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Abstract—The use of the Internet for VolP communications
has seen an important increase over the last few years, witthe
Session Initiation Protocol (SIP) as the most popular protool
used for signaling. Unfortunately, SIP devices are quite vimera-
ble to Denial-of-Service (DoS) attacks, many of them becomg
unresponsive and even resetting with floods of only hundredsf
packets per second.

In this paper we introduce SIP Defender, a new distributed fil-
tering architecture designed to protect SIP devices agaitngarge,
flooding DoS attacks. In addition, we describe the implemeiattion
of the architecture’s SIP Controllers, the network devices in
charge of performing the actual filtering. We further present
testbed performance figures for these, showing that a contiter
built on commodity hardware can forward an impressive 2.5 O — —
million packets per second for small SIP packets while applyng Expressa 2000 7960 $T2030 360

one million filters as well as anti-spoofing mechanisms. Fig. 1. SIPINVITE flood attacks on hardware phones. The values denote
|. INTRODUCTION the rate at which the attack was successful.

The last few years have seen a sharp increase in the usH is clear from this discussion that SIP devices are quite
of the Internet for voice communications. Indeed, in ordatulnerable to DoS flooding attacks. What is also clear is that
to reduce operating costs and to provide additional sesyicglacing a device to filter the flood near the destination will
many operators are providing voice-over-IP (VoIP) sersicéot work, since by then the traffic from a botnet will have
and some have already started to replace their entire PSTNaggregated enough to DoS even the filtering device. Even if
frastructure[[B]. The change, however, comes with drawbackhe device kept up, the attack could be large enough to ¢atura
since VoIP inherits the security problems of the IP netwark the link it is connected to, rendering the solution ineffest
runs over. Worse, telephony is critical infrastructure] ap it While many architectural (i.e., scaling to Internet-wide
presents an attractive target for attack. levels) solutions have been proposed over the years in the

While several protocols exist, VoIP communications tenfield of IP-level DoS attack prevention and mitigation, none
to rely on the Session Initiation Protocol (SIP)Y][18] forlcalhave been even partially deployed. This is largely due to the
signaling. Unfortunately, it is relatively easy to flood avibe fact that most of them present difficult deployment hurdles.
such as a SIP phone with messages so that it can no longee challenge is then to design an architecture that re-uses
service legitimate requests, a Denial-of-Service (Do8cat currently available mechanisms as much as possible in order
These sort of attacks are likely to become more commonpldoebe easily deployed, while at the same time being able to
as more of these devices are connected to the public Intermepe with large attacks. In order to achieve this, we present

Just how vulnerable are SIP devices to flooding DoS &8P Defender, a distributed filtering architecture that enables
tacks? In the case of some of the most popular hardwafietims to request that malicious traffic be filtered closet$o
phones, we conducted flooding attacks with INVITE mesources.
sages, normally used to initiate calls. As shown in figlre 1, The rest of the paper is organized as follows: seckibn I
even the best performing phone could not withstand a flod@scribes the basic architecture in detail; sediidn IIsengs
of only 180 messages per second. Further, some of the phoaet-spoofing mechanisms for the actual traffic as well as for
did not return to normal after the flood subsided, but endéttering requests; sectidn ]V describes the implementatd
up resetting instead. SIP proxies can handle larger numb#s filtering devices on commodity hardware, as well as a
of transactions, up to thousands per second for Kamailietailed performance evaluation; finally, sectigh V disess
(formerly known as OpenSER) [10] and probably higher rateslated work and sectidn VI concludes.
for hardware-based solutions. However, it would be trifal
a botnet to generate flood traffic to saturate a proxy’s capaci
specially considering the fact that these can consist ofasym The aim is to design a distributed filtering architecture
as 1.5 million bots[[4]. that can cope with large flooding attacks, reuses existing
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mechanisms as much as possible in order to be deployatg@dsponsible for the user in theo field of the filter. Ignoring
in the current Internet, and cannot itself be used as a tdhis step would allow malicious controllers to block traffic
for Denial-of-Service attacks. In this section we pres8it to unsuspecting victims, and so what is essentially needed
Defender, an architecture that meets these requirements. e prevent this is a mapping of controllers to clients. Such
will first present the basic filtering process and then inic a mapping should be cryptographically signed, lest it ptevi
anti-spoofing mechanisms to prevent attackers from usiag #nother avenue for attack. There are many ways to accomplish
architecture as an attack vector. this, but our preferred solution is to use a robust peereterp
, . flooding protocol to distribute digitally signed mappings t

A. Basic Solution all SIP controllers. This is basically the same robust flagdi

We begin by assuming the presence of an Intrusion Detenechanism proposed irf1[6], and is extremely resilient to
tion System (IDS) at the victim’s site capable of detecting t attack.
flooding attack. The architecture places special filteringds Once these checks are performed the remote controller
called SIP Controllers (SPs, or controllers for short) near thefinally installs the filters. The problem for the attack’s tiric
sources of traffic but also at the victim's ISP, as shown i8 now to know when to remove the filters: if the attack traffic
figure[2. subsides, the victim cannot tell whether this is because the

The basic process begins with the IDS detecting the floodiagiack is being filtered or because it has actually stoppee. O
attack. The IDS is also in charge of generating a list of thgossibility would be to include a time out value as part of the
SIP users sending the malicious of traffic, along with thog#tering request, and let the victim's controller send dewt
users being attacked; we will explain why the latter is neledéiltering request should the attack resume after the origina
later on in this section. In this step care must be taken tHiter expires. Alternatively, the controller could exptlg send
the user identities have not been spoofed, since ignoriisg th request to cancel the filter. Independent of this the remote
would allow an attacker to avoid detection. Even worse, stitontroller would have to have a filter expiration policy tot pu
the attacker could cause the system to deny service to abound on how many filters it has at any one point.
unsuspecting victim by including this latter as the origara o
of the flood; we will tackle these issues in sectiah Il B. Initial Deployment

An alternative to the IDS generating the list of malicious Under full deployment every ISP would have SIP controllers
sources of traffic would be for the ISP to allow its clients s& u deployed. Unfortunately this cannot initially be the caaed
their own IDSes, creating their lists and sending them tlirec so we need to consider partial-deployment scenarios amd the
to the controller. Either way, the next step is for the locamplications. As a visual aid, figufé 3 shows a number of these
controller to figure out which remote controllers the malics 1SPs shown in grey have SIP Defender deployed, while those
traffic is flowing through, a step needed in order to know whenme white, calledlegacy 1SPs, do not. In the normal scenario,
to send filtering requests to. calls from Alice to Chris go through ISPs A, E and G, as is

What does a filter in these requests look like? In the simpleslso the case for calls from Bob to Chris. Please note that
case, it is made of a SIRto, frone pair or a<t o> whether ISPs E and F have SIP Defender is irrelevant; this
singleton. While more advanced filters are certainly pdssibwill become apparent in the next section when we describe
(we will touch upon this in the implementation section), ithe anti-spoofing mechanism.
general we will assume that filters are of this simple form, The first attack scenario is the normal one, where both
since it is sufficient to mitigate SIP DoS flooding attacks. source and destination ISPs have SIP Defender deployed.

The next step is for the local controller to distribute filtkgy Attacker Al at ISP B sends a flood to user Chris. The IDS at
requests containing the malicious sources reported byliBe ISP G detects this and sends a message with user Al as the
to the relevant remote SIP controllers (we explain how theittacker to SC5, the local SIP controller. SC5 then looks up
IP addresses are obtained in the next section); defining that SC2 is responsible for A1 and sends it a filtering request
protocol used for this is outside the scope of this paper. With the filter<Chri s, Al>. Upon receipt, SC2 checks that
remote controller then receives the filtering request bsgttba the request did come from SC5 and that it is the controller
perform a few basic checks before installing the filters in itesponsible for user Chris. Finally, it installs the filtelocking
First, it needs to ensure that the request did in fact coma frall SIP traffic from Al to Chris.
the controller it claims to have come from, otherwise attmsk In the second attack scenario A2 sends malicious traffic
could easily install malicious filters. to user Chris. Unfortunately this time SC5 has no remote

A second check performed by the remote controller ontroller at ISP D to send a filtering request to. As a
making sure that the controller that sent the request isafigtu result, SC5 installs filtexChri s, A2> locally or should



Fig. 3. Initial deployment scenarios. ISPs in white denetgaty ISPs without protection.

an upstream ISP have SIP Defender deployed, it can send thAs described so far, the SIP controllers prohibit spoofed
request to its controller instead, as is the case with ISPdF aBIP packets from reaching the Internet. However, this is
SC4 in the figure. This situation is naturally less than idealot sufficient, since under partial deployment it is of ceurs
since the traffic is being filtered closer to the victim. In th@ossible for attackers to send spoofed messages from legacy
next section we introduce a simple mechanism to improve thBBPs. The problem is that a victim cannot tell whether an
problem and also to provide some incentive for ISPs to deplayxcoming SIP packet came from a SIP Defender ISP or a
the architecture. legacy one. In the case of SIP it is current common practice
for inter-site communication to take place over a TLS tunnel

As a result, assuming that both ends of the tunnels have SIP
We need to ensure that attackers cannot use SIP Defend%@?ess filtering deployed, we now know that SIP To headers

a DO,S attack tool in its own ”ght', In t.he previous section Wﬁrriving over TLS tunnels are not spoofed. With this in place
mentioned several parts of the filtering process that needgd e j simple: filtering requests are issued only fokpts

special attention. The first of these has to do with identity,ying over a TLS tunnel and are accepted only if they arriv
spoofing, basically making sure that a SIP user cannot s&d the same means

messages with somebody else’s identity in the "from headerThe TLS tunnel also solves the issue of figuring out which
(or that of a non-existent user). If an attacker were ableato d .

- . . emote SIP controller to contact for a given SIP messagenUpo
this, it could avoid detection or even create floods that @ou

. . Y . he IDS detecting an attack, the local controller waits lunti
force SIP Defender to filter an unsuspecting victim’s legéte ) . :
another attack packet arrives and marks which tunnel it came

IIl. ANTI-SPOOFING

traffic. L
from. It can then send filtering requests to the ISP at therothe
TITE end of the tunnel; one way for these requests to reach the
J Bill: 10.0.0.2 actual remote controller would be for SIP Defender ISPs to

S SIP ID: Bob have a DNS entry of the formont r ol | er @ sp. com This

INTERNET approach would work well in the short-run, since currently
most administrative domains have TLS connections to all
entities they share SIP traffic with. In the longer run, as SIP
adoption becomes even more widespread, it is likely that SIP
communication will no longer happen only over TLS tunnels;
Fig. 4. SIP ingress filtering mechanism. in this case, cryptographically-based identity schemes sis

To prevent this situation, SIP controllers have added fungassport[[13] or that found in RFC 4474]16] can be used to
tionality to perform SIP ingress filtering. We assume thdeplace the role played by TLS tunnels.

the ISP has a SIP registrar whose entries can be trustedhis leaves one last issue unresolved. While the attacker

and that keeps a mapping of IP addresses to user idehtitiemn no longer use the filtering architecture as a DoS tool, it

The controller periodically requests all new registrasi@nd can still, if located at a legacy ISP, flood the destination’s

keeps a local copy of them (see figlile 4). When attacker ${P controller. In order to cope with this, the destinati&®|

sends a SIP messaging claiming to come from someone etsstalls a filtering rule at its edge router giving lower pifp to

(in this case Chris), the controller checks it against itsalo SIP packets not arriving over a TLS tunnel (the router should

registrations to see if there is a match, and if there is nopsir be able to apply this rule at line rate without problems).sThi

the packet. It is worth noting that this mechanism works eveneans that even under a flood packets arriving from a SIP
if the SIP identity used by A is Bob, assuming that the ISBefender ISP will get through, and if these packets happen to
has IP-level ingress filtering deployed in order to prevent Be malicious they can of course be dropped using the normal
from claiming that packets are coming from Bob’s IP addresfiitering mechanism. Should the flood originate at legacysISP
N _ _ and be large enough to saturate the edge router’s link sfilter
Technically a SIP registrar does not keep actual IP addselsseURIs. . .

The registrar could be modified to support this functiogalir a separate can be requested of intermediate SIP Defender ISPs such as

service could be created for the same purpose. ISP E and F in figur&l3.

A SIP ID: Chris registrations

Attacker A
IP: 10.0.0.2
SIP registrar




V. EVALUATION the rest of this section we will always use these 240-byte

One of the key elements to coping with large SIP DoBackets unless otherwise stated. In addition, it is wortfngo
flooding attacks is performance. While ideally we would likéhat an attacker can naturally send malformed SIP messages
the mechanisms described to be implemented in hardwase, #hiat are smaller than this. To deal with this, our implemtoite
is unlikely to be the case in the beginning. A compromis‘éUiCkW discards any SIP messages that are not over a certain
solution is to build the SIP controllers using commodityninimum size. An attacker can also attempt to slow down
hardware, in order to give confidence that they can perfortie Parser with large SIP packets by placing crucial headers
well enough to filter even large attacks. To this end, iguch asFrom and To, at the end. However, most SIP

this section we present performance results conducted ofm@lementations place these headers at the beginning,and s
network testbed. we can drop any SIP packets for which these headers are not

, found after a certain number of bytes.
A. Experimental Setup

We conducted all performance experiments on the Hé3- Baseline Performance
erogeneous Experimental Network (HEN[20]). For our SIP Before testing the performance of the mechanisms discussed
controller tests we used a Dell 2950 with two Intel Xeomn the previous section it makes sense to see what the baselin
X5355 2.66GHz quad core processors, 8 GB of main memasgrformance of the system is. To do this, we had the SIP
and 3 quad port Intel 82571EB PCI express network cards.dontroller receive packets on one interface and forwarchthe
addition, we used Dell 1950s to both generate and countdrafbn another. The controller consists of Clielements, which
Since the Dell 2950 acting as the controller has a maximuane basic units of packet processing, connected to each othe
of 12 network interfaces, we connected three traffic genesat using a Click configuration file. In more detail, the conteoll

and three traffic counters to it, as shown in figlire 5. receives packets from the polling driver and classifies them
_ into IP and non-IP. IP packets are further processed, first by
traffic generators SIP controller traffic counters stripping the Ethernet header and then by going through a

custom-madeM nLengt hDr opper element, which drops
packets that are considered too small to be valid SIP message
Next the collector performs some checks on the
IP header before sending the packets to custom-made
Fig. 5. Experiment network topology. SIPStrip/ Sl PUnst ri p elements. The first element strips
The reason for using two interfaces on each of the getlte UDP or TCP header from the packet while the latter re-
erators and counters is that we conducted tests that showdds it (the reason that there is no processing between these
that these machines (all Dell 1950s) can perform these furi¢0 is that this provides a baseline measurement). Finally
tions at line rate for all packet sizes. Using more networ@ckets are sent to a queue before being sent out.
ports increases overall throughput but packets are no tongeThis Click configuration represents orferwarding path
processed at line rate, which could potentially skew mesasufrom a receiving interface to a sending one. The Dell 2950 we
ments regarding the SIP controller. In terms of software alsed as the SIP controller has twelve interfaces and eigbt CP
computers ran a Linux 2.6 kernel and an e1000 polling driv@ores, so we wanted to see how the forwarding performance
To generate, forward and count packets we used the Cliskuld scale as forwarding paths were added to the system,
modular router platform[11]. up to a maximum of six in this case. In greater detail,
In order to prove the worth of an anti-DoS mechanism {lick supports multi-threading, essentially allowing thser
is best to test the worst-case scenario. Since performasce e assign parts of a forwarding paths to different CPU cores.
creases with decreasing packet sizes, using small padest siAs it turns out, the best performance results when an entire
during the tests gives greater confidence that the archiectpath is handled by a single core in order to prevent packets
would be able to cope with any large flooding attacks. Inaving to change cores; figuk® 6 shows performance figures
the case of SIP, there is no official minimum packet size & increasing numbers of concurrent forwarding paths,rehe
is the case with IP. However, the SIP RHCI[18] shows thatich is assigned to a separate CPU core. The SIP controller
an ACK is one of the SIP messages with the fewest numbsan forward very small SIP packets at line rate for all six
of required headers. If we strip each of these down we epdths, or about 2.6 million packets per second (5,570 Mb/s).
up with a payload size of about 240 bytes, for which the Another basic function of the SIP controller is IP defrag-
maximum theoretical rate is around 446,000 packet per secanentation. In order to derive performance figures for this we
(pps) or about 929 Mb/s (this rate is less than 1Gb/s dueitserted the standard click elemenPReassenbl er after
overheads such as the preamble and the inter-frame gam. Nbe Checkl PHeader element. We then had the generators
that for our experiments we used UDP traffic since not ongend minimum-sized (64-byte) fragments, which they did at
it is cheaper for an attacker to generate, but it is alsoyasil rate of about 1 million packets per second. Even in this
spoofable and so more attractive from his point of view. extreme case the SIP controller was able to keep up, the
Of course this is not an absolute minimum, but it should giierwarding rate matching the offered one. We also performed
a good idea of the SIP controller's performance. Throughoome more test this time mixing regular traffic with about 20%
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element.

fragmented traffic (studies have shown that IP fragmentsen tn Very good cache locality but is unfortunately an unreilis
Internet comprise about 1% of all traffig) [9],]19], and so th&Cenario. To test the performance when the CPU core’s cache

20% figure is a large upper bound). With this setup the sjpbeing thrashed we instrumented the hash so that all itagha
controller was again able to forward packets at line ratgs THVEre of the same length and each packet was hashed to a

makes sense, since dealing with the a flow composed entiréjfférent bucket. This setup results in a forwarding rate of
ut 2,100 Kpps (79% of the theoretical maximum) for a

chain length of 10, dropping down to 317 Kpps (12% of the
maximum) for a length of 100. What this shows is that even
under an extreme scenario where each single packet hashes to
The main function of the controller is to filter mali- different bucket the system is capable of forwarding ah hig
cious packets. To achieve this we extended Click by infiates, but that special care should be taken so that theschain
plementing a fast SIP parser and a custom element call®@ not become too long.
SI PHashFi | t er. We used the exact same Click config-
uration from the baseline evaluation with this new element

of minimum-sized packets as was the case in the previ
experiment puts a larger strain on the system.

C. SP Controller Performance

inserted between tH&l PSt ri p andSI PUnst ri p elements.
The element definition for the filter in the Click configuratio

file looks as follows:

filter ::

Sl PHashFi |l ter ("From "URI"

" "URM)

Insertion Time | Time/Filter
Num Filters (in msec) (in msec)
500,000 3,559 0.0071
1,000,000 7,032 0.0070
5,000,000 35,376 0.0071
10,000,000 66,768 0.0067
Fig. 8. Filter insertion times while forwarding traffic.

As can be seen, the element takes a list of string pairs.$n thi Another important factor worth testing is filter insertion
example the controller parses SIP packets, retrieves the URme. A controller should be able to insert new filters in a
from the “To” and “From” headers and uses their concatenateshsonable time while still forwarding traffic. Figurk 8 s
values as inputs to the hash. Other filters are certainlyilpless that even inserting as many as 10 million filters takes only
for example including only a “To” field in order to block allabout one minute, certainly sufficient to quickly filter even

traffic from an ISP to a destination.

the largest floods. In addition, since we used a large number

Since the filter is based on a hash, its performance depenfi®uckets for the hash (one million) the controller was able
largely on the length of its chains. To see the effect of long forward packets at line rate throughout the whole pracess
chains on forwarding performance we tweaked the hash sdThe controller’s last important function is SIP ingres<filt
that all incoming packets would traverse a long chain oftBlte ing. For this purpose we implemented another Click element
essentially turning the hash into a long vector. The resalts called SI Pl ngr essFi | t er which retrieves the source IP
figured show, as expected, a clear drop as the chain lengtidress and SIP identity from the packet and makes sure that
increases. Even so, the forwarding rate achieved is quile hthis pair matches one of the entries it has stored.

(e.g., 74% of the theoretically maximum rate for a chaintbng As a final performance test we created a Click configuration
of 50). The result is even more reasonable if we consider thvaith all the elements of the controller in place. The only new
a 50-element chain is quite long: normally a hash would dement isSI PM nChecker , which splits packets depending
balanced and have enough buckets so that this does not oconnwhether they are meant for SIP’s well-known port number,
and, in case it does, re-hashing would take place to coiliect and drops those that are but are too small to be legitimate SIP
packets. To conduct performance tests with this configumati

So far all experiments involved static packets, meaning thae loaded the ingress filter in each forwarding path with
the values used as input to the hash do not change. Thisseslit,000 /24 prefixes (enough to support about 2.5 million

situation.
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