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Abstract 

 
The VoIP technology has been increasingly popular 

and the number of its users has surged in the past 
years, because of its economical advantage over the 
traditional PSTN services.  As a side effect, various 
VoIP servers and clients are becoming attractive 
targets of malicious attacks. This paper outlines the 
detection rules we have formulated to detect fuzzing 
attacks, which attempt to crash a VoIP device by 
sending it invalid SIP messages.  This paper also 
proposes a system architecture that utilizes multi-core 
processors in order to scale up the performance of 
detection using these rules.  
 
1. Introduction 
 

The VoIP technology has been increasingly popular 
and the number of its users has surged in the past 
years, because of its economical advantage over the 
traditional PSTN services.  However, this trend has 
also made various VoIP devices attractive targets of 
various attacks, since these devices are often deployed 
on the Internet.  VoIP Security Alliance (VOIPSA) [1] 
was launched in 2005 to invite professionals in the 
related fields to address the security issues surrounding 
the VoIP technology.  A white paper that enumerates 
most possible threats to VoIP has been made publicly 
available by VOIPSA.   

This paper focuses on attacks that involve sending 
malformed messages to a SIP device.  In particular, we 
focus on detecting malformed SIP [2] messages, since 
SIP is rapidly replacing other VoIP signalling 
protocols and becoming the de facto standard.  In this 
paper, we use the term SIP fuzzing attacks to refer to 
this type of attacks. 

The remainder of this paper is structured as follows.  
Section 2 briefly introduces SIP fuzzing attacks.  
Section 3 surveys the related work that attempts to 
address this problem.  Section 4 outlines the rules we 
use to detect SIP fuzzing attacks.  Section 5 describes 
how we have implemented a prototype using these 

rules.  Section 6 evaluates this prototype in terms of 
detection effectiveness and processing performance. 
 
2. SIP Fuzzing Attacks 
 

The word fuzzing is conventionally used to refer to 
a black-box software testing method that provides 
random data to the inputs of a program in an attempt to 
fail the program and find bugs [3].  Bugs found using 
fuzz testing can be exploited by an attacker to crash or 
hijack the program.  SIP fuzzing refers to such 
technique designed to test programs or devices that 
implement SIP. 

An alarming number of security incidents 
discovered through SIP fuzzing have been reported 
over the past years.  In 2003, the US-CERT issued a 
vulnerability note [4] based on a discovery by the Oulu 
University Secure Programming Group (OUSPG).  
According to the note, a significant number of SIP 
implementations contain vulnerabilities that can be 
triggered by malformed SIP messages.  The impacts 
range from unexpected system behaviour and denial of 
service to execution of arbitrary code by buffer 
overflow.  Despite of this warning, a number of 
vulnerabilities caused by malformed SIP messages are 
still discovered later in products such as Cisco Firewall 
Services Module [5], Apple Macintosh OS X 
VideoConference [6], Linksys VoIP router [7] and 
Asterisk [8].  

An attack that exploits such bugs can be launched in 
two ways.  First, the attacker tries to identify the exact 
implementation of the target device (vendor and 
version etc) and then send known malformed packets 
specific to that implementation.   Second, the attacker 
can flood the target with different patterns of 
malformed packets (live fuzzing) and hope that at least 
one of them would trigger a bug in the target.  The first 
way is obviously more efficient while the second way 
is powerful due to its brute-force nature. 
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3. Related Work 
 

Approaches to the SIP fuzzing attack problem can 
be generalized into two categories: prevention with 
extensive fuzz testing before product release, and 
detection of attacks against online devices. 

PROTOS [9] and Asteroid [10] are two well-known 
tools that are freely available for the purposes of fuzz 
testing.  Codenomicon [11] is the commercial version 
of PROTOS and provides 10 times more test cases.  
While preventive measures using these tools are 
perhaps the most effective way in eliminating software 
bugs exploitable by a fuzzing attacker, not all 
developers are willing to make the efforts due to the 
additional costs incurred.  Moreover, users can never 
be certain if the products they use are free from such 
vulnerabilities. 

Geneiatakis et al. [12] emphasised the importance 
of having a detection mechanism for SIP fuzzing 
attacks.  They explained the effectiveness of signature-
based detection and suggested an example of 
inspecting INVITE messages.  However, this literature 
offers little details about how one should design the 
detection rules and implement a detection system for 
fuzzing attacks. 

We agree with Geneiatakis’s work in general and 
see the importance of detecting SIP fuzzing attacks. 
We had previously presented a preliminary report [18] 
(in Japanese) that describes our work-in-progress 
toward designing rules to detect fuzzing attacks.  This 
paper outlines in detail the rules we have formulated 
and demonstrates the comprehensiveness of these rules 
by testing them against a commercial fuzzing tool used 
for software testing.  This paper also proposes a system 
architecture that is capable of utilizing modern multi-
core processors to scale up the detection performance. 
 
4. Detection Rules 
 

We propose to use the following five categories of 
rules to detect malformed SIP packets. 

• Incorrect Grammar 
• Oversized Field Values 
• Invalid Message or Field Name 
• Redundant or Repetitive Header Field 
• Invalid Semantic 

In a paper of this length, we are unable to enumeration 
all rules in each category.  Instead, we describe in 
detail the general objectives of rules in each category. 
 
4.1. Incorrect Grammar 
 
Rules in this category examine the grammatical 
structure of each SIP message as defined under Section 

25 in RFC3261.  For example, the Call-ID field is 
defined as the following in ABNF: 
 

Call-ID=(“Call-ID”/”i”) HCOLON callid 
callid = word [“@”word] 

 
In other words, a SIP stack should expect a Call ID to 
be one string or two strings separated by a “@”.  The 
following illustrates two possible invalid structures. 
 

Valid  
Call-ID: a84b4c7 
Invalid 1 
Call-ID: a84b4c7@ 
Invalid 2 
Call-ID: a84b4c7, a84b4c7, a84b4c7 

 
Invalid structures can be easily detected as the 
grammar of SIP is concisely defined in RFC3261.  
Detection rules in this category can be derived from the 
ABNF.  
 
4.2 Oversized Field Values 
 

An overflow can occur in a well-formed SIP 
message when any field has a larger integer or a longer 
string than normally expected.  The following is a 
simple example in which the invalid header field value 
has an oversized SIP version number. 
 

Valid  
INVITE Bob@biloxi.com SIP/2.0 
Invalid 
INVITE Bob@biloxi.com SIP/122214.0 

 
Exception handling of such messages can be 

difficult since the upper limit or the maximum length 
of each header field value is not always clearly defined 
in RFC3261.  We have created rules in this category 
based on a number of SIP devices we have worked 
with.  However, rules in this category are 
implementation-specific and should be adjusted 
accordingly. 
 
4.3 Invalid Message or Field Name 
 

Rules in this category simply look for method 
names, response code or header field names not 
defined in RFC3261. These include messages with 
mismatched response codes.  For example: 
 

Valid  
SIP/2.0 200 OK 
Invalid 
SIP/2.0 200 Trying 
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Such messages are fairly easy to detect.  However, it is 
commonly known that a number of so-called dialects 
exist in SIP and vendors sometimes extend SIP by 
adding proprietary header fields no defined in 
RFC3261.  Rules in this category should be able to 
incorporate such extensions.     
 
4.4 Missing or Repetitive Header Field 
 

The following five headers must be present in any 
SIP message: From, To, Via, Call-ID and CSeq.  A SIP 
message that does not contain any of these headers 
should be considered malformed.   

It is also possible to fuzz a SIP device by sending a 
message with repetitive headers.  We have created 
rules that look for repetitive headers, with the 
exception for headers such as Contact, Via, Call-Info 
and Route, since multiple entries of these headers are 
allowed.  However, since the maximum number of 
entries for these headers is not defined, the upper limit 
for each SIP device may be implementation-specific 
and therefore create an opportunity for buffer overflow 
attack.  An attacker may send a SIP message with 
excess number of these entries to a level that cannot be 
correctly handled by the recipient.  Therefore, we find 
it necessary to set up thresholds for the number of 
occurrences of these headers.  Similar to rules 
described in Section 4.2, these are implementation-
specific and should be adjusted accordingly.   
 
4.5 Invalid Semantics 
 

Rules in this category detect messages with 
anomalies in the semantics, even if the messages may 
be well-formed and syntactically compliant.  A typical 
example is to spoof one’s source IP address to 
127.0.0.1 (loopback address) in a SIP message in order 
to trick the receiver.  An unknowing receiver that does 
not check irregularities in message semantics may send 
replies to 127.0.0.1 (i.e. itself) continuously and 
eventually over-consumes its own resources.  Other 
values we inspect include time, date, content length 
and CSeq.    
 
5. Prototype Implementation 
 

We have created a prototype from scratch and 
designed the architecture in a way that allows us to 
utilize multi-core processors that have become very 
common even in low-end computers.  We feel that 
parallel processing is extremely suitable for detection 
of fuzzing attacks since the detection process is 
stateless in nature and can process each packet 
independently.  The architecture is illustrated in Figure 

1.  This prototype currently supports only SIP over 
UDP. 

Modules in a grey box are collectively executed as 
an individual detection process.  For each 
core/processor detected in the underlying platform, the 
Parallel Processing Controller launches a detection 
process, or more precisely, a Packet Hander, which in 
our design is an entry object that initiates a new 
process.  Modules in each grey box have a similar 
architecture as Snort [14], a popular open-source IDS 
(intrusion detection system).   

From the underlying libpcap [15] library, a Packet 
Handler retrieves packets that match some pre-
determined filter rule.  Each Packet Handler should 
retrieve a different set of packets in order to effectively 
distribute the workload.  Each packet received is then 
passed to the Decoder that decodes layer-3 and layer-4 
headers and prepares the data in an expedient manner 
for the detection engine. 

The detection engine implements all rules that we 
have defined in Section 4.  It analyzes every SIP 
message and look for anomalies.  The first rule that 
matches the SIP message triggers an alert.  A message 
that does not match any rule is considered normal and 
is forwarded if the prototype is deployed as an SBC 
(session border controller), or discarded if it is 
deployed as an out-of-line IDS. 

The Log component stores all alerts triggered by 
Detection Engine in any detection process. 

 

  
 

Figure 1.  Prototype Implementation 
 
The prototype is currently implemented in Python.  

We use pcapy [16] as a wrapper for the pcap library.  
Since the basic Python uses a Global Interpreter Lock 
(GIL) for thread control that makes utilization of multi-
core processors difficult, we implement our Parallel 
Processing Controller module using Parallel Python 
[17], which allows us to launch a different process for 
each detection unit. 
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6. Experiment 
 

We have conducted experiments to evaluate two 
aspects of our system – the correctness of the detection 
rules and the relative performance leverage we can 
gain by distributing incoming messages to a number of 
identical processes (instead of threads) running in 
parallel.  
 
6.1 Evaluation of Detection Correctness 
 

In order to evaluate the correctness of our detection 
engine, we have used Codenomicon to generate SIP 
fuzzing attack packets.  Although Codenomicon is 
intended to be used as a fuzzing test tool for legitimate 
purposes, we found it suitable for our experiment to 
mimic an attack host.  Among the test cases in 
Codenomicon, we excluded ones that are in the 
“normal” group as well as ones with anomalies in SDP, 
which is out of the scope of this paper.  As a result, we 
used a total number of 36398 test cases and feed each 
SIP message to our prototype.  The result is 
summarized in Figure 2. 
 

34137
cases,
94%

2261
cases,

6%

Detected False Negative  
 

Figure 2.  Detection Rate 
 

Using rules in all five categories described in 
Section 4, we were able to detect anomalies in 34,137 
packets, or 94% of the entire test cases selected.  In 
other words, the rate of false negatives is 6% (2,261 
undetected packets). 

Figure 3 shows the number of matches for each 
category of rules.  Each fuzzing packet may trigger one 
or more detection rules.  The result shows that most 
test cases generated by Codenomicon contain incorrect 
grammar and oversized values.  

We have also tested our prototype with legitimate 
SIP messages generated by the following products: 
OnDO SIP Server, SIPp, X-Lite and Sanyo IP Phone.  
We also fed our prototype with Codenomicon test 
cases that are explicitly grouped under the “normal” 
group.  None of these messages trigger any alert and 

therefore the rate of false positive is 0% with these 
products. 
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Figure 3.  Number of rule matches 
 

After further investigation, we concluded that we 
were unable to achieve 100% detection rate for two 
reasons.  First, there is still space for improvement in 
defining our detection rules.  After eye-checking some 
of the undetected packets, we found a large number of 
them have oversized field values.  The problem lies in 
defining the optimal threshold for each header field 
value, since thresholds are implementation-specific and 
require tuning. 

We also found a significant number of packets that 
do not contain any anomaly at all.  We have contacted 
the technical support of Codenomicon and were told 
that there are indeed a number of valid messages being 
mixed in the test cases, which sometimes can make 
fuzz testing more effective.  However, since the 
number of these valid packets is unknown at the time 
of this writing, we are unable to exclude them from our 
test result. 
 
6.2. Performance Evaluation 
 

Since our prototype is implemented in Python, we 
are aware that it is not realistic to expect commercial-
grade performance from this implementation.  
However, we are interested to know if we can leverage 
multi-core CPUs, which have become very common 
nowadays, by multiplying our detection engines and 
execute them in parallel.  In our experiment, we have 
deployed our system in a general PC with the 
following specifications. 
 

OS: OpenSUSE 10.2 x86-64bit 
CPU: Intel Core 2 Quad Q6700 @2.66GHz  
Memory: 4GB 
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Figure 4 illustrates our test bed.  The prototype is 
deployed out-of-line and inspects packet copies 
obtained from a tap that sits between a pair of SIPp 
generators. 
 

 
 

Figure 4.  Experiment setup 
 

We decided not to use Codenomicon for this 
experiment since the size of each packet generated by 
Codenomicon varies greatly and is not suitable for 
performance testing.   Instead, we use SIPp  v2.0.1 as 
the SIP traffic generator to continuously generate 
signalling traffic that consist of series of INVITE, OK, 
RINGING, ACK, BYE, OK messages over UDP at 
various rates range from 600 to 4800 packets per 
second (pps).  The SIPp-UA machine also generates 
packets with different source IP addresses to simulate 
multiple clients.  Since our prototype is installed in a 
machine with 4 cores, we launch different numbers of 
processes (1 to 4) in each setting and test the maximum 
throughput.  In each experiment setting in which more 
than 1 process is launched, we hash the IP address and 
let each process work on an equal portion of SIP traffic. 

Figure 5 summarizes the test result.  The X-axis 
represents the rate at which packets are generated by 
SIPp.  The Y-axis represents the number of packets 
processed by the prototype without packet loss.  The 
dotted line in the graph indicates the ideal scenario in 
which all packets generated are processed without 
packet loss.  The result from each experiment setting is 
overlaid on the same graph.  With only one process 
running, the performance starts to degrade at around 
the rate of 960 pps.  As the packet generation rate 
increase, the result drifts further away from the ideal 
line.  Similarly, the rate at which the performance 
degrade beings are around 1920, 2880, 3840 pps for 
experiment settings with 2, 3 and 4 processes.   

To our surprise, the performance in each 
experiment setting is almost perfectly proportional to 
the number processes launched, although this is 
expected in theory.  At the first attempt, we were able 
to obtain only 3.5x leverage with 4 processes.  After 
turning off all unnecessary background processes in 

Linux, we are able to obtain a performance result that 
is 4 times of the uni-process setting running.  We 
believe this performance leverage is contributed by the 
fact that all our proposed detection rules are stateless 
and the workload can be easily distributed to multiple 
processes as long as a well-balanced hash function can 
be applied to SIP traffic.  This allows us to scale up the 
performance easily. 

 

 
 

Figure 5.  Performance Evaluation 
 
7. Conclusion 
 

Fuzzing attacks pose a serious threat to any SIP 
device.  While good software engineering practices can 
help reduce potentially exploitable bugs, there will 
always be devices vulnerable to fuzzing attacks as we 
have argued.  In this paper, we have outlined detection 
rules effective in detecting fuzzing attacks and have 
also designed an architecture that scales up the 
detection process.  Our experiment using 
Codenomicon shows that most known variations of 
fuzzing attacks can be detected using the five 
categories of rules we have formulated.  We have also 
demonstrated that the performance can be leveraged by 
running multiple detection processes in parallel and 
utilizing multi-core processors. 
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