
Scalable Detection of SIP Fuzzing Attacks

Eric Y. Chen Mitsutaka Itoh
NTT Information Sharing Platform Laboratories

{eric.chen, itoh.mitsutaka}@lab.ntt.co.jp

Abstract

The VoIP technology has been increasingly popular

and the number of its users has surged in the past
years, because of its economical advantage over the
traditional PSTN services. As a side effect, various
VoIP servers and clients are becoming attractive
targets of malicious attacks. This paper outlines the
detection rules we have formulated to detect fuzzing
attacks, which attempt to crash a VoIP device by
sending it invalid SIP messages. This paper also
proposes a system architecture that utilizes multi-core
processors in order to scale up the performance of
detection using these rules.

1. Introduction

The VoIP technology has been increasingly popular
and the number of its users has surged in the past
years, because of its economical advantage over the
traditional PSTN services. However, this trend has
also made various VoIP devices attractive targets of
various attacks, since these devices are often deployed
on the Internet. VoIP Security Alliance (VOIPSA) [1]
was launched in 2005 to invite professionals in the
related fields to address the security issues surrounding
the VoIP technology. A white paper that enumerates
most possible threats to VoIP has been made publicly
available by VOIPSA.

This paper focuses on attacks that involve sending
malformed messages to a SIP device. In particular, we
focus on detecting malformed SIP [2] messages, since
SIP is rapidly replacing other VoIP signalling
protocols and becoming the de facto standard. In this
paper, we use the term SIP fuzzing attacks to refer to
this type of attacks.

The remainder of this paper is structured as follows.
Section 2 briefly introduces SIP fuzzing attacks.
Section 3 surveys the related work that attempts to
address this problem. Section 4 outlines the rules we
use to detect SIP fuzzing attacks. Section 5 describes
how we have implemented a prototype using these

rules. Section 6 evaluates this prototype in terms of
detection effectiveness and processing performance.

2. SIP Fuzzing Attacks

The word fuzzing is conventionally used to refer to
a black-box software testing method that provides
random data to the inputs of a program in an attempt to
fail the program and find bugs [3]. Bugs found using
fuzz testing can be exploited by an attacker to crash or
hijack the program. SIP fuzzing refers to such
technique designed to test programs or devices that
implement SIP.

An alarming number of security incidents
discovered through SIP fuzzing have been reported
over the past years. In 2003, the US-CERT issued a
vulnerability note [4] based on a discovery by the Oulu
University Secure Programming Group (OUSPG).
According to the note, a significant number of SIP
implementations contain vulnerabilities that can be
triggered by malformed SIP messages. The impacts
range from unexpected system behaviour and denial of
service to execution of arbitrary code by buffer
overflow. Despite of this warning, a number of
vulnerabilities caused by malformed SIP messages are
still discovered later in products such as Cisco Firewall
Services Module [5], Apple Macintosh OS X
VideoConference [6], Linksys VoIP router [7] and
Asterisk [8].

An attack that exploits such bugs can be launched in
two ways. First, the attacker tries to identify the exact
implementation of the target device (vendor and
version etc) and then send known malformed packets
specific to that implementation. Second, the attacker
can flood the target with different patterns of
malformed packets (live fuzzing) and hope that at least
one of them would trigger a bug in the target. The first
way is obviously more efficient while the second way
is powerful due to its brute-force nature.

The Second International Conference on Emerging Security Information, Systems and Technologies

978-0-7695-3329-2/08 $25.00 © 2008 IEEE

DOI 10.1109/SECURWARE.2008.11

114

The Second International Conference on Emerging Security Information, Systems and Technologies

978-0-7695-3329-2/08 $25.00 © 2008 IEEE

DOI 10.1109/SECURWARE.2008.11

114

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on October 16, 2008 at 06:27 from IEEE Xplore. Restrictions apply.

3. Related Work

Approaches to the SIP fuzzing attack problem can
be generalized into two categories: prevention with
extensive fuzz testing before product release, and
detection of attacks against online devices.

PROTOS [9] and Asteroid [10] are two well-known
tools that are freely available for the purposes of fuzz
testing. Codenomicon [11] is the commercial version
of PROTOS and provides 10 times more test cases.
While preventive measures using these tools are
perhaps the most effective way in eliminating software
bugs exploitable by a fuzzing attacker, not all
developers are willing to make the efforts due to the
additional costs incurred. Moreover, users can never
be certain if the products they use are free from such
vulnerabilities.

Geneiatakis et al. [12] emphasised the importance
of having a detection mechanism for SIP fuzzing
attacks. They explained the effectiveness of signature-
based detection and suggested an example of
inspecting INVITE messages. However, this literature
offers little details about how one should design the
detection rules and implement a detection system for
fuzzing attacks.

We agree with Geneiatakis’s work in general and
see the importance of detecting SIP fuzzing attacks.
We had previously presented a preliminary report [18]
(in Japanese) that describes our work-in-progress
toward designing rules to detect fuzzing attacks. This
paper outlines in detail the rules we have formulated
and demonstrates the comprehensiveness of these rules
by testing them against a commercial fuzzing tool used
for software testing. This paper also proposes a system
architecture that is capable of utilizing modern multi-
core processors to scale up the detection performance.

4. Detection Rules

We propose to use the following five categories of
rules to detect malformed SIP packets.

• Incorrect Grammar
• Oversized Field Values
• Invalid Message or Field Name
• Redundant or Repetitive Header Field
• Invalid Semantic

In a paper of this length, we are unable to enumeration
all rules in each category. Instead, we describe in
detail the general objectives of rules in each category.

4.1. Incorrect Grammar

Rules in this category examine the grammatical
structure of each SIP message as defined under Section

25 in RFC3261. For example, the Call-ID field is
defined as the following in ABNF:

Call-ID=(“Call-ID”/”i”) HCOLON callid
callid = word [“@”word]

In other words, a SIP stack should expect a Call ID to
be one string or two strings separated by a “@”. The
following illustrates two possible invalid structures.

Valid
Call-ID: a84b4c7
Invalid 1
Call-ID: a84b4c7@
Invalid 2
Call-ID: a84b4c7, a84b4c7, a84b4c7

Invalid structures can be easily detected as the
grammar of SIP is concisely defined in RFC3261.
Detection rules in this category can be derived from the
ABNF.

4.2 Oversized Field Values

An overflow can occur in a well-formed SIP
message when any field has a larger integer or a longer
string than normally expected. The following is a
simple example in which the invalid header field value
has an oversized SIP version number.

Valid
INVITE Bob@biloxi.com SIP/2.0
Invalid
INVITE Bob@biloxi.com SIP/122214.0

Exception handling of such messages can be

difficult since the upper limit or the maximum length
of each header field value is not always clearly defined
in RFC3261. We have created rules in this category
based on a number of SIP devices we have worked
with. However, rules in this category are
implementation-specific and should be adjusted
accordingly.

4.3 Invalid Message or Field Name

Rules in this category simply look for method
names, response code or header field names not
defined in RFC3261. These include messages with
mismatched response codes. For example:

Valid
SIP/2.0 200 OK
Invalid
SIP/2.0 200 Trying

115115

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on October 16, 2008 at 06:27 from IEEE Xplore. Restrictions apply.

Such messages are fairly easy to detect. However, it is
commonly known that a number of so-called dialects
exist in SIP and vendors sometimes extend SIP by
adding proprietary header fields no defined in
RFC3261. Rules in this category should be able to
incorporate such extensions.

4.4 Missing or Repetitive Header Field

The following five headers must be present in any
SIP message: From, To, Via, Call-ID and CSeq. A SIP
message that does not contain any of these headers
should be considered malformed.

It is also possible to fuzz a SIP device by sending a
message with repetitive headers. We have created
rules that look for repetitive headers, with the
exception for headers such as Contact, Via, Call-Info
and Route, since multiple entries of these headers are
allowed. However, since the maximum number of
entries for these headers is not defined, the upper limit
for each SIP device may be implementation-specific
and therefore create an opportunity for buffer overflow
attack. An attacker may send a SIP message with
excess number of these entries to a level that cannot be
correctly handled by the recipient. Therefore, we find
it necessary to set up thresholds for the number of
occurrences of these headers. Similar to rules
described in Section 4.2, these are implementation-
specific and should be adjusted accordingly.

4.5 Invalid Semantics

Rules in this category detect messages with
anomalies in the semantics, even if the messages may
be well-formed and syntactically compliant. A typical
example is to spoof one’s source IP address to
127.0.0.1 (loopback address) in a SIP message in order
to trick the receiver. An unknowing receiver that does
not check irregularities in message semantics may send
replies to 127.0.0.1 (i.e. itself) continuously and
eventually over-consumes its own resources. Other
values we inspect include time, date, content length
and CSeq.

5. Prototype Implementation

We have created a prototype from scratch and
designed the architecture in a way that allows us to
utilize multi-core processors that have become very
common even in low-end computers. We feel that
parallel processing is extremely suitable for detection
of fuzzing attacks since the detection process is
stateless in nature and can process each packet
independently. The architecture is illustrated in Figure

1. This prototype currently supports only SIP over
UDP.

Modules in a grey box are collectively executed as
an individual detection process. For each
core/processor detected in the underlying platform, the
Parallel Processing Controller launches a detection
process, or more precisely, a Packet Hander, which in
our design is an entry object that initiates a new
process. Modules in each grey box have a similar
architecture as Snort [14], a popular open-source IDS
(intrusion detection system).

From the underlying libpcap [15] library, a Packet
Handler retrieves packets that match some pre-
determined filter rule. Each Packet Handler should
retrieve a different set of packets in order to effectively
distribute the workload. Each packet received is then
passed to the Decoder that decodes layer-3 and layer-4
headers and prepares the data in an expedient manner
for the detection engine.

The detection engine implements all rules that we
have defined in Section 4. It analyzes every SIP
message and look for anomalies. The first rule that
matches the SIP message triggers an alert. A message
that does not match any rule is considered normal and
is forwarded if the prototype is deployed as an SBC
(session border controller), or discarded if it is
deployed as an out-of-line IDS.

The Log component stores all alerts triggered by
Detection Engine in any detection process.

Figure 1. Prototype Implementation

The prototype is currently implemented in Python.

We use pcapy [16] as a wrapper for the pcap library.
Since the basic Python uses a Global Interpreter Lock
(GIL) for thread control that makes utilization of multi-
core processors difficult, we implement our Parallel
Processing Controller module using Parallel Python
[17], which allows us to launch a different process for
each detection unit.

116116

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on October 16, 2008 at 06:27 from IEEE Xplore. Restrictions apply.

6. Experiment

We have conducted experiments to evaluate two
aspects of our system – the correctness of the detection
rules and the relative performance leverage we can
gain by distributing incoming messages to a number of
identical processes (instead of threads) running in
parallel.

6.1 Evaluation of Detection Correctness

In order to evaluate the correctness of our detection
engine, we have used Codenomicon to generate SIP
fuzzing attack packets. Although Codenomicon is
intended to be used as a fuzzing test tool for legitimate
purposes, we found it suitable for our experiment to
mimic an attack host. Among the test cases in
Codenomicon, we excluded ones that are in the
“normal” group as well as ones with anomalies in SDP,
which is out of the scope of this paper. As a result, we
used a total number of 36398 test cases and feed each
SIP message to our prototype. The result is
summarized in Figure 2.

34137
cases,
94%

2261
cases,

6%

Detected False Negative

Figure 2. Detection Rate

Using rules in all five categories described in
Section 4, we were able to detect anomalies in 34,137
packets, or 94% of the entire test cases selected. In
other words, the rate of false negatives is 6% (2,261
undetected packets).

Figure 3 shows the number of matches for each
category of rules. Each fuzzing packet may trigger one
or more detection rules. The result shows that most
test cases generated by Codenomicon contain incorrect
grammar and oversized values.

We have also tested our prototype with legitimate
SIP messages generated by the following products:
OnDO SIP Server, SIPp, X-Lite and Sanyo IP Phone.
We also fed our prototype with Codenomicon test
cases that are explicitly grouped under the “normal”
group. None of these messages trigger any alert and

therefore the rate of false positive is 0% with these
products.

0 5000 10000 15000 20000 25000 30000

Malformed Values

Oversized Values

Invalid Message
or Header

Missing or
Repetitive Header

Irregular
Semantics

Number of Hits

Figure 3. Number of rule matches

After further investigation, we concluded that we
were unable to achieve 100% detection rate for two
reasons. First, there is still space for improvement in
defining our detection rules. After eye-checking some
of the undetected packets, we found a large number of
them have oversized field values. The problem lies in
defining the optimal threshold for each header field
value, since thresholds are implementation-specific and
require tuning.

We also found a significant number of packets that
do not contain any anomaly at all. We have contacted
the technical support of Codenomicon and were told
that there are indeed a number of valid messages being
mixed in the test cases, which sometimes can make
fuzz testing more effective. However, since the
number of these valid packets is unknown at the time
of this writing, we are unable to exclude them from our
test result.

6.2. Performance Evaluation

Since our prototype is implemented in Python, we
are aware that it is not realistic to expect commercial-
grade performance from this implementation.
However, we are interested to know if we can leverage
multi-core CPUs, which have become very common
nowadays, by multiplying our detection engines and
execute them in parallel. In our experiment, we have
deployed our system in a general PC with the
following specifications.

OS: OpenSUSE 10.2 x86-64bit
CPU: Intel Core 2 Quad Q6700 @2.66GHz
Memory: 4GB

117117

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on October 16, 2008 at 06:27 from IEEE Xplore. Restrictions apply.

Figure 4 illustrates our test bed. The prototype is
deployed out-of-line and inspects packet copies
obtained from a tap that sits between a pair of SIPp
generators.

Figure 4. Experiment setup

We decided not to use Codenomicon for this
experiment since the size of each packet generated by
Codenomicon varies greatly and is not suitable for
performance testing. Instead, we use SIPp v2.0.1 as
the SIP traffic generator to continuously generate
signalling traffic that consist of series of INVITE, OK,
RINGING, ACK, BYE, OK messages over UDP at
various rates range from 600 to 4800 packets per
second (pps). The SIPp-UA machine also generates
packets with different source IP addresses to simulate
multiple clients. Since our prototype is installed in a
machine with 4 cores, we launch different numbers of
processes (1 to 4) in each setting and test the maximum
throughput. In each experiment setting in which more
than 1 process is launched, we hash the IP address and
let each process work on an equal portion of SIP traffic.

Figure 5 summarizes the test result. The X-axis
represents the rate at which packets are generated by
SIPp. The Y-axis represents the number of packets
processed by the prototype without packet loss. The
dotted line in the graph indicates the ideal scenario in
which all packets generated are processed without
packet loss. The result from each experiment setting is
overlaid on the same graph. With only one process
running, the performance starts to degrade at around
the rate of 960 pps. As the packet generation rate
increase, the result drifts further away from the ideal
line. Similarly, the rate at which the performance
degrade beings are around 1920, 2880, 3840 pps for
experiment settings with 2, 3 and 4 processes.

To our surprise, the performance in each
experiment setting is almost perfectly proportional to
the number processes launched, although this is
expected in theory. At the first attempt, we were able
to obtain only 3.5x leverage with 4 processes. After
turning off all unnecessary background processes in

Linux, we are able to obtain a performance result that
is 4 times of the uni-process setting running. We
believe this performance leverage is contributed by the
fact that all our proposed detection rules are stateless
and the workload can be easily distributed to multiple
processes as long as a well-balanced hash function can
be applied to SIP traffic. This allows us to scale up the
performance easily.

Figure 5. Performance Evaluation

7. Conclusion

Fuzzing attacks pose a serious threat to any SIP
device. While good software engineering practices can
help reduce potentially exploitable bugs, there will
always be devices vulnerable to fuzzing attacks as we
have argued. In this paper, we have outlined detection
rules effective in detecting fuzzing attacks and have
also designed an architecture that scales up the
detection process. Our experiment using
Codenomicon shows that most known variations of
fuzzing attacks can be detected using the five
categories of rules we have formulated. We have also
demonstrated that the performance can be leveraged by
running multiple detection processes in parallel and
utilizing multi-core processors.

8. References

[1] VOIPSA, http://www.voipsa.org/
[2] J. Rosenberg, H. Schulzrinne, G. Camarillo, A.
Johnston, J. Peterson, R. Sparks, M. Handley, E.
Schooler. (2002). "SIP: Session Initiation Protocol",
RFC3261.
[3] M. Sutton, A. Greene, P. Amini, “Fuzzing, Brute
Force Vulnerability Discovery,” Addison Wesley,
2007, ISBN: 0-321-44611-9
[4] US-CERT, “Multiple implementations of the
Session Initiation Protocol (SIP) contain multiple types

118118

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on October 16, 2008 at 06:27 from IEEE Xplore. Restrictions apply.

of vulnerabilities”, Vulnerability Note VU#528719,
2003.
[5] US-CERT, “Cisco Firewall Services Module
vulnerable to DoS via inspection of malformed SIP
messages”, Vulnerability Note VU#430969, 2007.
[6] US-CERT, “Apple Macintosh OS X
VideoConference SIP heap buffer overflow”,
Vulnerability Note VU#969969, 2007.
[7] US-CERT, “Linksys RT31P2 VoIP router denial of
service vulnerabilities”, Vulnerability Note
VU#621566, 2006.
[8] US-CERT, “Asterisk null pointer dereference
remote pre-authentication DoS vulnerability”,
Vulnerability Note VU#228032, 2007.
[9] "PROTOS - Security Testing of Protocol
Implementations," University of Oulu.
http://www.ee.oulu.fi/research/ouspg/protos.
[10] “Asteroid – SIP Denial of Service Tool”,
http://www.infiltrated.net/asteroid/
[11] Codenomicon, http://www.codenomicon.com/

[12] D. Geneiatakis, G. Kambourakis, T. Dagiuklas, C.
Lambrinoudakis, S. Gritzalis “A Framework for
Detecting Malformed Messages in SIP Networks",
2005 IEEE Workshop on Local and Metropolitan Area
Networks.
[13] D. Geneiatakis, T. Dagiuklas, C. Lambrinoudakis,
G. Kambourakis and S. Gritzalis, “Novel Protecting
Mechanism for SIP-Based Infrastructure against
Malformed Message Attacks: Performance Evaluation
Study,” CSNDSP 2006.
[14] Snort, http://www.snort.org/
[15] Libpcap, http://www.tcpdump.org/
[16] Pcapy, http://oss.coresecurity.com/
[17] Parallel Python, http://www.parallelpython.com/
[18] M. Ozawa, E. Y. Chen, M. Itoh, M. Hatori,
“Evaluation of a Detection System against Fuzzing
Attacks on the SIP Protocol”, ISEC, Technical Report
of IEICE, 2007 (in Japanese)

119119

Authorized licensed use limited to: Jyvaskylan Ammattikorkeakoulu. Downloaded on October 16, 2008 at 06:27 from IEEE Xplore. Restrictions apply.

