S/MIME body that is not optional (with a
Content-Disposition headerhandling parameter ofrequired) MUST reject the request with a 415Unsup-
ported Media Type response if the MIME type is not understood. A user agent that receives such a response
when S/MIME is sentSHOULD notify its user that the remote device does not support S/MIME, and itMAY

subsequently resend the request without S/MIME, if appropriate; however, this 415 response may constitute
a downgrade attack.

If a user agent sends an S/MIME body in a request, but receives a response that contains a MIME body
that is not secured, the UACSHOULD notify its user that the session could not be secured. However, if a
user agent that supports S/MIME receives a request with an unsecured body, itSHOULD NOT respond with
a secured body, but if it expects S/MIME from the sender (for example, because the sender’sFrom header
field value corresponds to an identity on its keychain), the UASSHOULD notify its user that the session
could not be secured.

A number of conditions that arise in the previous text call for the notification of the user when an anomalous
certificate-management event occurs. Users might well ask what they should do under these circumstances.
First and foremost, an unexpected change in a certificate, or an absence of security when security is expected,
are causes for caution but not necessarily indications that an attack is in progress. Users might abort any
connection attempt or refuse a connection request they have received; in telephony parlance, they could
hang up and call back. Users may wish to find an alternate means to contact the other party and confirm that
their key has legitimately changed. Note that users are sometimes compelled to change their certificates, for
example when they suspect that the secrecy of their private key has been compromised. When their private
key is no longer private, users must legitimately generate a new key and re-establish trust with any users that
held their old key.

Finally, if during the course of a dialog a UA receives a certificate in a CMS SignedData message that does
not correspond with the certificates previously exchanged during a dialog, the UAMUST notify its user of
the change, preferably in terms that indicate that this is a potential security breach.

23.3 Securing MIME bodies

There are two types of secure MIME bodies that are of interest to SIP: use of these bodies should follow the
S/MIME specification [23] with a few variations.

• “multipart/signed”MUST be used only with CMS detached signatures.

This allows backwards compatibility with non-S/MIME-compliant recipients.

• S/MIME bodiesSHOULD have aContent-Disposition header field, and the value of thehandling
parameterSHOULD berequired.

• If a UAC has no certificate on its keyring associated with the address-of-record to which it wants to
send a request, it cannot send an encrypted “application/pkcs7-mime” MIME message. UACsMAY

send an initial request such as anOPTIONS message with a CMS detached signature in order to
solicit the certificate of the remote side (the signatureSHOULD be over a “message/sip” body of the
type described in Section 23.4).

Rosenberg, et al. Standards Track [Page 151]

RFC 3261 SIP: Session Initiation Protocol June 2002

Note that future standardization work on S/MIME may define non-certificate based keys.

• Senders of S/MIME bodiesSHOULD use the “SMIMECapabilities” (see Section 2.5.2 of [23]) at-
tribute to express their capabilities and preferences for further communications. Note especially that
sendersMAY use the “preferSignedData” capability to encourage receivers to respond with CMS
SignedData messages (for example, when sending anOPTIONS request as described above).

• S/MIME implementationsMUST at a minimum support SHA1 as a digital signature algorithm, and
3DES as an encryption algorithm. All other signature and encryption algorithmsMAY be supported.
Implementations can negotiate support for these algorithms with the “SMIMECapabilities” attribute.

• Each S/MIME body in a SIP messageSHOULD be signed with only one certificate. If a UA receives
a message with multiple signatures, the outermost signature should be treated as the single certificate
for this body. Parallel signaturesSHOULD NOT be used.

The following is an example of an encrypted S/MIME SDP body within a SIP message:

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Max-Forwards: 70
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/pkcs7-mime; smime-type=enveloped-data;

name=smime.p7m
Content-Disposition: attachment; filename=smime.p7m

handling=required

* Content-Type: application/sdp *
* *
* v=0 *
* o=alice 53655765 2353687637 IN IP4 pc33.atlanta.com *
* s=- *
* t=0 0 *
* c=IN IP4 pc33.atlanta.com *
* m=audio 3456 RTP/AVP 0 1 3 99 *
* a=rtpmap:0 PCMU/8000 *

23.4 SIP Header Privacy and Integrity using S/MIME: Tunneling SIP

As a means of providing some degree of end-to-end authentication, integrity or confidentiality for SIP header
fields, S/MIME can encapsulate entire SIP messages within MIME bodies of type “message/sip” and then

Rosenberg, et al. Standards Track [Page 152]

RFC 3261 SIP: Session Initiation Protocol June 2002

apply MIME security to these bodies in the same manner as typical SIP bodies. These encapsulated SIP
requests and responses do not constitute a separate dialog or transaction, they are a copy of the “outer”
message that is used to verify integrity or to supply additional information.

If a UAS receives a request that contains a tunneled “message/sip” S/MIME body, itSHOULD include a
tunneled “message/sip” body in the response with the same smime-type.

Any traditional MIME bodies (such as SDP)SHOULD be attached to the “inner” message so that they
can also benefit from S/MIME security. Note that “message/sip” bodies can be sent as a part of a MIME
“multipart/mixed” body if any unsecured MIME types should also be transmitted in a request.

23.4.1 Integrity and Confidentiality Properties of SIP Headers

When the S/MIME integrity or confidentiality mechanisms are used, there may be discrepancies between the
values in the “inner” message and values in the “outer” message. The rules for handling any such differences
for all of the header fields described in this document are given in this section.

Note that for the purposes of loose timestamping, all SIP messages that tunnel “message/sip”SHOULD

contain aDate header in both the “inner” and “outer” headers.

Integrity Whenever integrity checks are performed, the integrity of a header field should be determined
by matching the value of the header field in the signed body with that in the “outer” messages using the
comparison rules of SIP as described in 20.

Header fields that can be legitimately modified by proxy servers are:Request-URI, Via, Record-Route,
Route, Max-Forwards, andProxy-Authorization. If these header fields are not intact end-to-end, imple-
mentationsSHOULD NOT consider this a breach of security. Changes to any other header fields defined in
this document constitute an integrity violation; usersMUST be notified of a discrepancy.

Confidentiality When messages are encrypted, header fields may be included in the encrypted body that
are not present in the “outer” message.

Some header fields must always have a plaintext version because they are required header fields in requests
and responses - these include:

To, From, Call-ID, CSeq, Contact. While it is probably not useful to provide an encrypted alternative
for theCall-ID, CSeq, or Contact, providing an alternative to the information in the “outer”To or From is
permitted. Note that the values in an encrypted body are not used for the purposes of identifying transactions
or dialogs - they are merely informational. If theFrom header field in an encrypted body differs from the
value in the “outer” message, the value within the encrypted bodySHOULD be displayed to the user, but
MUST NOT be used in the “outer” header fields of any future messages.

Primarily, a user agent will want to encrypt header fields that have an end-to-end semantic, including:Sub-
ject, Reply-To, Organization, Accept, Accept-Encoding, Accept-Language, Alert-Info, Error-Info,
Authentication-Info, Expires, In-Reply-To, Require, Supported, Unsupported, Retry-After, User-
Agent, Server, andWarning. If any of these header fields are present in an encrypted body, they should be
used instead of any “outer” header fields, whether this entails displaying the header field values to users or
setting internal states in the UA. TheySHOULD NOT however be used in the “outer” headers of any future
messages.

Rosenberg, et al. Standards Track [Page 153]

RFC 3261 SIP: Session Initiation Protocol June 2002

If present, theDate header fieldMUST always be the same in the “inner” and “outer” headers.

Since MIME bodies are attached to the “inner” message, implementations will usually encrypt MIME-
specific header fields, including:MIME-Version, Content-Type, Content-Length, Content-Language,
Content-Encoding andContent-Disposition. The “outer” message will have the proper MIME header
fields for S/MIME bodies. These header fields (and any MIME bodies they preface) should be treated as
normal MIME header fields and bodies received in a SIP message.

It is not particularly useful to encrypt the following header fields:Min-Expires, Timestamp, Authoriza-
tion, Priority, andWWW-Authenticate. This category also includes those header fields that can be changed
by proxy servers (described in the preceding section). UAsSHOULD never include these in an “inner” mes-
sage if they are not included in the “outer” message. UAs that receive any of these header fields in an
encrypted bodySHOULD ignore the encrypted values.

Note that extensions to SIP may define additional header fields; the authors of these extensions should de-
scribe the integrity and confidentiality properties of such header fields. If a SIP UA encounters an unknown
header field with an integrity violation, itMUST ignore the header field.

23.4.2 Tunneling Integrity and Authentication

Tunneling SIP messages within S/MIME bodies can provide integrity for SIP header fields if the header
fields that the sender wishes to secure are replicated in a “message/sip” MIME body signed with a CMS
detached signature.

Provided that the “message/sip” body contains at least the fundamental dialog identifiers (To, From, Call-
ID, CSeq), then a signed MIME body can provide limited authentication. At the very least, if the certificate
used to sign the body is unknown to the recipient and cannot be verified, the signature can be used to
ascertain that a later request in a dialog was transmitted by the same certificate-holder that initiated the
dialog. If the recipient of the signed MIME body has some stronger incentive to trust the certificate (they
were able to validate it, they acquired it from a trusted repository, or they have used it frequently) then the
signature can be taken as a stronger assertion of the identity of the subject of the certificate.

In order to eliminate possible confusions about the addition or subtraction of entire header fields, senders
SHOULD replicate all header fields from the request within the signed body. Any message bodies that require
integrity protectionMUST be attached to the “inner” message.

If a Date header is present in a message with a signed body, the recipientSHOULD compare the header field
value with its own internal clock, if applicable. If a significant time discrepancy is detected (on the order of
an hour or more), the user agentSHOULD alert the user to the anomaly, and note that it is a potential security
breach.

If an integrity violation in a message is detected by its recipient, the messageMAY be rejected with a 403
(Forbidden) response if it is a request, or any existing dialogMAY be terminated. UAsSHOULD notify users
of this circumstance and request explicit guidance on how to proceed.

The following is an example of the use of a tunneled “message/sip” body:

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774

Rosenberg, et al. Standards Track [Page 154]

RFC 3261 SIP: Session Initiation Protocol June 2002

Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Max-Forwards: 70
Date: Thu, 21 Feb 2002 13:02:03 GMT
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: multipart/signed;

protocol="application/pkcs7-signature";
micalg=sha1; boundary=boundary42

Content-Length: 568

--boundary42
Content-Type: message/sip

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
To: Bob <bob@biloxi.com>
From: Alice <alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Max-Forwards: 70
Date: Thu, 21 Feb 2002 13:02:03 GMT
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 147

v=0
o=UserA 2890844526 2890844526 IN IP4 here.com
s=Session SDP
c=IN IP4 pc33.atlanta.com
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

--boundary42
Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s;

handling=required

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6
4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj
n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4
7GhIGfHfYT64VQbnj756

--boundary42-

Rosenberg, et al. Standards Track [Page 155]

RFC 3261 SIP: Session Initiation Protocol June 2002

23.4.3 Tunneling Encryption

It may also be desirable to use this mechanism to encrypt a “message/sip” MIME body within a CMS
EnvelopedData message S/MIME body, but in practice, most header fields are of at least some use to the
network; the general use of encryption with S/MIME is to secure message bodies like SDP rather than
message headers. Some informational header fields, such as theSubject or Organization could perhaps
warrant end-to-end security. Headers defined by future SIP applications might also require obfuscation.

Another possible application of encrypting header fields is selective anonymity. A request could be con-
structed with aFrom header field that contains no personal information (for example,sip:anonymous@anonymizer.i n
However, a secondFrom header field containing the genuine address-of-record of the originator could be
encrypted within a “message/sip” MIME body where it will only be visible to the endpoints of a dialog.

Note that if this mechanism is used for anonymity, theFrom header field will no longer be usable by the recipient
of a message as an index to their certificate keychain for retrieving the proper S/MIME key to associated with the
sender. The message must first be decrypted, and the “inner”From header fieldMUST be used as an index.

In order to provide end-to-end integrity, encrypted “message/sip” MIME bodiesSHOULD be signed by the
sender. This creates a “multipart/signed” MIME body that contains an encrypted body and a signature, both
of type “application/pkcs7-mime”.

In the following example, of an encrypted and signed message, the text boxed in asterisks (“*”) is encrypted:

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@biloxi.com>
From: Anonymous <sip:anonymous@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Max-Forwards: 70
Date: Thu, 21 Feb 2002 13:02:03 GMT
Contact: <sip:pc33.atlanta.com>
Content-Type: multipart/signed;

protocol="application/pkcs7-signature";
micalg=sha1; boundary=boundary42

Content-Length: 568

--boundary42
Content-Type: application/pkcs7-mime; smime-type=enveloped-data;

name=smime.p7m
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m

handling=required
Content-Length: 231

* Content-Type: message/sip *
* *

Rosenberg, et al. Standards Track [Page 156]

RFC 3261 SIP: Session Initiation Protocol June 2002

* INVITE sip:bob@biloxi.com SIP/2.0 *
* Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8 *
* To: Bob <bob@biloxi.com> *
* From: Alice <alice@atlanta.com>;tag=1928301774 *
* Call-ID: a84b4c76e66710 *
* CSeq: 314159 INVITE *
* Max-Forwards: 70 *
* Date: Thu, 21 Feb 2002 13:02:03 GMT *
* Contact: <sip:alice@pc33.atlanta.com> *
* *
* Content-Type: application/sdp *
* *
* v=0 *
* o=alice 53655765 2353687637 IN IP4 pc33.atlanta.com *
* s=Session SDP *
* t=0 0 *
* c=IN IP4 pc33.atlanta.com *
* m=audio 3456 RTP/AVP 0 1 3 99 *
* a=rtpmap:0 PCMU/8000 *

--boundary42
Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s;

handling=required

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6
4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj
n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4
7GhIGfHfYT64VQbnj756

--boundary42-

24 Examples

In the following examples, we often omit the message body and the correspondingContent-Length and
Content-Type header fields for brevity.

24.1 Registration

Bob registers on start-up. The message flow is shown in Figure 9. Note that the authentication usually
required for registration is not shown for simplicity.

Rosenberg, et al. Standards Track [Page 157]

RFC 3261 SIP: Session Initiation Protocol June 2002

biloxi.com Bob’s
registrar softphone

| |
| REGISTER F1 |
|<---------------|
| 200 OK F2 |
|--------------->|

Figure 9: SIP Registration Example

F1REGISTER Bob→Registrar

REGISTER sip:registrar.biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7
Max-Forwards: 70
To: Bob <sip:bob@biloxi.com>
From: Bob <sip:bob@biloxi.com>;tag=456248
Call-ID: 843817637684230@998sdasdh09
CSeq: 1826 REGISTER
Contact: <sip:bob@192.0.2.4>
Expires: 7200
Content-Length: 0

The registration expires after two hours. The registrar responds with a 200 OK:

F2 200 OK Registrar→Bob

SIP/2.0 200 OK
Via: SIP/2.0/UDP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7

;received=192.0.2.4
To: Bob <sip:bob@biloxi.com>;tag=2493k59kd
From: Bob <sip:bob@biloxi.com>;tag=456248
Call-ID: 843817637684230@998sdasdh09
CSeq: 1826 REGISTER
Contact: <sip:bob@192.0.2.4>
Expires: 7200
Content-Length: 0

24.2 Session Setup

This example contains the full details of the example session setup in Section 4. The message flow is shown
in Figure 1. Note that these flows show the minimum required set of header fields - some other header fields
such asAllow andSupported would normally be present.

Rosenberg, et al. Standards Track [Page 158]

RFC 3261 SIP: Session Initiation Protocol June 2002

F1 INVITE Alice →proxy

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
Max-Forwards: 70
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(Alice’s SDP not shown)

F2 100 Trying proxy→Alice

SIP/2.0 100 Trying
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

;received=192.0.2.1
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Content-Length: 0

F3 INVITE proxy→biloxi.com proxy

INVITE sip:bob@biloxi.com SIP/2.0
Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

;received=192.0.2.1
Max-Forwards: 69
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(Alice’s SDP not shown)

F4 100 Tryingbiloxi.com proxy→proxy

SIP/2.0 100 Trying

Rosenberg, et al. Standards Track [Page 159]

RFC 3261 SIP: Session Initiation Protocol June 2002

Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
;received=192.0.2.2

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
;received=192.0.2.1

To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Content-Length: 0

F5 INVITE biloxi.com proxy→Bob

INVITE sip:bob@192.0.2.4 SIP/2.0
Via: SIP/2.0/UDP server10.biloxi.com;branch=z9hG4bK4b43c2ff8.1
Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1

;received=192.0.2.2
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

;received=192.0.2.1
Max-Forwards: 68
To: Bob <sip:bob@biloxi.com>
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(Alice’s SDP not shown)

F6 180 Ringing Bob→biloxi.com proxy

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP server10.biloxi.com;branch=z9hG4bK4b43c2ff8.1

;received=192.0.2.3
Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1

;received=192.0.2.2
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

;received=192.0.2.1
To: Bob <sip:bob@biloxi.com>;tag=a6c85cf
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
Contact: <sip:bob@192.0.2.4>
CSeq: 314159 INVITE
Content-Length: 0

F7 180 Ringingbiloxi.com proxy→proxy

Rosenberg, et al. Standards Track [Page 160]

RFC 3261 SIP: Session Initiation Protocol June 2002

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1

;received=192.0.2.2
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

;received=192.0.2.1
To: Bob <sip:bob@biloxi.com>;tag=a6c85cf
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
Contact: <sip:bob@192.0.2.4>
CSeq: 314159 INVITE
Content-Length: 0

F8 180 Ringing proxy→Alice

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

;received=192.0.2.1
To: Bob <sip:bob@biloxi.com>;tag=a6c85cf
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
Contact: <sip:bob@192.0.2.4>
CSeq: 314159 INVITE
Content-Length: 0

F9 200 OK Bob→biloxi.com proxy

SIP/2.0 200 OK
Via: SIP/2.0/UDP server10.biloxi.com;branch=z9hG4bK4b43c2ff8.1

;received=192.0.2.3
Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1

;received=192.0.2.2
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

;received=192.0.2.1
To: Bob <sip:bob@biloxi.com>;tag=a6c85cf
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:bob@192.0.2.4>
Content-Type: application/sdp
Content-Length: 131

(Bob’s SDP not shown)

F10 200 OKbiloxi.com proxy→atlanta.com proxy

SIP/2.0 200 OK

Rosenberg, et al. Standards Track [Page 161]

RFC 3261 SIP: Session Initiation Protocol June 2002

Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9hG4bK77ef4c2312983.1
;received=192.0.2.2

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8
;received=192.0.2.1

To: Bob <sip:bob@biloxi.com>;tag=a6c85cf
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:bob@192.0.2.4>
Content-Type: application/sdp
Content-Length: 131

(Bob’s SDP not shown)

F11 200 OK proxy→Alice

SIP/2.0 200 OK
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

;received=192.0.2.1
To: Bob <sip:bob@biloxi.com>;tag=a6c85cf
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 INVITE
Contact: <sip:bob@192.0.2.4>
Content-Type: application/sdp
Content-Length: 131

(Bob’s SDP not shown)

F12 ACK Alice→Bob

ACK sip:bob@192.0.2.4 SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds9
Max-Forwards: 70
To: Bob <sip:bob@biloxi.com>;tag=a6c85cf
From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 314159 ACK
Content-Length: 0

The media session between Alice and Bob is now established.

Bob hangs up first. Note that Bob’s SIP phone maintains its ownCSeq numbering space, which, in this
example, begins with 231. Since Bob is making the request, theTo andFrom URIs and tags have been
swapped.

F13 BYE Bob→Alice

Rosenberg, et al. Standards Track [Page 162]

RFC 3261 SIP: Session Initiation Protocol June 2002

BYE sip:alice@pc33.atlanta.com SIP/2.0
Via: SIP/2.0/UDP 192.0.2.4;branch=z9hG4bKnashds10
Max-Forwards: 70
From: Bob <sip:bob@biloxi.com>;tag=a6c85cf
To: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 231 BYE
Content-Length: 0

F14 200 OK Alice→Bob

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.0.2.4;branch=z9hG4bKnashds10
From: Bob <sip:bob@biloxi.com>;tag=a6c85cf
To: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 231 BYE
Content-Length: 0

The SIP Call Flows document [41] contains further examples of SIP messages.

25 Augmented BNF for the SIP Protocol

All of the mechanisms specified in this document are described in both prose and an augmented Backus-
Naur Form (BNF) defined in RFC 2234 [9]. Section 6.1 of RFC 2234 defines a set of core rules that are
used by this specification, and not repeated here. Implementers need to be familiar with the notation and
content of RFC 2234 in order to understand this specification. Certain basic rules are in uppercase, such as
SP, LWS, HTAB, CRLF, DIGIT, ALPHA, etc. Angle brackets are used within definitions to clarify the use
of rule names.

The use of square brackets is redundant syntactically. It is used as a semantic hint that the specific parameter
is optional to use.

25.1 Basic Rules

The following rules are used throughout this specification to describe basic parsing constructs. The US-
ASCII coded character set is defined by ANSI X3.4-1986.

alphanum = ALPHA / DIGIT

Several rules are incorporated from RFC 2396 [5] but are updated to make them compliant with RFC 2234 [9].
These include:

reserved = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+"

Rosenberg, et al. Standards Track [Page 163]

RFC 3261 SIP: Session Initiation Protocol June 2002

/ "$" / ","
unreserved = alphanum / mark
mark = "-" / "_" / "." / "!" / "˜" / "*" / "’"

/ "(" / ")"
escaped = "%" HEXDIG HEXDIG

SIP header field values can be folded onto multiple lines if the continuation line begins with a space or
horizontal tab. All linear white space, including folding, has the same semantics as SP. A recipientMAY

replace any linear white space with a single SP before interpreting the field value or forwarding the message
downstream. This is intended to behave exactly as HTTP/1.1 as described in RFC 2616 [7]. The SWS
construct is used when linear white space is optional, generally between tokens and separators.

LWS = [*WSP CRLF] 1*WSP ; linear whitespace
SWS = [LWS] ; sep whitespace

To separate the header name from the rest of value, a colon is used, which, by the above rule, allows
whitespace before, but no line break, and whitespace after, including a linebreak. The HCOLON defines
this construct.

HCOLON = *(SP / HTAB) ":" SWS

The TEXT-UTF8 rule is only used for descriptive field contents and values that are not intended to be
interpreted by the message parser. Words of *TEXT-UTF8 contain characters from the UTF-8 charset
(RFC 2279 [6]). The TEXT-UTF8-TRIM rule is used for descriptive field contents that are n t quoted
strings, where leading and trailing LWS is not meaningful. In this regard, SIP differs from HTTP, which
uses the ISO 8859-1 character set.

TEXT-UTF8-TRIM = 1*TEXT-UTF8char *(*LWS TEXT-UTF8char)
TEXT-UTF8char = %x21-7E / UTF8-NONASCII
UTF8-NONASCII = %xC0-DF 1UTF8-CONT

/ %xE0-EF 2UTF8-CONT
/ %xF0-F7 3UTF8-CONT
/ %xF8-Fb 4UTF8-CONT
/ %xFC-FD 5UTF8-CONT

UTF8-CONT = %x80-BF

A CRLF is allowed in the definition of TEXT-UTF8-TRIM only as part of a header field continuation. It is
expected that the folding LWS will be replaced with a single SP before interpretation of the TEXT-UTF8-
TRIM value.

Hexadecimal numeric characters are used in several protocol elements. Some elements (authentication)
force hex alphas to be lower case.

LHEX = DIGIT / %x61-66 ;lowercase a-f

Rosenberg, et al. Standards Track [Page 164]

RFC 3261 SIP: Session Initiation Protocol June 2002

Many SIP header field values consist of words separated by LWS or special characters. Unless otherwise
stated, tokens are case-insensitive. These special charactersMUST be in a quoted string to be used within a
parameter value. The word construct is used inCall-ID to allow most separators to be used.

token = 1*(alphanum / "-" / "." / "!" / "%" / "*"
/ "_" / "+" / "‘" / "’" / "˜")

separators = "(" / ")" / "<" / ">" / "@" /
"," / ";" / ":" / "\\" / DQUOTE /
"/" / "[" / "]" / "?" / "=" /
"{" / "}" / SP / HTAB

word = 1*(alphanum / "-" / "." / "!" / "%" / "*" /
"_" / "+" / "‘" / "’" / "˜" /
"(" / ")" / "<" / ">" /
":" / "\\" / DQUOTE /
"/" / "[" / "]" / "?" /
"{" / "}")

When tokens are used or separators are used between elements, whitespace is often allowed before or after
these characters:

STAR = SWS "*" SWS ; asterisk
SLASH = SWS "/" SWS ; slash
EQUAL = SWS "=" SWS ; equal
LPAREN = SWS "(" SWS ; left parenthesis
RPAREN = SWS ")" SWS ; right parenthesis
RAQUOT = ">" SWS ; right angle quote
LAQUOT = SWS "<"; left angle quote
COMMA = SWS "," SWS ; comma
SEMI = SWS ";" SWS ; semicolon
COLON = SWS ":" SWS ; colon
LDQUOT = SWS DQUOTE; open double quotation mark
RDQUOT = DQUOTE SWS ; close double quotation mark

Comments can be included in some SIP header fields by surrounding the comment text with parentheses.
Comments are only allowed in fields containingcomment as part of their field value definition. In all other
fields, parentheses are considered part of the field value.

comment = LPAREN *(ctext / quoted-pair / comment) RPAREN
ctext = %x21-27 / %x2A-5B / %x5D-7E / UTF8-NONASCII

/ LWS

ctext includes all chars except left and right parens and backslash. A string of text is parsed as a single word
if it is quoted using double-quote marks. In quoted strings, quotation marks (“) and backslashes (
) need to be escaped.

Rosenberg, et al. Standards Track [Page 165]

RFC 3261 SIP: Session Initiation Protocol June 2002

quoted-string = SWS DQUOTE *(qdtext / quoted-pair) DQUOTE
qdtext = LWS / %x21 / %x23-5B / %x5D-7E

/ UTF8-NONASCII

The backslash character (“
”) MAY be used as a single-character quoting mechanism only within quoted-string and comment constructs.
Unlike HTTP/1.1, the characters CR and LF cannot be escaped by this mechanism to avoid conflict with
line folding and header separation.

quoted-pair = "\\" (%x00-09 / %x0B-0C
/ %x0E-7F)

SIP-URI = "sip:" [userinfo] hostport
uri-parameters [headers]

SIPS-URI = "sips:" [userinfo] hostport
uri-parameters [headers]

userinfo = (user / telephone-subscriber) [":" password] "@"
user = 1*(unreserved / escaped / user-unreserved)
user-unreserved = "&" / "=" / "+" / "$" / "," / ";" / "?" / "/"
password = *(unreserved / escaped /

"&" / "=" / "+" / "$" / ",")
hostport = host [":" port]
host = hostname / IPv4address / IPv6reference
hostname = *(domainlabel ".") toplabel ["."]
domainlabel = alphanum

/ alphanum *(alphanum / "-") alphanum
toplabel = ALPHA / ALPHA *(alphanum / "-") alphanum
IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
IPv6reference = "[" IPv6address "]"
IPv6address = hexpart [":" IPv4address]
hexpart = hexseq / hexseq "::" [hexseq] / "::" [hexseq]
hexseq = hex4 *(":" hex4)
hex4 = 1*4HEXDIG
port = 1*DIGIT

The BNF for telephone-subscriber can be found in RFC 2806 [8]. Note, however, that any characters allowed
there that are not allowed in the user part of the SIP URIMUST be escaped.

uri-parameters = *(";" uri-parameter)
uri-parameter = transport-param / user-param / method-param

/ ttl-param / maddr-param / lr-param / other-param
transport-param = "transport="

("udp" / "tcp" / "sctp" / "tls"
/ other-transport)

other-transport = token

Rosenberg, et al. Standards Track [Page 166]

RFC 3261 SIP: Session Initiation Protocol June 2002

user-param = "user=" ("phone" / "ip" / other-user)
other-user = token
method-param = "method=" Method
ttl-param = "ttl=" ttl
maddr-param = "maddr=" host
lr-param = "lr"
other-param = pname ["=" pvalue]
pname = 1*paramchar
pvalue = 1*paramchar
paramchar = param-unreserved / unreserved / escaped
param-unreserved = "[" / "]" / "/" / ":" / "&" / "+" / "$"

headers = "?" header *("&" header)
header = hname "=" hvalue
hname = 1*(hnv-unreserved / unreserved / escaped)
hvalue = *(hnv-unreserved / unreserved / escaped)
hnv-unreserved = "[" / "]" / "/" / "?" / ":" / "+" / "$"

SIP-message = Request / Response
Request = Request-Line

*(message-header)
CRLF
[message-body]

Request-Line = Method SP Request-URI SP SIP-Version CRLF
Request-URI = SIP-URI / SIPS-URI / absoluteURI
absoluteURI = scheme ":" (hier-part / opaque-part)
hier-part = (net-path / abs-path) ["?" query]
net-path = "//" authority [abs-path]
abs-path = "/" path-segments
opaque-part = uric-no-slash *uric
uric = reserved / unreserved / escaped
uric-no-slash = unreserved / escaped / ";" / "?" / ":" / "@"

/ "&" / "=" / "+" / "$" / ","
path-segments = segment *("/" segment)
segment = *pchar *(";" param)
param = *pchar
pchar = unreserved / escaped /

":" / "@" / "&" / "=" / "+" / "$" / ","
scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")
authority = srvr / reg-name
srvr = [[userinfo "@"] hostport]
reg-name = 1*(unreserved / escaped / "$" / ","

/ ";" / ":" / "@" / "&" / "=" / "+")
query = *uric
SIP-Version = "SIP" "/" 1*DIGIT "." 1*DIGIT

Rosenberg, et al. Standards Track [Page 167]

RFC 3261 SIP: Session Initiation Protocol June 2002

message-header = (Accept
/ Accept-Encoding
/ Accept-Language
/ Alert-Info
/ Allow
/ Authentication-Info
/ Authorization
/ Call-ID
/ Call-Info
/ Contact
/ Content-Disposition
/ Content-Encoding
/ Content-Language
/ Content-Length
/ Content-Type
/ CSeq
/ Date
/ Error-Info
/ Expires
/ From
/ In-Reply-To
/ Max-Forwards
/ MIME-Version
/ Min-Expires
/ Organization
/ Priority
/ Proxy-Authenticate
/ Proxy-Authorization
/ Proxy-Require
/ Record-Route
/ Reply-To
/ Require
/ Retry-After
/ Route
/ Server
/ Subject
/ Supported
/ Timestamp
/ To
/ Unsupported
/ User-Agent
/ Via
/ Warning
/ WWW-Authenticate

Rosenberg, et al. Standards Track [Page 168]

RFC 3261 SIP: Session Initiation Protocol June 2002

/ extension-header) CRLF

INVITEm = %x49.4E.56.49.54.45 ; INVITE in caps
ACKm = %x41.43.4B ; ACK in caps
OPTIONSm = %x4F.50.54.49.4F.4E.53 ; OPTIONS in caps
BYEm = %x42.59.45 ; BYE in caps
CANCELm = %x43.41.4E.43.45.4C ; CANCEL in caps
REGISTERm = %x52.45.47.49.53.54.45.52 ; REGISTER in caps
Method = INVITEm / ACKm / OPTIONSm / BYEm

/ CANCELm / REGISTERm
/ extension-method

extension-method = token
Response = Status-Line

*(message-header)
CRLF
[message-body]

Status-Line = SIP-Version SP Status-Code SP Reason-Phrase CRLF
Status-Code = Informational

/ Redirection
/ Success
/ Client-Error
/ Server-Error
/ Global-Failure
/ extension-code

extension-code = 3DIGIT
Reason-Phrase = *(reserved / unreserved / escaped

/ UTF8-NONASCII / UTF8-CONT / SP / HTAB)

Informational = "100" ; Trying
/ "180" ; Ringing
/ "181" ; Call Is Being Forwarded
/ "182" ; Queued
/ "183" ; Session Progress

Success = "200" ; OK

Redirection = "300" ; Multiple Choices
/ "301" ; Moved Permanently
/ "302" ; Moved Temporarily
/ "305" ; Use Proxy
/ "380" ; Alternative Service

Client-Error = "400" ; Bad Request
/ "401" ; Unauthorized

Rosenberg, et al. Standards Track [Page 169]

RFC 3261 SIP: Session Initiation Protocol June 2002

/ "402" ; Payment Required
/ "403" ; Forbidden
/ "404" ; Not Found
/ "405" ; Method Not Allowed
/ "406" ; Not Acceptable
/ "407" ; Proxy Authentication Required
/ "408" ; Request Timeout
/ "410" ; Gone
/ "413" ; Request Entity Too Large
/ "414" ; Request-URI Too Large
/ "415" ; Unsupported Media Type
/ "416" ; Unsupported URI Scheme
/ "420" ; Bad Extension
/ "421" ; Extension Required
/ "423" ; Interval Too Brief
/ "480" ; Temporarily not available
/ "481" ; Call Leg/Transaction Does Not Exist
/ "482" ; Loop Detected
/ "483" ; Too Many Hops
/ "484" ; Address Incomplete
/ "485" ; Ambiguous
/ "486" ; Busy Here
/ "487" ; Request Terminated
/ "488" ; Not Acceptable Here
/ "491" ; Request Pending
/ "493" ; Undecipherable

Server-Error = "500" ; Internal Server Error
/ "501" ; Not Implemented
/ "502" ; Bad Gateway
/ "503" ; Service Unavailable
/ "504" ; Server Time-out
/ "505" ; SIP Version not supported
/ "513" ; Message Too Large

Global-Failure = "600" ; Busy Everywhere
/ "603" ; Decline
/ "604" ; Does not exist anywhere
/ "606" ; Not Acceptable

Accept = "Accept" HCOLON
[accept-range *(COMMA accept-range)]

accept-range = media-range *(SEMI accept-param)
media-range = ("*/*"

/ (m-type SLASH "*")

Rosenberg, et al. Standards Track [Page 170]

RFC 3261 SIP: Session Initiation Protocol June 2002

/ (m-type SLASH m-subtype)
) *(SEMI m-parameter)

accept-param = ("q" EQUAL qvalue) / generic-param
qvalue = ("0" ["." 0*3DIGIT])

/ ("1" ["." 0*3("0")])
generic-param = token [EQUAL gen-value]
gen-value = token / host / quoted-string

Accept-Encoding = "Accept-Encoding" HCOLON
[encoding *(COMMA encoding)]

encoding = codings *(SEMI accept-param)
codings = content-coding / "*"
content-coding = token

Accept-Language = "Accept-Language" HCOLON
[language *(COMMA language)]

language = language-range *(SEMI accept-param)
language-range = ((1*8ALPHA *("-" 1*8ALPHA)) / "*")

Alert-Info = "Alert-Info" HCOLON alert-param *(COMMA alert-param)
alert-param = LAQUOT absoluteURI RAQUOT *(SEMI generic-param)

Allow = "Allow" HCOLON [Method *(COMMA Method)]

Authorization = "Authorization" HCOLON credentials
credentials = ("Digest" LWS digest-response)

/ other-response
digest-response = dig-resp *(COMMA dig-resp)
dig-resp = username / realm / nonce / digest-uri

/ dresponse / algorithm / cnonce
/ opaque / message-qop
/ nonce-count / auth-param

username = "username" EQUAL username-value
username-value = quoted-string
digest-uri = "uri" EQUAL LDQUOT digest-uri-value RDQUOT
digest-uri-value = rquest-uri ; Equal to request-uri as specified

by HTTP/1.1
message-qop = "qop" EQUAL qop-value
cnonce = "cnonce" EQUAL cnonce-value
cnonce-value = nonce-value
nonce-count = "nc" EQUAL nc-value
nc-value = 8LHEX
dresponse = "response" EQUAL request-digest
request-digest = LDQUOT 32LHEX RDQUOT
auth-param = auth-param-name EQUAL

Rosenberg, et al. Standards Track [Page 171]

RFC 3261 SIP: Session Initiation Protocol June 2002

(token / quoted-string)
auth-param-name = token
other-response = auth-scheme LWS auth-param

*(COMMA auth-param)
auth-scheme = token

Authentication-Info = "Authentication-Info" HCOLON ainfo
*(COMMA ainfo)

ainfo = nextnonce / message-qop
/ response-auth / cnonce
/ nonce-count

nextnonce = "nextnonce" EQUAL nonce-value
response-auth = "rspauth" EQUAL response-digest
response-digest = LDQUOT *LHEX RDQUOT

Call-ID = ("Call-ID" / "i") HCOLON callid
callid = word ["@" word]

Call-Info = "Call-Info" HCOLON info *(COMMA info)
info = LAQUOT absoluteURI RAQUOT *(SEMI info-param)
info-param = ("purpose" EQUAL ("icon" / "info"

/ "card" / token)) / generic-param

Contact = ("Contact" / "m") HCOLON
(STAR / (contact-param *(COMMA contact-param)))

contact-param = (name-addr / addr-spec) *(SEMI contact-params)
name-addr = [display-name] LAQUOT addr-spec RAQUOT
addr-spec = SIP-URI / SIPS-URI / absoluteURI
display-name = *(token LWS)/ quoted-string

contact-params = c-p-q / c-p-expires
/ contact-extension

c-p-q = "q" EQUAL qvalue
c-p-expires = "expires" EQUAL delta-seconds
contact-extension = generic-param
delta-seconds = 1*DIGIT

Content-Disposition = "Content-Disposition" HCOLON
disp-type *(SEMI disp-param)

disp-type = "render" / "session" / "icon" / "alert"
/ disp-extension-token

disp-param = handling-param / generic-param
handling-param = "handling" EQUAL

("optional" / "required"
/ other-handling)

Rosenberg, et al. Standards Track [Page 172]

RFC 3261 SIP: Session Initiation Protocol June 2002

other-handling = token
disp-extension-token= token

Content-Encoding = ("Content-Encoding" / "e") HCOLON
content-coding *(COMMA content-coding)

Content-Language = "Content-Language" HCOLON
language-tag *(COMMA language-tag)

language-tag = primary-tag *("-" subtag)
primary-tag = 1*8ALPHA
subtag = 1*8ALPHA

Content-Length = ("Content-Length" / "l") HCOLON 1*DIGIT
Content-Type = ("Content-Type" / "c") HCOLON media-type
media-type = m-type SLASH m-subtype *(SEMI m-parameter)
m-type = discrete-type / composite-type
discrete-type = "text" / "image" / "audio" / "video"

/ "application" / extension-token
composite-type = "message" / "multipart" / extension-token
extension-token = ietf-token / x-token
ietf-token = token
x-token = "x-" token
m-subtype = extension-token / iana-token
iana-token = token
m-parameter = m-attribute EQUAL m-value
m-attribute = token
m-value = token / quoted-string

CSeq = "CSeq" HCOLON 1*DIGIT LWS Method

Date = "Date" HCOLON SIP-date
SIP-date = rfc1123-date
rfc1123-date = wkday "," SP date1 SP time SP "GMT"
date1 = 2DIGIT SP month SP 4DIGIT

; day month year (e.g., 02 Jun 1982)
time = 2DIGIT ":" 2DIGIT ":" 2DIGIT

; 00:00:00 - 23:59:59
wkday = "Mon" / "Tue" / "Wed"

/ "Thu" / "Fri" / "Sat" / "Sun"
month = "Jan" / "Feb" / "Mar" / "Apr"

/ "May" / "Jun" / "Jul" / "Aug"
/ "Sep" / "Oct" / "Nov" / "Dec"

Error-Info = "Error-Info" HCOLON error-uri *(COMMA error-uri)
error-uri = LAQUOT absoluteURI RAQUOT *(SEMI generic-param)

Rosenberg, et al. Standards Track [Page 173]

RFC 3261 SIP: Session Initiation Protocol June 2002

Expires = "Expires" HCOLON delta-seconds
From = ("From" / "f") HCOLON from-spec
from-spec = (name-addr / addr-spec)

*(SEMI from-param)
from-param = tag-param / generic-param
tag-param = "tag" EQUAL token

In-Reply-To = "In-Reply-To" HCOLON callid *(COMMA callid)

Max-Forwards = "Max-Forwards" HCOLON 1*DIGIT

MIME-Version = "MIME-Version" HCOLON 1*DIGIT "." 1*DIGIT

Min-Expires = "Min-Expires" HCOLON delta-seconds

Organization = "Organization" HCOLON [TEXT-UTF8-TRIM]

Priority = "Priority" HCOLON priority-value
priority-value = "emergency" / "urgent" / "normal"

/ "non-urgent" / other-priority
other-priority = token

Proxy-Authenticate = "Proxy-Authenticate" HCOLON challenge
challenge = ("Digest" LWS digest-cln *(COMMA digest-cln))

/ other-challenge
other-challenge = auth-scheme LWS auth-param

*(COMMA auth-param)
digest-cln = realm / domain / nonce

/ opaque / stale / algorithm
/ qop-options / auth-param

realm = "realm" EQUAL realm-value
realm-value = quoted-string
domain = "domain" EQUAL LDQUOT URI

*(1*SP URI) RDQUOT
URI = absoluteURI / abs-path
nonce = "nonce" EQUAL nonce-value
nonce-value = quoted-string
opaque = "opaque" EQUAL quoted-string
stale = "stale" EQUAL ("true" / "false")
algorithm = "algorithm" EQUAL ("MD5" / "MD5-sess"

/ token)
qop-options = "qop" EQUAL LDQUOT qop-value

*("," qop-value) RDQUOT
qop-value = "auth" / "auth-int" / token

Rosenberg, et al. Standards Track [Page 174]

RFC 3261 SIP: Session Initiation Protocol June 2002

Proxy-Authorization = "Proxy-Authorization" HCOLON credentials

Proxy-Require = "Proxy-Require" HCOLON option-tag
*(COMMA option-tag)

option-tag = token

Record-Route = "Record-Route" HCOLON rec-route *(COMMA rec-route)
rec-route = name-addr *(SEMI rr-param)
rr-param = generic-param

Reply-To = "Reply-To" HCOLON rplyto-spec
rplyto-spec = (name-addr / addr-spec)

*(SEMI rplyto-param)
rplyto-param = generic-param
Require = "Require" HCOLON option-tag *(COMMA option-tag)

Retry-After = "Retry-After" HCOLON delta-seconds
[comment] *(SEMI retry-param)

retry-param = ("duration" EQUAL delta-seconds)
/ generic-param

Route = "Route" HCOLON route-param *(COMMA route-param)
route-param = name-addr *(SEMI rr-param)

Server = "Server" HCOLON server-val *(LWS server-val)
server-val = product / comment
product = token [SLASH product-version]
product-version = token

Subject = ("Subject" / "s") HCOLON [TEXT-UTF8-TRIM]

Supported = ("Supported" / "k") HCOLON
[option-tag *(COMMA option-tag)]

Timestamp = "Timestamp" HCOLON 1*(DIGIT)
["." *(DIGIT)] [LWS delay]

delay = *(DIGIT) ["." *(DIGIT)]

To = ("To" / "t") HCOLON (name-addr
/ addr-spec) *(SEMI to-param)

to-param = tag-param / generic-param

Unsupported = "Unsupported" HCOLON option-tag *(COMMA option-tag)

Rosenberg, et al. Standards Track [Page 175]

RFC 3261 SIP: Session Initiation Protocol June 2002

User-Agent = "User-Agent" HCOLON server-val *(LWS server-val)

Via = ("Via" / "v") HCOLON via-parm *(COMMA via-parm)
via-parm = sent-protocol LWS sent-by *(SEMI via-params)
via-params = via-ttl / via-maddr

/ via-received / via-branch
/ via-extension

via-ttl = "ttl" EQUAL ttl
via-maddr = "maddr" EQUAL host
via-received = "received" EQUAL (IPv4address / IPv6address)
via-branch = "branch" EQUAL token
via-extension = generic-param
sent-protocol = protocol-name SLASH protocol-version

SLASH transport
protocol-name = "SIP" / token
protocol-version = token
transport = "UDP" / "TCP" / "TLS" / "SCTP"

/ other-transport
sent-by = host [COLON port]
ttl = 1*3DIGIT ; 0 to 255

Warning = "Warning" HCOLON warning-value *(COMMA warning-value)
warning-value = warn-code SP warn-agent SP warn-text
warn-code = 3DIGIT
warn-agent = hostport / pseudonym

; the name or pseudonym of the server adding
; the Warning header, for use in debugging

warn-text = quoted-string
pseudonym = token

WWW-Authenticate = "WWW-Authenticate" HCOLON challenge

extension-header = header-name HCOLON header-value
header-name = token
header-value = *(TEXT-UTF8char / UTF8-CONT / LWS)
message-body = *OCTET

26 Security Considerations: Threat Model and Security Usage Recommen-
dations

SIP is not an easy protocol to secure. Its use of intermediaries, its multi-faceted trust relationships, its
expected usage between elements with no trust at all, and its user-to-user operation make security far from
trivial. Security solutions are needed that are deployable today, without extensive coordination, in a wide
variety of environments and usages. In order to meet these diverse needs, several distinct mechanisms

Rosenberg, et al. Standards Track [Page 176]

RFC 3261 SIP: Session Initiation Protocol June 2002

applicable to different aspects and usages of SIP will be required.

Note that the security of SIP signaling itself has no bearing on the security of protocols used in concert with
SIP such as RTP, or with the security implications of any specific bodies SIP might carry (although MIME
security plays a substantial role in securing SIP). Any media associated with a session can be encrypted
end-to-end independently of any associated SIP signaling. Media encryption is outside the scope of this
document.

The considerations that follow first examine a set of classic threat models that broadly identify the security
needs of SIP. The set of security services required to address these threats is then detailed, followed by an
explanation of several security mechanisms that can be used to provide these services. Next, the require-
ments for implementers of SIP are enumerated, along with exemplary deployments in which these security
mechanisms could be used to improve the security of SIP. Some notes on privacy conclude this section.

26.1 Attacks and Threat Models

This section details some threats that should be common to most deployments of SIP. These threats have
been chosen specifically to illustrate each of the security services that SIP requires.

The following examples by no means provide an exhaustive list of the threats against SIP; rather, these are
“classic” threats that demonstrate the need for particular security services that can potentially prevent whole
categories of threats.

These attacks assume an environment in which attackers can potentially read any packet on the network -
it is anticipated that SIP will frequently be used on the public Internet. Attackers on the network may be
able to modify packets (perhaps at some compromised intermediary). Attackers may wish to steal services,
eavesdrop on communications, or disrupt sessions.

26.1.1 Registration Hijacking

The SIP registration mechanism allows a user agent to identify itself to a registrar as a device at which a
user (designated by an address of record) is located. A registrar assesses the identity asserted in theFrom
header field of aREGISTER message to determine whether this request can modify the contact addresses
associated with the address-of-record in theTo header field. While these two fields are frequently the same,
there are many valid deployments in which a third-party may register contacts on a user’s behalf.

The From header field of a SIP request, however, can be modified arbitrarily by the owner of a UA, and
this opens the door to malicious registrations. An attacker that successfully impersonates a party authorized
to change contacts associated with an address-of-record could, for example, de-register all existing contacts
for a URI and then register their own device as the appropriate contact address, thereby directing all requests
for the affected user to the attacker’s device.

This threat belongs to a family of threats that rely on the absence of cryptographic assurance of a request’s
originator. Any SIP UAS that represents a valuable service (a gateway that interworks SIP requests with
traditional telephone calls, for example) might want to control access to its resources by authenticating
requests that it receives. Even end-user UAs, for example SIP phones, have an interest in ascertaining the
identities of originators of requests.

This threat demonstrates the need for security services that enable SIP entities to authenticate the originators

Rosenberg, et al. Standards Track [Page 177]

RFC 3261 SIP: Session Initiation Protocol June 2002

of requests.

26.1.2 Impersonating aServer

The domain to which a request is destined is generally specified in theRequest-URI. UAs commonly
contact a server in this domain directly in order to deliver a request. However, there is always a possibility
that an attacker could impersonate the remote server, and that the UA’s request could be intercepted by some
other party.

For example, consider a case in which a redirect server at one domain, chicago.com, impersonates a redirect
server at another domain, biloxi.com. A user agent sends a request tobiloxi.com , but the redirect server
at chicago.com answers with a forged response that has appropriate SIP header fields for a response from
biloxi.com . The forged contact addresses in the redirection response could direct the originating UA to
inappropriate or insecure resources, or simply prevent requests forbiloxi.com from succeeding.

This family of threats has a vast membership, many of which are critical. As a converse to the regis-
tration hijacking threat, consider the case in which a registration sent tobiloxi.com is intercepted by
chicago.com, which replies to the intercepted registration with a forged 301 (Moved Permanently) response.
This response might seem to come from biloxi.com yet designate chicago.com as the appropriate registrar.
All future REGISTER requests from the originating UA would then go to chicago.com.

Prevention of this threat requires a means by which UAs can authenticate the servers to whom they send
requests.

26.1.3 Tampering with Message Bodies

As a matter of course, SIP UAs route requests through trusted proxy servers. Regardless of how that trust is
established (authentication of proxies is discussed elsewhere in this section), a UA may trust a proxy server
to route a request, but not to inspect or possibly modify the bodies contained in that request.

Consider a UA that is using SIP message bodies to communicate session encryption keys for a media session.
Although it trusts the proxy server of the domain it is contacting to deliver signaling properly, it may not
want the administrators of that domain to be capable of decrypting any subsequent media session. Worse
yet, if the proxy server were actively malicious, it could modify the session key, either acting as a man-in-
the-middle, or perhaps changing the security characteristics requested by the originating UA.

This family of threats applies not only to session keys, but to most conceivable forms of content carried end-
to-end in SIP. These might include MIME bodies that should be rendered to the user, SDP, or encapsulated
telephony signals, among others. Attackers might attempt to modify SDP bodies, for example, in order to
point RTP media streams to a wiretapping device in order to eavesdrop on subsequent voice communications.

Also note that some header fields in SIP are meaningful end-to-end, for example,Subject. UAs might be
protective of these header fields as well as bodies (a malicious intermediary changing theSubject header
field might make an important request appear to be spam, for example). However, since many header fields
are legitimately inspected or altered by proxy servers as a request is routed, not all header fields should be
secured end-to-end.

For these reasons, the UA might want to secure SIP message bodies, and in some limited cases header
fields, end-to-end. The security services required for bodies include confidentiality, integrity, and authen-

Rosenberg, et al. Standards Track [Page 178]

RFC 3261 SIP: Session Initiation Protocol June 2002

tication. These end-to-end services should be independent of the means used to secure interactions with
intermediaries such as proxy servers.

26.1.4 Tearing Down Sessions

Once a dialog has been established by initial messaging, subsequent requests can be sent that modify the
state of the dialog and/or session. It is critical that principals in a session can be certain that such requests
are not forged by attackers.

Consider a case in which a third-party attacker captures some initial messages in a dialog shared by two
parties in order to learn the parameters of the session (To tag, From tag, and so forth) and then inserts a
BYE request into the session. The attacker could opt to forge the request such that it seemed to come from
either participant. Once theBYE is received by its target, the session will be torn down prematurely.

Similar mid-session threats include the transmission of forged re-INVITEs that alter the session (possibly to
reduce session security or redirect media streams as part of a wiretapping attack).

The most effective countermeasure to this threat is the authentication of the sender of theBYE. In this in-
stance, the recipient needs only know that theBYE came from the same party with whom the corresponding
dialog was established (as opposed to ascertaining the absolute identity of the sender). Also, if the attacker
is unable to learn the parameters of the session due to confidentiality, it would not be possible to forge the
BYE. However, some intermediaries (like proxy servers) will need to inspect those parameters as the session
is established.

26.1.5 Denial of Service and Amplification

Denial-of-service attacks focus on rendering a particular network element unavailable, usually by directing
an excessive amount of network traffic at its interfaces. A distributed denial-of-service attack allows one
network user to cause multiple network hosts to flood a target host with a large amount of network traffic.

In many architectures, SIP proxy servers face the public Internet in order to accept requests from worldwide
IP endpoints. SIP creates a number of potential opportunities for distributed denial-of-service attacks that
must be recognized and addressed by the implementers and operators of SIP systems.

Attackers can create bogus requests that contain a falsified source IP address and a correspondingVia header
field that identify a targeted host as the originator of the request and then send this request to a large number
of SIP network elements, thereby using hapless SIP UAs or proxies to generate denial-of-service traffic
aimed at the target.

Similarly, attackers might use falsifiedRoute header field values in a request that identify the target host
and then send such messages to forking proxies that will amplify messaging sent to the target.

Record-Route could be used to similar effect when the attacker is certain that the SIP dialog initiated by
the request will result in numerous transactions originating in the backwards direction.

A number of denial-of-service attacks open up ifREGISTER requests are not properly authenticated and
authorized by registrars. Attackers could de-register some or all users in an administrative domain, thereby
preventing these users from being invited to new sessions. An attacker could also register a large number
of contacts designating the same host for a given address-of-record in order to use the registrar and any
associated proxy servers as amplifiers in a denial-of-service attack. Attackers might also attempt to deplete

Rosenberg, et al. Standards Track [Page 179]

RFC 3261 SIP: Session Initiation Protocol June 2002

available memory and disk resources of a registrar by registering huge numbers of bindings.

The use of multicast to transmit SIP requests can greatly increase the potential for denial-of-service attacks.

These problems demonstrate a general need to define architectures that minimize the risks of denial-of-
service, and the need to be mindful in recommendations for security mechanisms of this class of attacks.

26.2 Security Mechanisms

From the threats described above, we gather that the fundamental security services required for the SIP
protocol are: preserving the confidentiality and integrity of messaging, preventing replay attacks or message
spoofing, providing for the authentication and privacy of the participants in a session, and preventing denial-
of-service attacks. Bodies within SIP messages separately require the security services of confidentiality,
integrity, and authentication.

Rather than defining new security mechanisms specific to SIP, SIP reuses wherever possible existing security
models derived from the HTTP and SMTP space.

Full encryption of messages provides the best means to preserve the confidentiality of signaling - it can
also guarantee that messages are not modified by any malicious intermediaries. However, SIP requests
and responses cannot be naively encrypted end-to-end in their entirety because message fields such as the
Request-URI, Route, andVia need to be visible to proxies in most network architectures so that SIP
requests are routed correctly. Note that proxy servers need to modify some features of messages as well (such
as addingVia header field values) in order for SIP to function. Proxy servers must therefore be trusted, to
some degree, by SIP UAs. To this purpose, low-layer security mechanisms for SIP are recommended, which
encrypt the entire SIP requests or responses on the wire on a hop-by-hop basis, and that allow endpoints to
verify the identity of proxy servers to whom they send requests.

SIP entities also have a need to identify one another in a secure fashion. When a SIP endpoint asserts the
identity of its user to a peer UA or to a proxy server, that identity should in some way be verifiable. A
cryptographic authentication mechanism is provided in SIP to address this requirement.

An independent security mechanism for SIP message bodies supplies an alternative means of end-to-end
mutual authentication, as well as providing a limit on the degree to which user agents must trust intermedi-
aries.

26.2.1 Transport and Network Layer Security

Transport or network layer security encrypts signaling traffic, guaranteeing message confidentiality and
integrity.

Oftentimes, certificates are used in the establishment of lower-layer security, and these certificates can also
be used to provide a means of authentication in many architectures.

Two popular alternatives for providing security at the transport and network layer are, respectively, TLS [24]
and IPSec [25].

IPSec is a set of network-layer protocol tools that collectively can be used as a secure replacement for
traditional IP (Internet Protocol). IPSec is most commonly used in architectures in which a set of hosts or
administrative domains have an existing trust relationship with one another. IPSec is usually implemented
at the operating system level in a host, or on a security gateway that provides confidentiality and integrity

Rosenberg, et al. Standards Track [Page 180]

RFC 3261 SIP: Session Initiation Protocol June 2002

for all traffic it receives from a particular interface (as in a VPN architecture). IPSec can also be used on a
hop-by-hop basis.

In many architectures IPSec does not require integration with SIP applications; IPSec is perhaps best suited
to deployments in which adding security directly to SIP hosts would be arduous. UAs that have a pre-shared
keying relationship with their first-hop proxy server are also good candidates to use IPSec. Any deployment
of IPSec for SIP would require an IPSec profile describing the protocol tools that would be required to
secure SIP. No such profile is given in this document.

TLS provides transport-layer security over connection-oriented protocols (for the purposes of this document,
TCP); “tls” (signifying TLS over TCP) can be specified as the desired transport protocol within aVia header
field value or a SIP-URI. TLS is most suited to architectures in which hop-by-hop security is required
between hosts with no pre-existing trust association. For example, Alice trusts her local proxy server, which
after a certificate exchange decides to trust Bob’s local proxy server, which Bob trusts, hence Bob and Alice
can communicate securely.

TLS must be tightly coupled with a SIP application. Note that transport mechanisms are specified on a
hop-by-hop basis in SIP, thus a UA that sends requests over TLS to a proxy server has no assurance that
TLS will be used end-to-end.

TheTLS_RSA_WITH_AES_128_CBC_SHAciphersuite [26]MUST be supported at a minimum by imple-
menters when TLS is used in a SIP application. For purposes of backwards compatibility, proxy servers,
redirect servers, and registrarsSHOULD supportTLS_RSA_WITH_3DES_EDE_CBC_SHA. Implementers
MAY also support any other ciphersuite.

26.2.2 SIPS URI Scheme

The SIPS URI scheme adheres to the syntax of the SIP URI (described in 19), although the scheme string is
“sips” rather than “sip”. The semantics of SIPS are very different from the SIP URI, however. SIPS allows
resources to specify that they should be reached securely.

A SIPS URI can be used as an address-of-record for a particular user - the URI by which the user is canon-
ically known (on their business cards, in theFrom header field of their requests, in theTo header field of
REGISTER requests). When used as theRequest-URI of a request, the SIPS scheme signifies that each
hop over which the request is forwarded, until the request reaches the SIP entity responsible for the domain
portion of theRequest-URI, must be secured with TLS; once it reaches the domain in question it is han-
dled in accordance with local security and routing policy, quite possibly using TLS for any last hop to a
UAS. When used by the originator of a request (as would be the case if they employed a SIPS URI as the
address-of-record of the target), SIPS dictates that the entire request path to the target domain be so secured.

The SIPS scheme is applicable to many of the other ways in which SIP URIs are used in SIP today in
addition to theRequest-URI, including in addresses-of-record, contact addresses (the contents ofContact
headers, including those ofREGISTER methods), andRoute headers. In each instance, the SIPS URI
scheme allows these existing fields to designate secure resources. The manner in which a SIPS URI is
dereferenced in any of these contexts has its own security properties which are detailed in [4].

The use of SIPS in particular entails that mutual TLS authenticationSHOULD be employed, asSHOULD

the ciphersuiteTLS_RSA_WITH_AES_128_CBC_SHA. Certificates received in the authentication process
SHOULD be validated with root certificates held by the client; failure to validate a certificateSHOULD result
in the failure of the request.

Rosenberg, et al. Standards Track [Page 181]

RFC 3261 SIP: Session Initiation Protocol June 2002

Note that in the SIPS URI scheme, transport is independent of TLS, and thussips:alice@atlanta.com;transport=tcp
andsips:alice@atlanta.com;transport=sctp are both valid (although note that UDP is not a valid
transport for SIPS). The use oftransport=tls has consequently been deprecated, partly because it was specific to a
single hop of the request. This is a change since RFC 2543.

Users that distribute a SIPS URI as an address-of-record may elect to operate devices that refuse requests
over insecure transports.

26.2.3 HTTP Authentication

SIP provides a challenge capability, based on HTTP authentication, that relies on the 401 and 407 response
codes as well as header fields for carrying challenges and credentials. Without significant modification, the
reuse of the HTTP Digest authentication scheme in SIP allows for replay protection and one-way authenti-
cation.

The usage of Digest authentication in SIP is detailed in Section 22.

26.2.4 S/MIME

As is discussed above, encrypting entire SIP messages end-to-end for the purpose of confidentiality is not
appropriate because network intermediaries (like proxy servers) need to view certain header fields in order
to route messages correctly, and if these intermediaries are excluded from security associations, then SIP
messages will essentially be non-routable.

However, S/MIME allows SIP UAs to encrypt MIME bodies within SIP, securing these bodies end-to-
end without affecting message headers. S/MIME can provide end-to-end confidentiality and integrity for
message bodies, as well as mutual authentication. It is also possible to use S/MIME to provide a form of
integrity and confidentiality for SIP header fields through SIP message tunneling.

The usage of S/MIME in SIP is detailed in Section 23.

26.3 Implementing Security Mechanisms

26.3.1 Requirements for Implementers of SIP

Proxy servers, redirect servers, and registrarsMUST implement TLS, andMUST support both mutual and
one-way authentication. It is stronglyRECOMMENDED that UAs be capable initiating TLS; UAsMAY

also be capable of acting as a TLS server. Proxy servers, redirect servers, and registrarsSHOULD possess
a site certificate whose subject corresponds to their canonical hostname. UAsMAY have certificates of
their own for mutual authentication with TLS, but no provisions are set forth in this document for their
use. All SIP elements that support TLSMUST have a mechanism for validating certificates received during
TLS negotiation; this entails possession of one or more root certificates issued by certificate authorities
(preferably well-known distributors of site certificates comparable to those that issue root certificates for
web browsers).

All SIP elements that support TLSMUST also support the SIPS URI scheme.

Proxy servers, redirect servers, registrars, and UAsMAY also implement IPSec or other lower-layer security
protocols.

Rosenberg, et al. Standards Track [Page 182]

RFC 3261 SIP: Session Initiation Protocol June 2002

When a UA attempts to contact a proxy server, redirect server, or registrar, the UACSHOULD initiate a TLS
connection over which it will send SIP messages. In some architectures, UASsMAY receive requests over
such TLS connections as well.

Proxy servers, redirect servers, registrars, and UAsMUST implement DigestAuthorization, encompassing
all of the aspects required in 22. Proxy servers, redirect servers, and registrarsSHOULD be configured with
at least one Digest realm, and at least onerealm string supported by a given serverSHOULD correspond to
the server’s hostname or domainname.

UAs MAY support the signing and encrypting of MIME bodies, and transference of credentials with S/MIME
as described in Section 23. If a UA holds one or more root certificates of certificate authorities in order to
validate certificates for TLS or IPSec, itSHOULD be capable of reusing these to verify S/MIME certificates,
as appropriate. A UAMAY hold root certificates specifically for validating S/MIME certificates.

Note that is it anticipated that future security extensions may upgrade the normative strength associated with
S/MIME as S/MIME implementations appear and the problem space becomes better understood.

26.3.2 Security Solutions

The operation of these security mechanisms in concert can follow the existing web and email security models
to some degree. At a high level, UAs authenticate themselves to servers (proxy servers, redirect servers, and
registrars) with a Digest username and password; servers authenticate themselves to UAs one hop away, or
to another server one hop away (and vice versa), with a site certificate delivered by TLS.

On a peer-to-peer level, UAs trust the network to authenticate one another ordinarily; however, S/MIME
can also be used to provide direct authentication when the network does not, or if the network itself is not
trusted.

The following is an illustrative example in which these security mechanisms are used by various UAs and
servers to prevent the sorts of threats described in Section 26.1. While implementers and network adminis-
tratorsMAY follow the normative guidelines given in the remainder of this section, these are provided only
as example implementations.

Registration When a UA comes online and registers with its local administrative domain, itSHOULD

establish a TLS connection with its registrar (Section 10 describes how the UA reaches its registrar). The
registrarSHOULD offer a certificate to the UA, and the site identified by the certificateMUST correspond
with the domain in which the UA intends to register; for example, if the UA intends to register the address-
of-record alice@atlanta.com , the site certificate must identify a host within the domain (such as
sip.atlanta.com). When it receives the TLS Certificate message, the UASHOULD verify the certificate and
inspect the site identified by the certificate. If the certificate is invalid, revoked, or if it does not identify
the appropriate party, the UAMUST NOT send theREGISTER message and otherwise proceed with the
registration.

When a valid certificate has been provided by the registrar, the UA knows that the registrar is not an attacker who
might redirect the UA, steal passwords, or attempt any similar attacks.

The UA then creates aREGISTER request thatSHOULD be addressed to aRequest-URI corresponding to
the site certificate received from the registrar. When the UA sends theREGISTER request over the existing
TLS connection, the registrarSHOULD challenge the request with a 401 (Proxy Authentication Required)

Rosenberg, et al. Standards Track [Page 183]

RFC 3261 SIP: Session Initiation Protocol June 2002

response. Therealm parameter within theProxy-Authenticate header field of the responseSHOULD cor-
respond to the domain previously given by the site certificate. When the UAC receives the challenge, it
SHOULD either prompt the user for credentials or take an appropriate credential from a keyring correspond-
ing to therealm parameter in the challenge. The username of this credentialSHOULD correspond with the
userinfo portion of the URI in theTo header field of theREGISTER request. Once the Digest creden-
tials have been inserted into an appropriateProxy-Authorization header field, theREGISTER should be
resubmitted to the registrar.

Since the registrar requires the user agent to authenticate itself, it would be difficult for an attacker to forgeREG-
ISTER requests for the user’s address-of-record. Also note that since theREGISTER is sent over a confidential
TLS connection, attackers will not be able to intercept theREGISTER to record credentials for any possible replay
attack.

Once the registration has been accepted by the registrar, the UASHOULD leave this TLS connection open
provided that the registrar also acts as the proxy server to which requests are sent for users in this adminis-
trative domain. The existing TLS connection will be reused to deliver incoming requests to the UA that has
just completed registration.

Because the UA has already authenticated the server on the other side of the TLS connection, all requests that come
over this connection are known to have passed through the proxy server - attackers cannot create spoofed requests
that appear to have been sent through that proxy server.

Interdomain Requests Now let’s say that Alice’s UA would like to initiate a session with a user in a
remote administrative domain, namelybob@biloxi.com . We will also say that the local administrative
domain (atlanta.com) has a local outbound proxy.

The proxy server that handles inbound requests for an administrative domainMAY also act as a local out-
bound proxy; for simplicity’s sake we’ll assume this to be the case for (otherwise the user agent would
initiate a new TLS connection to a separate server at this point). Assuming that the client has completed
the registration process described in the preceding section, itSHOULD reuse the TLS connection to the local
proxy server when it sends anINVITE request to another user. The UASHOULD reuse cached credentials
in the INVITE to avoid prompting the user unnecessarily.

When the local outbound proxy server has validated the credentials presented by the UA in theINVITE,
it SHOULD inspect theRequest-URI to determine how the message should be routed (see [4]). If the
domainname portion of theRequest-URI had corresponded to the local domain (atlanta.com) rather than
biloxi.com , then the proxy server would have consulted its location service to determine how best to
reach the requested user.

Hadalice@atlanta.com been attempting to contact, say,alex@atlanta.com , the local proxy would have
proxied to the request to the TLS connection Alex had established with the registrar when he registered. Since
Alex would receive this request over his authenticated channel, he would be assured that Alice’s request had been
authorized by the proxy server of the local administrative domain.

However, in this instance theRequest-URI designates a remote domain. The local outbound proxy server
at SHOULD therefore establish a TLS connection with the remote proxy server at biloxi.com. Since both of
the participants in this TLS connection are servers that possess site certificates, mutual TLS authentication
SHOULD occur. Each side of the connectionSHOULD verify and inspect the certificate of the other, noting
the domain name that appears in the certificate for comparison with the header fields of SIP messages. The

Rosenberg, et al. Standards Track [Page 184]

RFC 3261 SIP: Session Initiation Protocol June 2002

proxy server, for example,SHOULD verify at this stage that the certificate received from the remote side cor-
responds with thebiloxi.com domain. Once it has done so, and TLS negotiation has completed, resulting
in a secure channel between the two proxies, the proxy can forward theINVITE request to biloxi.com.

The proxy server atbiloxi.com SHOULD inspect the certificate of the proxy server at in turn and compare
the domain asserted by the certificate with thedomainname portion of theFrom header field in theINVITE
request. The biloxi proxyMAY have a strict security policy that requires it to reject requests that do not match
the administrative domain from which they have been proxied.

Such security policies could be instituted to prevent the SIP equivalent of SMTP `open relays’ that are frequently
exploited to generate spam.

This policy, however, only guarantees that the request came from the domain it ascribes to itself; it does not
allow biloxi.com to ascertain how authenticated Alice. Only ifbiloxi.com has some other way of
knowing’s authentication policies could it possibly ascertain how Alice proved her identity.biloxi.com
might then institute an even stricter policy that forbids requests that come from domains that are not known
administratively to share a common authentication policy withbiloxi.com .

Once theINVITE has been approved by the biloxi proxy, the proxy serverSHOULD identify the existing
TLS channel, if any, associated with the user targeted by this request (in this casebob@biloxi.com).
The INVITE should be proxied through this channel to Bob. Since the request is received over a TLS
connection that had previously been authenticated as the biloxi proxy, Bob knows that theFrom header field
was not tampered with and that atlanta.com has validated Alice, although not necessarily whether or not to
trust Alice’s identity.

Before they forward the request, both proxy serversSHOULD add aRecord-Route header field to the
request so that all future requests in this dialog will pass through the proxy servers. The proxy servers can
thereby continue to provide security services for the lifetime of this dialog. If the proxy servers do not add
themselves to theRecord-Route, future messages will pass directly end-to-end between Alice and Bob
without any security services (unless the two parties agree on some independent end-to-end security such
as S/MIME). In this respect the SIP trapezoid model can provide a nice structure where conventions of
agreement between the site proxies can provide a reasonably secure channel between Alice and Bob.

An attacker preying on this architecture would, for example, be unable to forge aBYE request and insert it into
the signaling stream between Bob and Alice because the attacker has no way of ascertaining the parameters of the
session and also because the integrity mechanism transitively protects the traffic between Alice and Bob.

Peer-to-Peer Requests Alternatively, consider a UA asserting the identitycarol@chicago.com that
has no local outbound proxy. When Carol wishes to send anINVITE to bob@biloxi.com , her UA
SHOULD initiate a TLS connection with the biloxi proxy directly (using the mechanism described in [4]
to determine how to best to reach the givenRequest-URI). When her UA receives a certificate from the
biloxi proxy, it SHOULD be verified normally before she passes herINVITE across the TLS connection.
However, Carol has no means of proving her identity to the biloxi proxy, but she does have a CMS-detached
signature over a “message/sip” body in theINVITE. It is unlikely in this instance that Carol would have
any credentials in thebiloxi.com realm, since she has no formal association withbiloxi.com . The
biloxi proxy MAY also have a strict policy that precludes it from even bothering to challenge requests that
do not havebiloxi.com in thedomainname portion of theFrom header field - it treats these users as
unauthenticated.

Rosenberg, et al. Standards Track [Page 185]

RFC 3261 SIP: Session Initiation Protocol June 2002

The biloxi proxy has a policy for Bob that all non-authenticated requests should be redirected to the appro-
priate contact address registered againstbob@biloxi.com , namely<sip:bob@192.0.2.4> . Carol
receives the redirection response over the TLS connection she established with the biloxi proxy, so she trusts
the veracity of the contact address.

CarolSHOULD then establish a TCP connection with the designated address and send a newINVITE with a
Request-URI containing the received contact address (recomputing the signature in the body as the request
is readied). Bob receives thisINVITE on an insecure interface, but his UA inspects and, in this instance,
recognizes theFrom header field of the request and subsequently matches a locally cached certificate with
the one presented in the signature of the body of theINVITE. He replies in similar fashion, authenticating
himself to Carol, and a secure dialog begins.

Sometimes firewalls or NATs in an administrative domain could preclude the establishment of a direct TCP connec-
tion to a UA. In these cases, proxy servers could also potentially relay requests to UAs in a way that has no trust
implications (for example, forgoing an existing TLS connection and forwarding the request over cleartext TCP) as
local policy dictates.

DoS Protection In order to minimize the risk of a denial-of-service attack against architectures using these
security solutions, implementers should take note of the following guidelines.

When the host on which a SIP proxy server is operating is routable from the public Internet, itSHOULD

be deployed in an administrative domain with defensive operational policies (blocking source-routed traffic,
preferably filtering ping traffic). Both TLS and IPSec can also make use of bastion hosts at the edges of
administrative domains that participate in the security associations to aggregate secure tunnels and sockets.
These bastion hosts can also take the brunt of denial-of-service attacks, ensuring that SIP hosts within the
administrative domain are not encumbered with superfluous messaging.

No matter what security solutions are deployed, floods of messages directed at proxy servers can lock up
proxy server resources and prevent desirable traffic from reaching its destination. There is a computational
expense associated with processing a SIP transaction at a proxy server, and that expense is greater for
stateful proxy servers than it is for stateless proxy servers. Therefore, stateful proxies are more susceptible
to flooding than stateless proxy servers.

UAs and proxy serversSHOULD challenge questionable requests with only a single 401 (Unauthorized)
or 407 (Proxy Authentication Required), forgoing the normal response retransmission algorithm, and thus
behaving statelessly towards unauthenticated requests.

Retransmitting the 401 (Unauthorized) or 407 (Proxy Authentication Required) status response amplifies the prob-
lem of an attacker using a falsified header field value (such asVia) to direct traffic to a third party.

In summary, the mutual authentication of proxy servers through mechanisms such as TLS significantly
reduces the potential for rogue intermediaries to introduce falsified requests or responses that can deny
service. This commensurately makes it harder for attackers to make innocent SIP nodes into agents of
amplification.

26.4 Limitations

Although these security mechanisms, when applied in a judicious manner, can thwart many threats, there are
limitations in the scope of the mechanisms that must be understood by implementers and network operators.

Rosenberg, et al. Standards Track [Page 186]

RFC 3261 SIP: Session Initiation Protocol June 2002

26.4.1 HTTP Digest

One of the primary limitations of using HTTP Digest in SIP is that the integrity mechanisms in Digest do
not work very well for SIP. Specifically, they offer protection of theRequest-URI and the method of a
message, but not for any of the header fields that UAs would most likely wish to secure.

The existing replay protection mechanisms described in RFC 2617 also have some limitations for SIP. The
next-nonce mechanism, for example, does not support pipelined requests. The nonce-count mechanism
should be used for replay protection.

Another limitation of HTTP Digest is the scope of realms. Digest is valuable when a user wants to au-
thenticate themselves to a resource with which they have a pre-existing association, like a service provider
of which the user is a customer (which is quite a common scenario and thus Digest provides an extremely
useful function). By way of contrast, the scope of TLS is interdomain or multirealm, since certificates are
often globally verifiable, so that the UA can authenticate the server with no pre-existing association.

26.4.2 S/MIME

The largest outstanding defect with the S/MIME mechanism is the lack of a prevalent public key infrastruc-
ture for end users. If self-signed certificates (or certificates that cannot be verified by one of the participants
in a dialog) are used, the SIP-based key exchange mechanism described in Section 23.2 is susceptible to a
man-in-the-middle attack with which an attacker can potentially inspect and modify S/MIME bodies. The
attacker needs to intercept the first exchange of keys between the two parties in a dialog, remove the exist-
ing CMS-detached signatures from the request and response, and insert a different CMS-detached signature
containing a certificate supplied by the attacker (but which seems to be a certificate for the proper address-
of-record). Each party will think they have exchanged keys with the other, when in fact each has the public
key of the attacker.

It is important to note that the attacker can only leverage this vulnerability on the first exchange of keys
between two parties - on subsequent occasions, the alteration of the key would be noticeable to the UAs. It
would also be difficult for the attacker to remain in the path of all future dialogs between the two parties
over time (as potentially days, weeks, or years pass).

SSH is susceptible to the same man-in-the-middle attack on the first exchange of keys; however, it is widely
acknowledged that while SSH is not perfect, it does improve the security of connections. The use of key
fingerprints could provide some assistance to SIP, just as it does for SSH. For example, if two parties use
SIP to establish a voice communications session, each could read off the fingerprint of the key they received
from the other, which could be compared against the original. It would certainly be more difficult for the
man-in-the-middle to emulate the voices of the participants than their signaling (a practice that was used
with the Clipper chip-based secure telephone).

The S/MIME mechanism allows UAs to send encrypted requests without preamble if they possess a certifi-
cate for the destination address-of-record on their keyring. However, it is possible that any particular device
registered for an address-of-record will not hold the certificate that has been previously employed by the
device’s current user, and that it will therefore be unable to process an encrypted request properly, which
could lead to some avoidable error signaling. This is especially likely when an encrypted request is forked.

The keys associated with S/MIME are most useful when associated with a particular user (an address-of-
record) rather than a device (a UA). When users move between devices, it may be difficult to transport

Rosenberg, et al. Standards Track [Page 187]

RFC 3261 SIP: Session Initiation Protocol June 2002

private keys securely between UAs; how such keys might be acquired by a device is outside the scope of
this document.

Another, more prosaic difficulty with the S/MIME mechanism is that it can result in very large messages,
especially when the SIP tunneling mechanism described in Section 23.4 is used. For that reason, it is
RECOMMENDED that TCP should be used as a transport protocol when S/MIME tunneling is employed.

26.4.3 TLS

The most commonly voiced concern about TLS is that it cannot run over UDP; TLS requires a connection-
oriented underlying transport protocol, which for the purposes of this document means TCP.

It may also be arduous for a local outbound proxy server and/or registrar to maintain many simultaneous
long-lived TLS connections with numerous UAs. This introduces some valid scalability concerns, especially
for intensive ciphersuites. Maintaining redundancy of long-lived TLS connections, especially when a UA is
solely responsible for their establishment, could also be cumbersome.

TLS only allows SIP entities to authenticate servers to which they are adjacent; TLS offers strictly hop-by-
hop security. Neither TLS, nor any other mechanism specified in this document, allows clients to authenti-
cate proxy servers to whom they cannot form a direct TCP connection.

26.4.4 SIPS URIs

Actually using TLS on every segment of a request path entails that the terminating UAS must be reachable
over TLS (perhaps registering with a SIPS URI as a contact address). This is the preferred use of SIPS. Many
valid architectures, however, use TLS to secure part of the request path, but rely on some other mechanism
for the final hop to a UAS, for example. Thus SIPS cannot guarantee that TLS usage will be truly end-to-
end. Note that since many UAs will not accept incoming TLS connections, even those UAs that do support
TLS may be required to maintain persistent TLS connections as described in the TLS limitations section
above in order to receive requests over TLS as a UAS.

Location services are not required to provide a SIPS binding for a SIPSRequest-URI. Although location
services are commonly populated by user registrations (as described in Section 10.2.1), various other proto-
cols and interfaces could conceivably supply contact addresses for an AOR, and these tools are free to map
SIPS URIs to SIP URIs as appropriate. When queried for bindings, a location service returns its contact
addresses without regard for whether it received a request with a SIPSRequest-URI. If a redirect server is
accessing the location service, it is up to the entity that processes theContact header field of a redirection
to determine the propriety of the contact addresses.

Ensuring that TLS will be used for all of the request segments up to the target domain is somewhat complex.
It is possible that cryptographically authenticated proxy servers along the way that are non-compliant or
compromised may choose to disregard the forwarding rules associated with SIPS (and the general forward-
ing rules in Section 16.6). Such malicious intermediaries could, for example, retarget a request from a SIPS
URI to a SIP URI in an attempt to downgrade security.

Alternatively, an intermediary might legitimately retarget a request from a SIP to a SIPS URI. Recipients of
a request whoseRequest-URI uses the SIPS URI scheme thus cannot assume on the basis of theRequest-
URI alone that SIPS was used for the entire request path (from the client onwards).

To address these concerns, it isRECOMMENDED that recipients of a request whoseRequest-URI contains

Rosenberg, et al. Standards Track [Page 188]

RFC 3261 SIP: Session Initiation Protocol June 2002

a SIP or SIPS URI inspect theTo header field value to see if it contains a SIPS URI (though note that it does
not constitute a breach of security if this URI has the same scheme but is not equivalent to the URI in theTo
header field). Although clients may choose to populate theRequest-URI andTo header field of a request
differently, when SIPS is used this disparity could be interpreted as a possible security violation, and the
request could consequently be rejected by its recipient. RecipientsMAY also inspect theVia header chain in
order to double-check whether or not TLS was used for the entire request path until the local administrative
domain was reached. S/MIME may also be used by the originating UAC to help ensure that the original
form of theTo header field is carried end-to-end.

If the UAS has reason to believe that the scheme of theRequest-URI has been improperly modified in
transit, the UASHOULD notify its user of a potential security breach.

As a further measure to prevent downgrade attacks, entities that accept only SIPS requestsMAY also refuse
connections on insecure ports.

End users will undoubtedly discern the difference between SIPS and SIP URIs, and they may manually edit
them in response to stimuli. This can either benefit or degrade security. For example, if an attacker corrupts
a DNS cache, inserting a fake record set that effectively removes all SIPS records for a proxy server, then
any SIPS requests that traverse this proxy server may fail. When a user, however, sees that repeated calls to a
SIPS AOR are failing, they could on some devices manually convert the scheme from SIPS to SIP and retry.
Of course, there are some safeguards against this (if the destination UA is truly paranoid it could refuse all
non-SIPS requests), but it is a limitation worth noting. On the bright side, users might also divine thatS̀IPS’
would be valid even when they are presented only with a SIP URI.

26.5 Privacy

SIP messages frequently contain sensitive information about their senders - not just what they have to say, but
with whom they communicate, when they communicate and for how long, and from where they participate
in sessions. Many applications and their users require that this sort of private information be hidden from
any parties that do not need to know it.

Note that there are also less direct ways in which private information can be divulged. If a user or service
chooses to be reachable at an address that is guessable from the person’s name and organizational affiliation
(which describes most addresses-of-record), the traditional method of ensuring privacy by having an unlisted
“phone number” is compromised. A user location service can infringe on the privacy of the recipient of a
session invitation by divulging their specific whereabouts to the caller; an implementation consequently
SHOULD be able to restrict, on a per-user basis, what kind of location and availability information is given
out to certain classes of callers. This is a whole class of problem that is expected to be studied further in
ongoing SIP work.

In some cases, users may want to conceal personal information in header fields that convey identity. This
can apply not only to theFrom and related headers representing the originator of the request, but also the
To - it may not be appropriate to convey to the final destination a speed-dialing nickname, or an unexpanded
identifier for a group of targets, either of which would be removed from theRequest-URI as the request is
routed, but not changed in theTo

header field if the two were initially identical. Thus itMAY be desirable for privacy reasons to create aTo
header field that differs from theRequest-URI.

Rosenberg, et al. Standards Track [Page 189]

RFC 3261 SIP: Session Initiation Protocol June 2002

27 IANA Considerations

All method names, header field names, status codes, and option tags used in SIP applications are registered
with IANA through instructions in an IANA Considerations section in an RFC.

The specification instructs the IANA to create four new sub-registries under http://www.iana.org/assignments/sip-
parameters: Option Tags,Warning Codes (warn-codes), Methods and Response Codes, added to the sub-
registry of Header Fields that is already present there.

27.1 Option Tags

This specification establishes the Option Tags sub-registry under http://www.iana.org/assignments/sip-parameters.

Option tags are used in header fields such asRequire, Supported, Proxy-Require, andUnsupported in
support of SIP compatibility mechanisms for extensions (Section 19.2). The option tag itself is a string that
is associated with a particular SIP option (that is, an extension). It identifies the option to SIP endpoints.

Option tags are registered by the IANA when they are published in standards track RFCs. The IANA
Considerations section of the RFC must include the following information, which appears in the IANA
registry along with the RFC number of the publication.

• Name of the option tag. The nameMAY be of any length, butSHOULD be no more than twenty
characters long. The nameMUST consist of alphanum (Section 25) characters only.

• Descriptive text that describes the extension.

27.2 Warn-Codes

This specification establishes the Warn-codes sub-registry under http://www.iana.org/assignments/sip-parameters
and initiates its population with the warn-codes listed in Section 20.43. Additional warn-codes are registered
by RFC publication.

The descriptive text for the table of warn-codes is:

Warning codes provide information supplemental to the status code in SIP response messages when the
failure of the transaction results from a Session Description Protocol (SDP) (RFC 2327 [1]) problem.

Thewarn-code consists of three digits. A first digit of “3” indicates warnings specific to SIP. Until a future
specification describes uses of warn-codes other than 3xx, only 3xx warn-codes may be registered.

Warnings 300 through 329 are reserved for indicating problems with keywords in the session description,
330 through 339 are warnings related to basic network services requested in the session description, 370
through 379 are warnings related to quantitative QoS parameters requested in the session description, and
390 through 399 are miscellaneous warnings that do not fall into one of the above categories.

27.3 Header Field Names

This obsoletes the IANA instructions about the header sub-registry under http://www.iana.org/assignments/sip-
parameters.

Rosenberg, et al. Standards Track [Page 190]

RFC 3261 SIP: Session Initiation Protocol June 2002

The following information needs to be provided in an RFC publication in order to register a new header field
name:

• The RFC number in which the header is registered;

• the name of the header field being registered;

• a compact form version for that header field, if one is defined;

Some common and widely used header fieldsMAY be assigned one-letter compact forms (Section 7.3.3).
Compact forms can only be assigned after SIP working group review, followed by RFC publication.

27.4 Method and Response Codes

This specification establishes theMethod andResponse-Code sub-registries under

http://www.iana.org/assignments/sip-parameters

and initiates their population as follows. The initialMethods table is:

INVITE [RFC3261]
ACK [RFC3261]
BYE [RFC3261]
CANCEL [RFC3261]
REGISTER [RFC3261]
OPTIONS [RFC3261]
INFO [RFC2976]

The response code table is initially populated from Section 21, the portions labeled Informational, Success,
Redirection, Client-Error,Server-Error, and Global-Failure. The table has the following format:

Type (e.g., Informational)
Number Default Reason Phrase [RFC3261]

The following information needs to be provided in an RFC publication in order to register a new response
code or method:

• The RFC number in which the method or response code is registered;

• the number of the response code or name of the method being registered;

• the default reason phrase for that response code, if applicable;

Rosenberg, et al. Standards Track [Page 191]

RFC 3261 SIP: Session Initiation Protocol June 2002

27.5 The “message/sip” MIME type.

This document registers the “message/sip” MIME media type in order to allow SIP messages to be tunneled
as bodies within SIP, primarily for end-to-end security purposes. This media type is defined by the following
information:

Media type name: message
Media subtype name: sip
Required parameters: none

Optional parameters:version

version: The SIP-Version number of the enclosed message (e.g., “2.0”). If not present, the version
defaults to “2.0”.

Encoding scheme: SIP messages consist of an 8-bit header optionally followed by a binary MIME data object. As such,
SIP messages must be treated as binary. Under normal circumstances SIP messages are transported
over binary-capable transports, no special encodings are needed.

curity considerations: see below

Motivation and examples of this usage as a security mechanism in concert with S/MIME are given in
23.4.

27.6 NewContent-Disposition Parameter Registrations

This document also registers four newContent-Disposition headerdisposition-types: alert, icon, ses-
sion and render. The authors request that these values be recorded in the IANA registry forContent-
Dispositions.

Descriptions of thesedisposition-types, including motivation and examples, are given in Section 20.11.

Short descriptions suitable for the IANA registry are:

alert the body is a custom ring tone to alert the user
icon the body is displayed as an icon to the user
render the body should be displayed to the user
session the body describes a communications session, for

example, as RFC 2327 SDP body

28 ChangesFrom RFC 2543

This RFC revises RFC 2543. It is mostly backwards compatible with RFC 2543. The changes described here
fix many errors discovered in RFC 2543 and provide information on scenarios not detailed in RFC 2543.
The protocol has been presented in a more cleanly layered model here.

We break the differences into functional behavior that is a substantial change from RFC 2543, which has
impact on interoperability or correct operation in some cases, and functional behavior that is different from

Rosenberg, et al. Standards Track [Page 192]

RFC 3261 SIP: Session Initiation Protocol June 2002

RFC 2543 but not a potential source of interoperability problems. There have been countless clarifications
as well, which are not documented here.

28.1 Major Functional Changes

• When a UAC wishes to terminate a call before it has been answered, it sendsCANCEL. If the original
INVITE still returns a 2xx, the UAC then sendsBYE. BYE can only be sent on an existing call leg
(now called a dialog in this RFC), whereas it could be sent at any time in RFC 2543.

• The SIP BNF was converted to be RFC 2234 compliant.

• SIP URL BNF was made more general, allowing a greater set of characters in the user part. Fur-
thermore, comparison rules were simplified to be primarily case-insensitive, and detailed handling of
comparison in the presence of parameters was described. The most substantial change is that a URI
with a parameter with the default value does not match a URI without that parameter.

• RemovedVia hiding. It had serious trust issues, since it relied on the next hop to perform the obfus-
cation process. Instead,Via hiding can be done as a local implementation choice in stateful proxies,
and thus is no longer documented.

• In RFC 2543,CANCEL andINVITE transactions were intermingled. They are separated now. When
a user sends anINVITE and then aCANCEL, the INVITE transaction still terminates normally. A
UAS needs to respond to the originalINVITE request with a 487 response.

• Similarly, CANCEL andBYE transactions were intermingled; RFC 2543 allowed the UAS not to
send a response toINVITE when aBYE was received. That is disallowed here. The originalINVITE
needs a response.

• In RFC 2543, UAs needed to support only UDP. In this RFC, UAs need to support both UDP and
TCP.

• In RFC 2543, a forking proxy only passed up one challenge from downstream elements in the event
of multiple challenges. In this RFC, proxies are supposed to collect all challenges and place them into
the forwarded response.

• In Digest credentials, the URI needs to be quoted; this is unclear from RFC 2617 and RFC 2069 which
are both inconsistent on it.

• SDP processing has been split off into a separate specification [12], and more fully specified as a
formal offer/answer exchange process that is effectively tunneled through SIP. SDP is allowed in
INVITE/200 or 200/ACK for baseline SIP implementations; RFC 2543 alluded to the ability to use it
in INVITE, 200, andACK in a single transaction, but this was not well specified. More complex SDP
usages are allowed in extensions.

• Added full support for IPv6 in URIs and in theVia header field. Support for IPv6 inVia has required
that its header field parameters allow the square bracket and colon characters. These characters were
previously not permitted. In theory, this could cause interop problems with older implementations.
However, we have observed that most implementations accept any non-control ASCII character in
these parameters.

Rosenberg, et al. Standards Track [Page 193]

RFC 3261 SIP: Session Initiation Protocol June 2002

• DNS SRV procedure is now documented in a separate specification [4]. This procedure uses both SRV
and NAPTR resource records and no longer combines data from across SRV records as described in
RFC 2543.

• Loop detection has been made optional, supplanted by a mandatory usage ofMax-Forwards. The
loop detection procedure in RFC 2543 had a serious bug which would report “spirals” as an error
condition when it was not. The optional loop detection procedure is more fully and correctly specified
here.

• Usage of tags is now mandatory (they were optional in RFC 2543), as they are now the fundamental
building blocks of dialog identification.

• Added theSupported header field, allowing for clients to indicate what extensions are supported to
a server, which can apply those extensions to the response, and indicate their usage with aRequire in
the response.

• Extension parameters were missing from the BNF for several header fields, and they have been added.

• Handling ofRoute andRecord-Route construction was very underspecified in RFC 2543, and also
not the right approach. It has been substantially reworked in this specification (and made vastly
simpler), and this is arguably the largest change. Backwards compatibility is still provided for de-
ployments that do not use “pre-loaded routes”, where the initial request has a set ofRoute header
field values obtained in some way outside ofRecord-Route. In those situations, the new mechanism
is not interoperable.

• In RFC 2543, lines in a message could be terminated with CR, LF, or CRLF. This specification only
allows CRLF.

• Usage ofRoute in CANCEL andACK was not well defined in RFC 2543. It is now well specified; if
a request had aRoute header field, itsCANCEL or ACK for a non-2xx response to the request need
to carry the sameRoute header field values.ACKs for 2xx responses use theRoute values learned
from theRecord-Route of the 2xx responses.

• RFC 2543 allowed multiple requests in a single UDP packet. This usage has been removed.

• Usage of absolute time in theExpires header field and parameter has been removed. It caused inter-
operability problems in elements that were not time synchronized, a common occurrence. Relative
times are used instead.

• The branch parameter of theVia header field value is now mandatory for all elements to use. It now
plays the role of a unique transaction identifier. This avoids the complex and bug-laden transaction
identification rules from RFC 2543. A magic cookie is used in the parameter value to determine if
the previous hop has made the parameter globally unique, and comparison falls back to the old rules
when it is not present. Thus, interoperability is assured.

• In RFC 2543, closure of a TCP connection was made equivalent to aCANCEL. This was nearly
impossible to implement (and wrong) for TCP connections between proxies. This has been eliminated,
so that there is no coupling between TCP connection state and SIP processing.

Rosenberg, et al. Standards Track [Page 194]

RFC 3261 SIP: Session Initiation Protocol June 2002

• RFC 2543 was silent on whether a UA could initiate a new transaction to a peer while another was in
progress. That is now specified here. It is allowed for non-INVITE requests, disallowed forINVITE.

• PGP was removed. It was not sufficiently specified, and not compatible with the more complete PGP
MIME. It was replaced with S/MIME.

• Added the “sips” URI scheme for end-to-end TLS. This scheme is not backwards compatible with
RFC 2543. Existing elements that receive a request with a SIPS URI scheme in theRequest-URI
will likely reject the request. This is actually a feature; it ensures that a call to a SIPS URI is only
delivered if all path hops can be secured.

• Additional security features were added with TLS, and these are described in a much larger and
complete security considerations section.

• In RFC 2543, a proxy was not required to forward provisional responses from 101 to 199 upstream.
This was changed toMUST. This is important, since many subsequent features depend on delivery of
all provisional responses from 101 to 199.

• Little was said about the 503 response code in RFC 2543. It has since found substantial use in indicat-
ing failure or overload conditions in proxies. This requires somewhat special treatment. Specifically,
receipt of a 503 should trigger an attempt to contact the next element in the result of a DNS SRV
lookup. Also, 503 response is only forwarded upstream by a proxy under certain conditions.

• RFC 2543 defined, but did no sufficiently specify, a mechanism for UA authentication of a server.
That has been removed. Instead, the mutual authentication procedures of RFC 2617 are allowed.

• A UA cannot send aBYE for a call until it has received anACK for the initial INVITE. This was
allowed in RFC 2543 but leads to a potential race condition.

• A UA or proxy cannot sendCANCEL for a transaction until it gets a provisional response for the
request. This was allowed in RFC 2543 but leads to potential race conditions.

• The action parameter in registrations has been deprecated. It was insufficient for any useful services,
and caused conflicts when application processing was applied in proxies.

• RFC 2543 had a number of special cases for multicast. For example, certain responses were sup-
pressed, timers were adjusted, and so on. Multicast now plays a more limited role, and the protocol
operation is unaffected by usage of multicast as opposed to unicast. The limitations as a result of that
are documented.

• Basic authentication has been removed entirely and its usage forbidden.

• Proxies no longer forward a 6xx immediately on receiving it. Instead, theyCANCEL pending
branches immediately. This avoids a potential race condition that would result in a UAC getting a
6xx followed by a 2xx. In all cases except this race condition, the result will be the same - the 6xx is
forwarded upstream.

• RFC 2543 did not address the problem of request merging. This occurs when a request forks at a
proxy and later rejoins at an element. Handling of merging is done only at a UA, and procedures are
defined for rejecting all but the first request.

Rosenberg, et al. Standards Track [Page 195]

RFC 3261 SIP: Session Initiation Protocol June 2002

28.2 Minor Functional Changes

• Added theAlert-Info, Error-Info, andCall-Info header fields for optional content presentation to
users.

• Added theContent-Language, Content-Disposition andMIME-Version header fields.

• Added a “glare handling” mechanism to deal with the case where both parties send each other a
re-INVITE simultaneously. It uses the new 491 (Request Pending) error code.

• Added theIn-Reply-To andReply-To header fields for supporting the return of missed calls or mes-
sages at a later time.

• Added TLS and SCTP as valid SIP transports.

• There were a variety of mechanisms described for handling failures at any time during a call; those
are now generally unified.BYE is sent to terminate.

• RFC 2543 mandated retransmission ofINVITE responses over TCP, but noted it was really only
needed for 2xx. That was an artifact of insufficient protocol layering. With a more coherent transaction
layer defined here, that is no longer needed. Only 2xx responses toINVITEs are retransmitted over
TCP.

• Client and server transaction machines are now driven based on timeouts rather than retransmit counts.
This allows the state machines to be properly specified for TCP and UDP.

• TheDate header field is used inREGISTER responses to provide a simple means for auto-configuration
of dates in user agents.

• Allowed a registrar to reject registrations with expirations that are too short in duration. Defined the
423 response code and theMin-Expires for this purpose.

Normative References

[1] M. Handley and V. Jacobson, “SDP: session description protocol,” RFC 2327, Internet Engineering
Task Force, Apr. 1998.

[2] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” RFC 2119, Internet Engineer-
ing Task Force, Mar. 1997.

[3] “Internet message format,” RFC 2822, Internet Engineering Task Force, Apr. 2001.

[4] J. Rosenberg and H. Schulzrinne, “Session initiation protocol (SIP): locating SIP servers,” RFC 3263,
Internet Engineering Task Force, June 2002.

[5] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifiers (URI): generic syntax,”
RFC 2396, Internet Engineering Task Force, Aug. 1998.

[6] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” RFC 2279, Internet Engineering Task
Force, Jan. 1998.

Rosenberg, et al. Standards Track [Page 196]

RFC 3261 SIP: Session Initiation Protocol June 2002

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext
transfer protocol – HTTP/1.1,” RFC 2616, Internet Engineering Task Force, June 1999.

[8] A. Vaha-Sipila, “URLs for telephone calls,” RFC 2806, Internet Engineering Task Force, Apr. 2000.

[9] “Augmented BNF for syntax specifications: ABNF,” RFC 2234, Internet Engineering Task Force, Nov.
1997.

[10] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part two: Media types,”
RFC 2046, Internet Engineering Task Force, Nov. 1996.

[11] D. Eastlake, S. Crocker, and J. Schiller, “Randomness recommendations for security,” RFC 1750,
Internet Engineering Task Force, Dec. 1994.

[12] J. Rosenberg and H. Schulzrinne, “An offer/answer model with session description protocol (SDP),”
RFC 3264, Internet Engineering Task Force, June 2002.

[13] J. Postel, “User datagram protocol,” RFC 768, Internet Engineering Task Force, Aug. 1980.

[14] J. Postel, “DoD standard transmission control protocol,” RFC 761, Internet Engineering Task Force,
Jan. 1980.

[15] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson, “Stream control transmission protocol,” RFC 2960, Internet Engineering Task Force,
Oct. 2000.

[16] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart, “HTTP
authentication: Basic and digest access authentication,” RFC 2617, Internet Engineering Task Force,
June 1999.

[17] R. Troost, S. Dorner, K. Moore, and Ed, “Communicating presentation information in internet mes-
sages: The content-disposition header field,” RFC 2183, Internet Engineering Task Force, Aug. 1997.

[18] E. Zimmerer, J. Peterson, A. Vemuri, L. Ong, F. Audet, M. Watson, and M. Zonoun, “MIME media
types for ISUP and QSIG objects,” RFC 3204, Internet Engineering Task Force, Dec. 2001.

[19] “Requirements for internet hosts - application and support,” RFC 1123, Internet Engineering Task
Force, Oct. 1989.

[20] H. Alvestrand, “IETF policy on character sets and languages,” RFC 2277, Internet Engineering Task
Force, Jan. 1998.

[21] J. Galvin, S. Murphy, S. Crocker, and N. Freed, “Security multiparts for MIME: multipart/signed and
multipart/encrypted,” RFC 1847, Internet Engineering Task Force, Oct. 1995.

[22] R. Housley, “Cryptographic message syntax,” RFC 2630, Internet Engineering Task Force, June 1999.

[23] “S/MIME version 3 message specification,” RFC 2633, Internet Engineering Task Force, June 1999.

[24] T. Dierks and C. Allen, “The TLS protocol version 1.0,” RFC 2246, Internet Engineering Task Force,
Jan. 1999.

Rosenberg, et al. Standards Track [Page 197]

RFC 3261 SIP: Session Initiation Protocol June 2002

[25] S. Kent and R. Atkinson, “Security architecture for the internet protocol,” RFC 2401, Internet Engi-
neering Task Force, Nov. 1998.

[26] P. Chown, “Advanced encryption standard (AES) ciphersuites for transport layer security (TLS),” RFC
3268, Internet Engineering Task Force, June 2002.

Informative References

[27] R. Pandya, “Emerging mobile and personal communication systems,”IEEE Communications Maga-
zine, vol. 33, pp. 44–52, June 1995.

[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time
applications,” RFC 1889, Internet Engineering Task Force, Jan. 1996.

[29] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol (RTSP),” RFC 2326, Internet
Engineering Task Force, Apr. 1998.

[30] F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen, and J. Segers, “Megaco protocol version
1.0,” RFC 3015, Internet Engineering Task Force, Nov. 2000.

[31] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: session initiation protocol,” RFC
2543, Internet Engineering Task Force, Mar. 1999.

[32] P. Hoffman, L. Masinter, and J. Zawinski, “The mailto URL scheme,” RFC 2368, Internet Engineering
Task Force, July 1998.

[33] E. M. Schooler, “A multicast user directory service for synchronous rendezvous,” Master’s Thesis CS-
TR-96-18, Department of Computer Science, California Institute of Technology, Pasadena, California,
Aug. 1996.

[34] S. Donovan, “The SIP INFO method,” RFC 2976, Internet Engineering Task Force, Oct. 2000.

[35] R. Rivest, “The MD5 message-digest algorithm,” RFC 1321, Internet Engineering Task Force, Apr.
1992.

[36] S. Floyd, “Congestion control principles,” RFC 2914, Internet Engineering Task Force, Sept. 2000.

[37] F. Dawson and T. Howes, “vcard MIME directory profile,” RFC 2426, Internet Engineering Task Force,
Sept. 1998.

[38] G. Good, “The LDAP data interchange format (LDIF) - technical specification,” RFC 2849, Internet
Engineering Task Force, June 2000.

[39] J. Palme, “Common internet message headers,” RFC 2076, Internet Engineering Task Force, Feb. 1997.

[40] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and L. Stewart, “An extension
to HTTP : Digest access authentication,” RFC 2069, Internet Engineering Task Force, Jan. 1997.

Rosenberg, et al. Standards Track [Page 198]

RFC 3261 SIP: Session Initiation Protocol June 2002

[41] A. Johnston, S. Donovan, R. Sparks, C. Cunningham, D. Willis, J. Rosenberg, K. Summers, and
H. Schulzrinne, “SIP telephony call flow examples,” Internet Draft, Internet Engineering Task Force,
Apr. 2001. Work in progress.

[42] E. M. Schooler, “Case study: multimedia conference control in a packet-switched teleconferencing
system,”Journal of Internetworking: Research and Experience, vol. 4, pp. 99–120, June 1993. ISI
reprint series ISI/RS-93-359.

[43] H. Schulzrinne, “Personal mobility for multimedia services in the Internet,” inEuropean Workshop on
Interactive Distributed Multimedia Systems and Services (IDMS), (Berlin, Germany), Mar. 1996.

A Table of Timer Values

Table 4 summarizes the meaning and defaults of the various timers used by this specification.

29 Acknowledgments

We wish to thank the members of the IETF MMUSIC and SIP WGs for their comments and suggestions. De-
tailed comments were provided by Ofir Arkin, Brian Bidulock, Jim Buller, Neil Deason, Dave Devanathan,
Keith Drage, Bill Fenner, Cedric Fluckiger, Yaron Goland, John Hearty, Bernie Hoeneisen, Jo Hornsby,
Phil Hoffer, Christian Huitema, Hisham Khartabil, Jean Jervis, Gadi Karmi, Peter Kjellerstedt, Anders Kris-
tensen, Jonathan Lennox, Gethin Liddell, Allison Mankin, William Marshall, Rohan Mahy, Keith Moore,
Vern Paxson, Bob Penfield, Moshe J. Sambol, Chip Sharp, Igor Slepchin, Eric Tremblay, and Rick Work-
man.

Brian Rosen provided the compiled BNF.

Jean Mahoney provided technical writing assistance.

This work is based, inter alia, on [42, 43].

30 Authors’ Addresses

Authors addresses are listed alphabetically for the editors, the writers, and then the original authors of RFC
2543. All listed authors actively contributed large amounts of text to this document.

Jonathan Rosenberg
dynamicsoft
72 Eagle Rock Ave
East Hanover, NJ 07936
USA

EMail: jdrosen@dynamicsoft.com

Henning Schulzrinne

Rosenberg, et al. Standards Track [Page 199]

RFC 3261 SIP: Session Initiation Protocol June 2002

Timer Value Section Meaning
--
T1 500ms default Section 17.1.1.1 RTT Estimate
T2 4s Section 17.1.2.2 The maximum retransmit

interval for non-INVITE
requests and INVITE
responses

T4 5s Section 17.1.2.2 Maximum duration a
message will
remain in the network

Timer A initially T1 Section 17.1.1.2 INVITE request retransmit
interval, for UDP only

Timer B 64*T1 Section 17.1.1.2 INVITE transaction
timeout timer

Timer C > 3min Section 16.6 proxy INVITE transaction
bullet 11 timeout

Timer D > 32s for UDP Section 17.1.1.2 Wait time for response
0s for TCP/SCTP retransmits

Timer E initially T1 Section 17.1.2.2 non-INVITE request
retransmit interval,
UDP only

Timer F 64*T1 Section 17.1.2.2 non-INVITE transaction
timeout timer

Timer G initially T1 Section 17.2.1 INVITE response
retransmit interval

Timer H 64*T1 Section 17.2.1 Wait time for
ACK receipt

Timer I T4 for UDP Section 17.2.1 Wait time for
0s for TCP/SCTP ACK retransmits

Timer J 64*T1 for UDP Section 17.2.2 Wait time for
0s for TCP/SCTP non-INVITE request

retransmits
Timer K T4 for UDP Section 17.1.2.2 Wait time for

0s for TCP/SCTP response retransmits

Table 4: Summary of timers

Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue
New York, NY 10027
USA

EMail: schulzrinne@cs.columbia.edu

Rosenberg, et al. Standards Track [Page 200]

RFC 3261 SIP: Session Initiation Protocol June 2002

Gonzalo Camarillo
Ericsson
Advanced Signalling Research Lab.
FIN-02420 Jorvas
Finland
EMail: Gonzalo.Camarillo@ericsson.com

Alan Johnston
WorldCom
100 South 4th Street
St. Louis, MO 63102
USA

EMail: alan.johnston@wcom.com

Jon Peterson
NeuStar, Inc
1800 Sutter Street, Suite 570
Concord, CA 94520
USA

EMail: jon.peterson@neustar.com

Robert Sparks
dynamicsoft, Inc.
5100 Tennyson Parkway
Suite 1200
Plano, Texas 75024
USA

EMail: rsparks@dynamicsoft.com

Mark Handley
International Computer Science Institute
1947 Center St, Suite 600
Berkeley, CA 94704
USA

EMail: mjh@icir.org

Eve Schooler
AT&T Labs-Research
75 Willow Road
Menlo Park, CA 94025
USA

EMail: schooler@research.att.com

Rosenberg, et al. Standards Track [Page 201]

RFC 3261 SIP: Session Initiation Protocol June 2002

Full Copyright Statement

Copyright (c) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its
successors or assigns.

This document and the information contained herein is provided on an ”AS IS” basis and THE INTERNET
SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE
OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WAR-
RANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.

Rosenberg, et al. Standards Track [Page 202]

	1 Introduction
	2 Overview of SIP Functionality
	3 Terminology
	4 Overview of Operation
	5 Structure of the Protocol
	6 Definitions
	7 SIP Messages
	7.1 Requests
	7.2 Responses
	7.3 Header Fields
	7.3.1 Header Field Format
	7.3.2 Header Field Classification
	7.3.3 Compact Form

	7.4 Bodies
	7.4.1 Message Body Type
	7.4.2 Message Body Length

	7.5 Framing SIP Messages

	8 General User Agent Behavior
	8.1 UAC Behavior
	8.1.1 Generating the Request
	8.1.2 Sending the Request
	8.1.3 Processing Responses

	8.2 UAS Behavior
	8.2.1 Method Inspection
	8.2.2 Header Inspection
	8.2.3 Content Processing
	8.2.4 Applying Extensions
	8.2.5 Processing the Request
	8.2.6 Generating the Response
	8.2.7 Stateless UAS Behavior

	8.3 Redirect Servers

	9 Canceling a Request
	9.1 Client Behavior
	9.2 Server Behavior

	10 Registrations
	10.1 Overview
	10.2 Constructing the REGISTER Request
	10.2.1 Adding Bindings
	10.2.2 Removing Bindings
	10.2.3 Fetching Bindings
	10.2.4 Refreshing Bindings
	10.2.5 Setting the Internal Clock
	10.2.6 Discovering a Registrar
	10.2.7 Transmitting a Request
	10.2.8 Error Responses

	10.3 Processing REGISTER Requests

	11 Querying for Capabilities
	11.1 Construction of OPTIONS Request
	11.2 Processing of OPTIONS Request

	12 Dialogs
	12.1 Creation of a Dialog
	12.1.1 UAS behavior
	12.1.2 UAC Behavior

	12.2 Requests within a Dialog
	12.2.1 UAC Behavior
	12.2.2 UAS Behavior

	12.3 Termination of a Dialog

	13 Initiating a Session
	13.1 Overview
	13.2 UAC Processing
	13.2.1 Creating the Initial INVITE
	13.2.2 Processing INVITE Responses

	13.3 UAS Processing
	13.3.1 Processing of the INVITE

	14 Modifying an Existing Session
	14.1 UAC Behavior
	14.2 UAS Behavior

	15 Terminating a Session
	15.1 Terminating a Session with a BYE Request
	15.1.1 UAC Behavior
	15.1.2 UAS Behavior

	16 Proxy Behavior
	16.1 Overview
	16.2 Stateful Proxy
	16.3 Request Validation
	16.4 Route Information Preprocessing
	16.5 Determining Request Targets
	16.6 Request Forwarding
	16.7 Response Processing
	16.8 Processing Timer C
	16.9 Handling Transport Errors
	16.10 CANCEL Processing
	16.11 Stateless Proxy
	16.12 Summary of Proxy Route Processing
	16.12.1 Examples

	17 Transactions
	17.1 Client Transaction
	17.1.1 INVITE Client Transaction
	17.1.2 Non-INVITE Client Transaction
	17.1.3 Matching Responses to Client Transactions
	17.1.4 Handling Transport Errors

	17.2 Server Transaction
	17.2.1 INVITE Server Transaction
	17.2.2 Non-INVITE Server Transaction
	17.2.3 Matching Requests to Server Transactions
	17.2.4 Handling Transport Errors

	18 Transport
	18.1 Clients
	18.1.1 Sending Requests
	18.1.2 Receiving Responses

	18.2 Servers
	18.2.1 Receiving Requests
	18.2.2 Sending Responses

	18.3 Framing
	18.4 Error Handling

	19 Common Message Components
	19.1 SIP and SIPS Uniform Resource Indicators
	19.1.1 SIP and SIPS URI Components
	19.1.2 Character Escaping Requirements
	19.1.3 Example SIP and SIPS URIs
	19.1.4 URI Comparison
	19.1.5 Forming Requests from a URI
	19.1.6 Relating SIP URIs and tel URLs

	19.2 Option Tags
	19.3 Tags

	20 Header Fields
	Accept
	Accept-Encoding
	Accept-Language
	Alert-Info
	Allow
	Authentication-Info
	Authorization
	Call-ID
	Call-Info
	Contact
	Content-Type
	Content-Length
	Content-Disposition
	Content-Language
	Content-Encoding
	CSeq
	Date
	Error-Info
	Expires
	From
	In-Reply-To
	Max-Forwards
	MIME-Version
	Min-Expires
	Organization
	Priority
	Proxy-Authenticate
	Proxy-Authorization
	Proxy-Require
	Record-Route
	Reply-To
	Require
	Retry-After
	Route
	Server
	Subject
	Supported
	Timestamp
	To
	Unsupported
	User-Agent
	Via
	Warning
	WWW-Authenticate

	21 Response Codes
	Provisional 1xx
	100 Trying
	180 Ringing
	181 Call Is Being Forwarded
	182 Queued
	183 Session Progress

	Successful 2xx
	200 OK

	Redirection 3xx
	300 Multiple Choices
	301 Moved Permanently
	302 Moved Temporarily
	305 Use Proxy
	380 Alternative Service

	Request Failure 4xx
	400 Bad Request
	401 Unauthorized
	402 Payment Required
	403 Forbidden
	404 Not Found
	405 Method Not Allowed
	406 Not Acceptable
	407 Proxy Authentication Required
	408 Request Timeout
	410 Gone
	413 Request Entity Too Large
	414 Request-URIToo Long
	415 Unsupported Media Type
	416 Unsupported URI Scheme
	420 Bad Extension
	421 Extension Required
	423 Interval Too Brief
	480 Temporarily Unavailable
	481 Call/Transaction Does Not Exist
	482 Loop Detected
	483 Too Many Hops
	484 Address Incomplete
	485 Ambiguous
	486 Busy Here
	487 Request Terminated
	488 Not Acceptable Here
	491 Request Pending
	493 Undecipherable

	Server Failure 5xx
	500 Server Internal Error
	501 Not Implemented
	502 Bad Gateway
	503 Service Unavailable
	504 Server Time-out
	505 Version Not Supported
	513 Message Too Large

	Global Failures 6xx
	600 Busy Everywhere
	603 Decline
	604 Does Not Exist Anywhere
	606 Not Acceptable

	22 Usage of HTTP Authentication
	22.1 Framework
	22.2 User-to-User Authentication
	22.3 Proxy-to-User Authentication
	22.4 The Digest Authentication Scheme

	23 S/MIME
	23.1 S/MIME Certificates
	23.2 S/MIME Key Exchange
	23.3 Securing MIME bodies
	23.4 SIP Header Privacy and Integrity using S/MIME: Tunneling SIP
	23.4.1 Integrity and Confidentiality Properties of SIP Headers
	23.4.2 Tunneling Integrity and Authentication
	23.4.3 Tunneling Encryption

	24 Examples
	24.1 Registration
	24.2 Session Setup

	25 Augmented BNF for the SIP Protocol
	25.1 Basic Rules

	26 Security Considerations: Threat Model and Security Usage Recommendations
	26.1 Attacks and Threat Models
	26.1.1 Registration Hijacking
	26.1.2 Impersonating a Server
	26.1.3 Tampering with Message Bodies
	26.1.4 Tearing Down Sessions
	26.1.5 Denial of Service and Amplification

	26.2 Security Mechanisms
	26.2.1 Transport and Network Layer Security
	26.2.2 SIPS URI Scheme
	26.2.3 HTTP Authentication
	26.2.4 S/MIME

	26.3 Implementing Security Mechanisms
	26.3.1 Requirements for Implementers of SIP
	26.3.2 Security Solutions

	26.4 Limitations
	26.4.1 HTTP Digest
	26.4.2 S/MIME
	26.4.3 TLS
	26.4.4 SIPS URIs

	26.5 Privacy

	27 IANA Considerations
	27.1 Option Tags
	27.2 Warn-Codes
	27.3 Header Field Names
	27.4 Method and Response Codes
	27.5 The “message/sip” MIME type.
	27.6 New Content-Disposition Parameter Registrations

	28 Changes From RFC 2543
	28.1 Major Functional Changes
	28.2 Minor Functional Changes

	29 Acknowledgments
	30 Authors’ Addresses

