
Protecting SIP against Very Large Flooding DoS
Attacks

Felipe Huici Saverio Niccolini Nico d’Heureuse
felipe.huici@nw.neclab.eu saverio.niccolini@nw.neclab.eu nico.dheureuse@nw.neclab.eu

NEC Europe Ltd.

Abstract—The use of the Internet for VoIP communications
has seen an important increase over the last few years, with the
Session Initiation Protocol (SIP) as the most popular protocol
used for signaling. Unfortunately, SIP devices are quite vulnera-
ble to Denial-of-Service (DoS) attacks, many of them becoming
unresponsive and even resetting with floods of only hundredsof
packets per second.

In this paper we introduce SIP Defender, a new distributed fil-
tering architecture designed to protect SIP devices against large,
flooding DoS attacks. In addition, we describe the implementation
of the architecture’s SIP Controllers, the network devices in
charge of performing the actual filtering. We further present
testbed performance figures for these, showing that a controller
built on commodity hardware can forward an impressive 2.5
million packets per second for small SIP packets while applying
one million filters as well as anti-spoofing mechanisms.

I. I NTRODUCTION

The last few years have seen a sharp increase in the use
of the Internet for voice communications. Indeed, in order
to reduce operating costs and to provide additional services,
many operators are providing voice-over-IP (VoIP) services
and some have already started to replace their entire PSTN in-
frastructure [3]. The change, however, comes with drawbacks,
since VoIP inherits the security problems of the IP network it
runs over. Worse, telephony is critical infrastructure, and so it
presents an attractive target for attack.

While several protocols exist, VoIP communications tend
to rely on the Session Initiation Protocol (SIP) [18] for call
signaling. Unfortunately, it is relatively easy to flood a device
such as a SIP phone with messages so that it can no longer
service legitimate requests, a Denial-of-Service (DoS) attack.
These sort of attacks are likely to become more commonplace
as more of these devices are connected to the public Internet.

Just how vulnerable are SIP devices to flooding DoS at-
tacks? In the case of some of the most popular hardware
phones, we conducted flooding attacks with INVITE mes-
sages, normally used to initiate calls. As shown in figure 1,
even the best performing phone could not withstand a flood
of only 180 messages per second. Further, some of the phones
did not return to normal after the flood subsided, but ended
up resetting instead. SIP proxies can handle larger numbers
of transactions, up to thousands per second for Kamailio
(formerly known as OpenSER) [10] and probably higher rates
for hardware-based solutions. However, it would be trivialfor
a botnet to generate flood traffic to saturate a proxy’s capacity,
specially considering the fact that these can consist of as many
as 1.5 million bots [4].

Pingtel
Expressa

Grandstream
2000

Cisco
7960

Thomson
ST2030

Snom
360

0

20

40

60

80

100

120

140

160

180

M
e
ss

a
g
e
s 

p
e
r 

se
co

n
d

Fig. 1. SIP INVITE flood attacks on hardware phones. The values denote
the rate at which the attack was successful.

It is clear from this discussion that SIP devices are quite
vulnerable to DoS flooding attacks. What is also clear is that
placing a device to filter the flood near the destination will
not work, since by then the traffic from a botnet will have
aggregated enough to DoS even the filtering device. Even if
the device kept up, the attack could be large enough to saturate
the link it is connected to, rendering the solution ineffective.

While many architectural (i.e., scaling to Internet-wide
levels) solutions have been proposed over the years in the
field of IP-level DoS attack prevention and mitigation, none
have been even partially deployed. This is largely due to the
fact that most of them present difficult deployment hurdles.
The challenge is then to design an architecture that re-uses
currently available mechanisms as much as possible in order
to be easily deployed, while at the same time being able to
cope with large attacks. In order to achieve this, we present
SIP Defender, a distributed filtering architecture that enables
victims to request that malicious traffic be filtered close toits
sources.

The rest of the paper is organized as follows: section II
describes the basic architecture in detail; section III presents
anti-spoofing mechanisms for the actual traffic as well as for
filtering requests; section IV describes the implementation of
the filtering devices on commodity hardware, as well as a
detailed performance evaluation; finally, section V discusses
related work and section VI concludes.

II. SIP DEFENDERARCHITECTURE

The aim is to design a distributed filtering architecture
that can cope with large flooding attacks, reuses existing



Fig. 2. Basic SIP Defender filtering architecture. SC standsfor SIP Controller, A for attacker.

mechanisms as much as possible in order to be deployable
in the current Internet, and cannot itself be used as a tool
for Denial-of-Service attacks. In this section we presentSIP
Defender, an architecture that meets these requirements. We
will first present the basic filtering process and then introduce
anti-spoofing mechanisms to prevent attackers from using the
architecture as an attack vector.

A. Basic Solution

We begin by assuming the presence of an Intrusion Detec-
tion System (IDS) at the victim’s site capable of detecting the
flooding attack. The architecture places special filtering boxes
calledSIP Controllers (SPs, or controllers for short) near the
sources of traffic but also at the victim’s ISP, as shown in
figure 2.

The basic process begins with the IDS detecting the flooding
attack. The IDS is also in charge of generating a list of the
SIP users sending the malicious of traffic, along with those
users being attacked; we will explain why the latter is needed
later on in this section. In this step care must be taken that
the user identities have not been spoofed, since ignoring this
would allow an attacker to avoid detection. Even worse still,
the attacker could cause the system to deny service to an
unsuspecting victim by including this latter as the originator
of the flood; we will tackle these issues in section III.

An alternative to the IDS generating the list of malicious
sources of traffic would be for the ISP to allow its clients to use
their own IDSes, creating their lists and sending them directly
to the controller. Either way, the next step is for the local
controller to figure out which remote controllers the malicious
traffic is flowing through, a step needed in order to know where
to send filtering requests to.

What does a filter in these requests look like? In the simplest
case, it is made of a SIP<to, from> pair or a <to>
singleton. While more advanced filters are certainly possible
(we will touch upon this in the implementation section), in
general we will assume that filters are of this simple form,
since it is sufficient to mitigate SIP DoS flooding attacks.

The next step is for the local controller to distribute filtering
requests containing the malicious sources reported by the IDS
to the relevant remote SIP controllers (we explain how their
IP addresses are obtained in the next section); defining the
protocol used for this is outside the scope of this paper. A
remote controller then receives the filtering request but has to
perform a few basic checks before installing the filters in it.
First, it needs to ensure that the request did in fact come from
the controller it claims to have come from, otherwise attackers
could easily install malicious filters.

A second check performed by the remote controller is
making sure that the controller that sent the request is actually

responsible for the user in theto field of the filter. Ignoring
this step would allow malicious controllers to block traffic
to unsuspecting victims, and so what is essentially needed
to prevent this is a mapping of controllers to clients. Such
a mapping should be cryptographically signed, lest it provide
another avenue for attack. There are many ways to accomplish
this, but our preferred solution is to use a robust peer-to-peer
flooding protocol to distribute digitally signed mappings to
all SIP controllers. This is basically the same robust flooding
mechanism proposed in [6], and is extremely resilient to
attack.

Once these checks are performed the remote controller
finally installs the filters. The problem for the attack’s victim
is now to know when to remove the filters: if the attack traffic
subsides, the victim cannot tell whether this is because the
attack is being filtered or because it has actually stopped. One
possibility would be to include a time out value as part of the
filtering request, and let the victim’s controller send another
filtering request should the attack resume after the original
filter expires. Alternatively, the controller could explicitly send
a request to cancel the filter. Independent of this the remote
controller would have to have a filter expiration policy to put
a bound on how many filters it has at any one point.

B. Initial Deployment

Under full deployment every ISP would have SIP controllers
deployed. Unfortunately this cannot initially be the case,and
so we need to consider partial-deployment scenarios and their
implications. As a visual aid, figure 3 shows a number of these.
ISPs shown in grey have SIP Defender deployed, while those
in white, calledlegacy ISPs, do not. In the normal scenario,
calls from Alice to Chris go through ISPs A, E and G, as is
also the case for calls from Bob to Chris. Please note that
whether ISPs E and F have SIP Defender is irrelevant; this
will become apparent in the next section when we describe
the anti-spoofing mechanism.

The first attack scenario is the normal one, where both
source and destination ISPs have SIP Defender deployed.
Attacker A1 at ISP B sends a flood to user Chris. The IDS at
ISP G detects this and sends a message with user A1 as the
attacker to SC5, the local SIP controller. SC5 then looks up
that SC2 is responsible for A1 and sends it a filtering request
with the filter<Chris, A1>. Upon receipt, SC2 checks that
the request did come from SC5 and that it is the controller
responsible for user Chris. Finally, it installs the filter,blocking
all SIP traffic from A1 to Chris.

In the second attack scenario A2 sends malicious traffic
to user Chris. Unfortunately this time SC5 has no remote
controller at ISP D to send a filtering request to. As a
result, SC5 installs filter<Chris, A2> locally or should



Fig. 3. Initial deployment scenarios. ISPs in white denote legacy ISPs without protection.

an upstream ISP have SIP Defender deployed, it can send the
request to its controller instead, as is the case with ISP F and
SC4 in the figure. This situation is naturally less than ideal,
since the traffic is being filtered closer to the victim. In the
next section we introduce a simple mechanism to improve this
problem and also to provide some incentive for ISPs to deploy
the architecture.

III. A NTI-SPOOFING

We need to ensure that attackers cannot use SIP Defender as
a DoS attack tool in its own right. In the previous section we
mentioned several parts of the filtering process that needed
special attention. The first of these has to do with identity
spoofing, basically making sure that a SIP user cannot send
messages with somebody else’s identity in the “from” header
(or that of a non-existent user). If an attacker were able to do
this, it could avoid detection or even create floods that would
force SIP Defender to filter an unsuspecting victim’s legitimate
traffic.

Fig. 4. SIP ingress filtering mechanism.

To prevent this situation, SIP controllers have added func-
tionality to perform SIP ingress filtering. We assume that
the ISP has a SIP registrar whose entries can be trusted
and that keeps a mapping of IP addresses to user identities1.
The controller periodically requests all new registrations and
keeps a local copy of them (see figure 4). When attacker A
sends a SIP messaging claiming to come from someone else
(in this case Chris), the controller checks it against its local
registrations to see if there is a match, and if there is not drops
the packet. It is worth noting that this mechanism works even
if the SIP identity used by A is Bob, assuming that the ISP
has IP-level ingress filtering deployed in order to prevent A
from claiming that packets are coming from Bob’s IP address.

1Technically a SIP registrar does not keep actual IP addresses but URIs.
The registrar could be modified to support this functionality or a separate
service could be created for the same purpose.

As described so far, the SIP controllers prohibit spoofed
SIP packets from reaching the Internet. However, this is
not sufficient, since under partial deployment it is of course
possible for attackers to send spoofed messages from legacy
ISPs. The problem is that a victim cannot tell whether an
incoming SIP packet came from a SIP Defender ISP or a
legacy one. In the case of SIP it is current common practice
for inter-site communication to take place over a TLS tunnel.
As a result, assuming that both ends of the tunnels have SIP
ingress filtering deployed, we now know that SIP To headers
arriving over TLS tunnels are not spoofed. With this in place
the rule is simple: filtering requests are issued only for packets
arriving over a TLS tunnel and are accepted only if they arrive
via the same means.

The TLS tunnel also solves the issue of figuring out which
remote SIP controller to contact for a given SIP message. Upon
the IDS detecting an attack, the local controller waits until
another attack packet arrives and marks which tunnel it came
from. It can then send filtering requests to the ISP at the other
end of the tunnel; one way for these requests to reach the
actual remote controller would be for SIP Defender ISPs to
have a DNS entry of the formcontroller@isp.com. This
approach would work well in the short-run, since currently
most administrative domains have TLS connections to all
entities they share SIP traffic with. In the longer run, as SIP
adoption becomes even more widespread, it is likely that SIP
communication will no longer happen only over TLS tunnels;
in this case, cryptographically-based identity schemes such as
Passport [13] or that found in RFC 4474 [16] can be used to
replace the role played by TLS tunnels.

This leaves one last issue unresolved. While the attacker
can no longer use the filtering architecture as a DoS tool, it
can still, if located at a legacy ISP, flood the destination’s
SIP controller. In order to cope with this, the destination ISP
installs a filtering rule at its edge router giving lower priority to
SIP packets not arriving over a TLS tunnel (the router should
be able to apply this rule at line rate without problems). This
means that even under a flood packets arriving from a SIP
Defender ISP will get through, and if these packets happen to
be malicious they can of course be dropped using the normal
filtering mechanism. Should the flood originate at legacy ISPs
and be large enough to saturate the edge router’s link, filters
can be requested of intermediate SIP Defender ISPs such as
ISP E and F in figure 3.



IV. EVALUATION

One of the key elements to coping with large SIP DoS
flooding attacks is performance. While ideally we would like
the mechanisms described to be implemented in hardware, this
is unlikely to be the case in the beginning. A compromise
solution is to build the SIP controllers using commodity
hardware, in order to give confidence that they can perform
well enough to filter even large attacks. To this end, in
this section we present performance results conducted on a
network testbed.

A. Experimental Setup

We conducted all performance experiments on the Het-
erogeneous Experimental Network (HEN[20]). For our SIP
controller tests we used a Dell 2950 with two Intel Xeon
X5355 2.66GHz quad core processors, 8 GB of main memory
and 3 quad port Intel 82571EB PCI express network cards. In
addition, we used Dell 1950s to both generate and count traffic.
Since the Dell 2950 acting as the controller has a maximum
of 12 network interfaces, we connected three traffic generators
and three traffic counters to it, as shown in figure 5.

Fig. 5. Experiment network topology.

The reason for using two interfaces on each of the gen-
erators and counters is that we conducted tests that showed
that these machines (all Dell 1950s) can perform these func-
tions at line rate for all packet sizes. Using more network
ports increases overall throughput but packets are no longer
processed at line rate, which could potentially skew measure-
ments regarding the SIP controller. In terms of software all
computers ran a Linux 2.6 kernel and an e1000 polling driver.
To generate, forward and count packets we used the Click
modular router platform [11].

In order to prove the worth of an anti-DoS mechanism it
is best to test the worst-case scenario. Since performance de-
creases with decreasing packet sizes, using small packet sizes
during the tests gives greater confidence that the architecture
would be able to cope with any large flooding attacks. In
the case of SIP, there is no official minimum packet size as
is the case with IP. However, the SIP RFC [18] shows that
an ACK is one of the SIP messages with the fewest number
of required headers. If we strip each of these down we end
up with a payload size of about 240 bytes, for which the
maximum theoretical rate is around 446,000 packet per second
(pps) or about 929 Mb/s (this rate is less than 1Gb/s due to
overheads such as the preamble and the inter-frame gap). Note
that for our experiments we used UDP traffic since not only
it is cheaper for an attacker to generate, but it is also easily
spoofable and so more attractive from his point of view.

Of course this is not an absolute minimum, but it should give
a good idea of the SIP controller’s performance. Throughout

the rest of this section we will always use these 240-byte
packets unless otherwise stated. In addition, it is worth noting
that an attacker can naturally send malformed SIP messages
that are smaller than this. To deal with this, our implementation
quickly discards any SIP messages that are not over a certain
minimum size. An attacker can also attempt to slow down
the parser with large SIP packets by placing crucial headers,
such asFrom and To, at the end. However, most SIP
implementations place these headers at the beginning, and so
we can drop any SIP packets for which these headers are not
found after a certain number of bytes.

B. Baseline Performance

Before testing the performance of the mechanisms discussed
in the previous section it makes sense to see what the baseline
performance of the system is. To do this, we had the SIP
controller receive packets on one interface and forward them
on another. The controller consists of Clickelements, which
are basic units of packet processing, connected to each other
using a Click configuration file. In more detail, the controller
receives packets from the polling driver and classifies them
into IP and non-IP. IP packets are further processed, first by
stripping the Ethernet header and then by going through a
custom-madeMinLengthDropper element, which drops
packets that are considered too small to be valid SIP messages.

Next the collector performs some checks on the
IP header before sending the packets to custom-made
SIPStrip/SIPUnstrip elements. The first element strips
the UDP or TCP header from the packet while the latter re-
adds it (the reason that there is no processing between these
two is that this provides a baseline measurement). Finally
packets are sent to a queue before being sent out.

This Click configuration represents oneforwarding path
from a receiving interface to a sending one. The Dell 2950 we
used as the SIP controller has twelve interfaces and eight CPU
cores, so we wanted to see how the forwarding performance
would scale as forwarding paths were added to the system,
up to a maximum of six in this case. In greater detail,
Click supports multi-threading, essentially allowing theuser
to assign parts of a forwarding paths to different CPU cores.
As it turns out, the best performance results when an entire
path is handled by a single core in order to prevent packets
having to change cores; figure 6 shows performance figures
for increasing numbers of concurrent forwarding paths, where
each is assigned to a separate CPU core. The SIP controller
can forward very small SIP packets at line rate for all six
paths, or about 2.6 million packets per second (5,570 Mb/s).

Another basic function of the SIP controller is IP defrag-
mentation. In order to derive performance figures for this we
inserted the standard click elementIPReassembler after
the CheckIPHeader element. We then had the generators
send minimum-sized (64-byte) fragments, which they did at
a rate of about 1 million packets per second. Even in this
extreme case the SIP controller was able to keep up, the
forwarding rate matching the offered one. We also performed
one more test this time mixing regular traffic with about 20%



1 path 2 paths 3 paths 4 paths 5 paths 6 paths
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Fo
w

a
rd

in
g
 R

a
te

 (
in

 K
p
p
s)

Fig. 6. Baseline forwarding performance for SIP controllerand six forward-
ing paths for 240-byte SIP packets.

fragmented traffic (studies have shown that IP fragments in the
Internet comprise about 1% of all traffic [9], [19], and so the
20% figure is a large upper bound). With this setup the SIP
controller was again able to forward packets at line rate. This
makes sense, since dealing with the a flow composed entirely
of minimum-sized packets as was the case in the previous
experiment puts a larger strain on the system.

C. SIP Controller Performance

The main function of the controller is to filter mali-
cious packets. To achieve this we extended Click by im-
plementing a fast SIP parser and a custom element called
SIPHashFilter. We used the exact same Click config-
uration from the baseline evaluation with this new element
inserted between theSIPStrip andSIPUnstrip elements.
The element definition for the filter in the Click configuration
file looks as follows:

filter :: SIPHashFilter("From" "URI", "To" "URI")

As can be seen, the element takes a list of string pairs. In this
example the controller parses SIP packets, retrieves the URIs
from the “To” and “From” headers and uses their concatenated
values as inputs to the hash. Other filters are certainly possible,
for example including only a “To” field in order to block all
traffic from an ISP to a destination.

Since the filter is based on a hash, its performance depends
largely on the length of its chains. To see the effect of long
chains on forwarding performance we tweaked the hash so
that all incoming packets would traverse a long chain of filters,
essentially turning the hash into a long vector. The resultsin
figure 7 show, as expected, a clear drop as the chain length
increases. Even so, the forwarding rate achieved is quite high
(e.g., 74% of the theoretically maximum rate for a chain length
of 50). The result is even more reasonable if we consider that
a 50-element chain is quite long: normally a hash would be
balanced and have enough buckets so that this does not occur,
and, in case it does, re-hashing would take place to correct the
situation.

So far all experiments involved static packets, meaning that
the values used as input to the hash do not change. This results

25 50 75 100 200 300 400 500
Chain length

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

Fo
rw

a
rd

in
g
 r

a
te

 (
in

 K
p
p
s)

Fig. 7. Forwarding performance with long chains in the hash-based filtering
element.

in very good cache locality but is unfortunately an unrealistic
scenario. To test the performance when the CPU core’s cache
is being thrashed we instrumented the hash so that all its chains
were of the same length and each packet was hashed to a
different bucket. This setup results in a forwarding rate of
about 2,100 Kpps (79% of the theoretical maximum) for a
chain length of 10, dropping down to 317 Kpps (12% of the
maximum) for a length of 100. What this shows is that even
under an extreme scenario where each single packet hashes to
a different bucket the system is capable of forwarding at high
rates, but that special care should be taken so that the chains
do not become too long.

Insertion Time Time/Filter
Num Filters (in msec) (in msec)

500,000 3,559 0.0071
1,000,000 7,032 0.0070
5,000,000 35,376 0.0071
10,000,000 66,768 0.0067

Fig. 8. Filter insertion times while forwarding traffic.

Another important factor worth testing is filter insertion
time. A controller should be able to insert new filters in a
reasonable time while still forwarding traffic. Figure 8 shows
that even inserting as many as 10 million filters takes only
about one minute, certainly sufficient to quickly filter even
the largest floods. In addition, since we used a large number
of buckets for the hash (one million) the controller was able
to forward packets at line rate throughout the whole process.

The controller’s last important function is SIP ingress filter-
ing. For this purpose we implemented another Click element
called SIPIngressFilter which retrieves the source IP
address and SIP identity from the packet and makes sure that
this pair matches one of the entries it has stored.

As a final performance test we created a Click configuration
with all the elements of the controller in place. The only new
element isSIPMinChecker, which splits packets depending
on whether they are meant for SIP’s well-known port number,
and drops those that are but are too small to be legitimate SIP
packets. To conduct performance tests with this configuration
we loaded the ingress filter in each forwarding path with
10,000 /24 prefixes (enough to support about 2.5 million



addresses) and the hash filter with one million filters. Even
with this large load the SIP controller was able to forward
SIP packets at 95% of the theoretical maximum for all six
paths, or a total of about 2.5 million packets per second.

These results clearly show that the combination of com-
modity hardware and Click constitute a viable platform for
implementing the SIP Defender architecture. The rates demon-
strate that SIP controllers can cope with large amounts of
traffic and filters, certainly enough to cope with even large
DoS flooding attacks. Indeed, the rates are good enough to
provide a reasonable level of protection even in the case where
the filtering has to be done at the victim’s ISP because there
are no remote controllers to send filtering requests to.

V. RELATED WORK

The field of DoS at the IP level has seen lots of solutions
proposed over the last years, yet most of them present dif-
ficult deployment issues and have not seen the light of day.
Approaches tend to fall into two categories: capabilities-based
systems and filtering ones. Capabilities systems [1], [22],[12]
force sources to request permission to send from the receiver,
thus attempting to prevent attacks. Filtering solutions [8], [2],
[7], on the other hand, mitigate an attack once it has already
started by inserting filters at different points in the network.

While schemes have been proposed to protect SIP against
DoS [5], [14], [21], [17], none of them can cope with very
large distributed attacks. VoIP Defender, in particular, claims
to be highly scalable, but does not provide an architecture that
can scale to large (i.e., Internet) networks, but rather a design
based on using a load balancer to distribute traffic across a set
of work servers. The work in [15] uses expensive hardware
platforms in order to filter DoS attacks at only a single point,
so does not scale to large networks.

VI. CONCLUSION

In this paper we introduced SIP Defender, a new distributed
filtering architecture designed to protect against large, flooding
SIP DoS attacks. SIP Defender allows victims to send filter-
ing requests to filtering points called SIP controllers placed
near the sources of the attack. Further, we covered how the
architecture works in ideal conditions as well as under partial
deployment scenarios with attackers spoofing their identities.

In addition, we implemented the SIP controllers using
inexpensive off-the-shelf hardware and the Click modular
router software package. We tested their performance on a
network testbed, showing that a controller can forward small
SIP packets at 95% of the theoretically maximum rate while
having one million filters installed while performing anti-
spoofing checks; since the platform used had twelve network
interfaces, this boiled down to an impressive rate of about 2.5
million packets per second, or about 5.3 Gb/s. We believe this
to be largely sufficient to cope with even very large SIP DoS
flooding attacks.

REFERENCES

[1] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet Denial-
of-Service with Capabilities. InProc. ACM SIGCOMM 2nd Workshop
on Hot Topics in Networks, November 2003.

[2] K. Argyraki and D. Cheriton. Active Internet Traffic Filtering: Real-
Time Response to Denial-of-Service Attacks. InUsenix Annual Techical
Conference, April 2005.

[3] British Telecom. BT’s 21st Century Network.
http://www.btplc.com/21CN/.

[4] CNET. Bot herders may have controlled 1.5 million pcs.
http://news.com.com/, October 2005.

[5] Jens Fiedler, Tomas Kupka, Sven Ehlert, Thomas Magedanz, and
Dorgham Sisalem. Voip defender: highly scalable sip-basedsecurity
architecture. InIPTComm ’07: Proceedings of the 1st international
conference on Principles, systems and applications of IP telecommuni-
cations, pages 11–17, New York, NY, USA, 2007. ACM.

[6] Mark Handley and Adam Greenhalgh. The case for pushing DNS. In
Proc. ACM HotNets IV, November 2005.

[7] Felipe Huici and Mark Handley. An edge-to-edge filteringarchitecture
against DoS.SIGCOMM Comput. Commun. Rev., 37(2):39–50, 2007.

[8] John Ioannidis and Steven M. Bellovin. Implementing pushback: Router-
based defense against DDoS attacks. InProc. Network and Distributed
System Security Symposium, San Diego. ISOC, Reston, VA., February
2002.

[9] Wolfgang John and Sven Tafvelin. Analysis of internet backbone traffic
and header anomalies observed. InIMC ’07: Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement, pages 111–116,
New York, NY, USA, 2007. ACM.

[10] Kamailio. Kamilio SIP Server. http://www.kamailio.net/.
[11] E. Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans

Kaashoek. The Click modular router.ACM Trans. on Computer Systems,
18(3):263–297, August 2000.

[12] W. Lee and J. Xu. Sustaining availability of web services under
distributed denial of service attacks.IEEE Transactions on Computers,
52(3):195–208, 2003.

[13] Xin Liu, Ang Li, Xiaowei Yang, and David Wetherall. Passport: secure
and adoptable source authentication. InNSDI’08: Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation,
pages 365–378, Berkeley, CA, USA, 2008. USENIX Association.

[14] S. Niccolini, R.G Garroppo, S. Giordano, G. Risi, and S.Ventura.
Sip intrusion detection and prevention: recommendations and prototype
implementation. InProceedings of the 1st IEEE Workshop on VoIP
Management and Security, 2006, 2006.

[15] Gaston Ormazabal, Sarvesh Nagpal, Eilon Yardeni, and Henning
Schulzrinne. Secure sip: A scalable prevention mechanism for dos
attacks on sip based voip systems. InIPTComm ’08: Proceedings of the
2nd international conference on Principles, systems and applications of
IP telecommunications. ACM, 2008.

[16] J. Peterson and C. Jennings. Enhancements for authenticated identity
management in the session initiation protocol (sip).

[17] Utz Roedig, Ralf Ackermann, and Ralf Steinmetz. Evaluating and
Improving Firewalls for IP-Telephony Environments. InProceedings
of the 1st IP-Telephony Workshop (IPTel2000), Berlin, Germany, pages
161–166. GMD-Forschungszentrum Informationstechnik GmbH, April
2000.

[18] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.
RFC 3261, June 2002.

[19] Colleen Shannon, David Moore, and K. C. Claffy. Beyond folklore:
observations on fragmented traffic.IEEE/ACM Trans. Netw., 10(6):709–
720, 2002.

[20] UCL Network Research Group. HEN: Heterogeneous Experimental
Network. http://hen.cs.ucl.ac.uk.

[21] Yu-Sung Wu, Saurabh Bagchi, Sachin Garg, Navjot Singh,and Tim Tsai.
Scidive: A stateful and cross protocol intrusion detectionarchitecture
for voice-over-ip environments. InDSN ’04: Proceedings of the 2004
International Conference on Dependable Systems and Networks, page
433, Washington, DC, USA, 2004. IEEE Computer Society.

[22] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless internet flow filter
to mitigate DDoS flooding attacks. InProc. IEEE Security and Privacy
Symposium, May 2004.


	Introduction
	SIP Defender Architecture
	Basic Solution
	Initial Deployment

	Anti-Spoofing
	Evaluation
	Experimental Setup
	Baseline Performance
	SIP Controller Performance

	Related Work
	Conclusion
	References

