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ABSTRACT
SIP is a protocol of growing importance, with uses for VoIP,
instant messaging, presence, and more. However, its perfor-
mance is not well-studied or understood. In this paper we
experimentally evaluate SIP proxy server performance us-
ing micro-benchmarks meant to capture common SIP proxy
server scenarios. We use standard open-source SIP software
such as OpenSER and SIPp, running on an IBM BladeCen-
ter with Red Hat Enterprise Linux and Gigabit Ethernet
connectivity.

We show performance varies greatly depending on how the
protocol is used. Depending on the configuration, through-
put can vary from hundreds to thousands of operations per
second. For example, we observe that the choice of state-
less vs. stateful proxying, using TCP rather than UDP, or
including MD5-based authentication can each affect perfor-
mance by a factor of 2–4.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications; C.5.5 [Computer

System Implementation]: Servers; D.4.8 [Performance]:
Measurements

General Terms
Measurment, Performance, Experimentation

Keywords
SIP, Servers, Performance, Experimental Evaluation

1. INTRODUCTION
The Session Initiation Protocol (SIP) is an application-

layer control protocol for creating, maintaining, and tearing
down sessions for various types of media, including voice,
video, and text. SIP is of growing importance, as it is
being used for many media-oriented applications such as
Voice over IP (VoIP), voicemail, instant messaging, pres-
ence, IPTV, network gaming, and more. It is also the core
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protocol for the IP Multimedia Subsystem (IMS), the ba-
sis for the 3rd-Generation Partnership Program (3GPP) for
both fixed and wireless telephone networks. SIP relies on
an infrastructure of servers, which are responsible for main-
taining the locations of users and forwarding SIP messages
across the application-layer SIP routing infrastructure to-
ward their eventual destinations.

The performance of these SIP servers is thus crucial to
the operation of the infrastructure, as they can have a pri-
mary impact on the latency of media applications, e.g., for
initiating a phone call. However, SIP server performance
is not well-studied or understood. Service providers clearly
require performance information to understand how to pro-
vision their infrastructures to provide reasonable QoS.

The goal of this paper is to shed more light on how SIP
proxy servers perform under various configurations and ex-
plain some of the limits to performance. We evaluate server
throughput and latency for common SIP proxy server con-
figurations, using micro-benchmarks on a dedicated exper-
imental testbed. In particular, we are interested in identi-
fying the primary factors that determine SIP proxy server
performance including:

• Where is the time spent in servicing SIP requests?

• How significant are security costs such as authentica-
tion and encryption?

• How does the choice of stateless vs. stateful proxying
affect performance?

• What is the impact of the transport protocol on per-
formance?

We study these issues experimentally with standard open-
source SIP software. We use a common SIP proxy server,
Open SIP Express Router (a.k.a. OpenSER), running on
an IBM BladeCenter with a 3.06 GHz Intel Xeon. The
blade runs Red Hat Enterprise Linux 4 update 3, with a
2.6.17.8 kernel. Performance is measured by clients using
the SIPp workload generator sending requests over a pri-
vate copper Gigabit Ethernet. We measure throughput, av-
erage response time, and distributions of response times for
a given load level, driving the system not only to capacity
but into overload as well.

We find that SIP performance, in terms of throughput,
can vary by an order of magnitude, depending on how the
server is configured. Proxying throughput can vary from
hundreds to thousands of operations per second, depending
on whether authentication is used, whether transactions are
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Figure 1: Stateful Proxying

stateful or stateless, and whether the underlying transport
protocol is UDP or TCP. Authentication can reduce perfor-
mance by a factor of 4, depending on the scenario. Using
TCP as the transport can reduce performance by a factor
of 3, and stateful configuration for proxying can cut perfor-
mance in half. We show that the distributions of response
time vary radically and degrade substantially when the sys-
tem is under overload.

The result is that organizations deploying SIP technology
must be aware of how their systems are configured and used,
as this will have a primary influence on the performance
of their systems, and thus how many resources need to be
provisioned.

The rest of this paper is organized as follows: Section 2
presents the SIP proxy server configurations that we evalu-
ate. Section 3 describes our experimental setup, and Section
4 presents our results in detail. Section 5 discusses some
related work, and Section 6 provides our summary and con-
clusions and briefly presents plans for future work.

2. PROXYING SCENARIO
In this Section, we describe the common SIP proxy server

scenario that we evaluate. Proxying is the core SIP function
of forwarding a SIP message towards its eventual destination
in the SIP infrastructure. In this section, we describe 4
potential scenarios: stateful vs. stateless proxying, both
with and without authentication.

Figure 1 shows an example of stateful proxying without
authentication. The hashed circle around the proxy illus-
trates that this is the component (“system under test”) that
we are measuring. In this example, the first SIP client wishes
to establish a session with the second SIP client and sends
an INVITE message to the proxy. Since the proxy is state-
ful, it responds with a 100 TRYING message to inform the

client that the message has been received and that it need
not worry about hop-by-hop retransmissions. It then looks
up the contact address for the SIP URI of the second client
and, assuming it is available, forwards the message. The sec-
ond client, in turn, acknowledges receipt of the message and
informs the proxy that it is notifying the user via the 180

RINGING message. The proxy then forwards that message
to the initiator of the INVITE, informing the client that the
end host has received the message and that the line is “ring-
ing.” The user on the second client machine then accepts
the call, generating a 200 OK message, which is sent to the
proxy which forwards it on to the first client. The first client
then generates an acknowledgment. Having established the
session, the two endpoints communicate directly, peer-to-
peer, using a media protocol such as RTP [10]. However,
this media session does not traverse the proxy, by design.
When the conversation is finished, the first user “hangs up”
and generates a BYE message that the proxy forwards to the
second user. The second user then responds with a 200 OK

which is forwarded back to the first user.
The above example is for a transaction-stateful, dialog

stateful scenario where all SIP messages are routed through
the proxy, using the Record-Route: header option. SIP
proxies may be configured so that not all messages need tra-
verse the proxy. For example, the BYE/OK exchange could
be sent directly between the two clients. The above sce-
nario is frequently used, however, since it enables per-call
accounting and billing.

The other 3 proxying scenarios are straightforward exten-
sions of the first.

In the stateless proxying scenario without authentication,
the call flows are the same as in Figure 1, except that there
is no 100 TRYING message sent from the proxy to the client.
In this case, the proxy does not create local state based on
the transaction and relies on the endpoints to retransmit
lost messages.

In the stateful proxying scenario with authentication, af-
ter receiving the initial INVITE, the proxy responds with a
407 UNAUTHORIZED message, challenging the client to pro-
vide credentials that verify its claimed identity with a re-
sponse based on that challenge. The client then retransmits
the INVITE message with the generated credentials in the
Authorization: header. The proxy also challenges BYE re-
quests, requiring the UAC to retransmit the BYE with the
proper Authorization: header, to prevent unauthorized
hang-ups.

The stateless proxying scenario with authentication is sim-
ilar to the previous scenario, except that there is no 100

TRYING provided to the client and no transaction or dialog
state created on the proxy.

Because SIP allows the use of multiple transport proto-
cols, including UDP, TCP, SCTP, and SSL, we also wish
to evaluate the impact of the choice of transport on per-
formance. In our experiments, we evaluate UDP and TCP.
In the case of UDP, all requests and responses are routed
through a single connectionless UDP socket. With TCP,
each client machine uses a separate persistent TCP connec-
tion to the registrar, proxy, or redirector, as appropriate to
the scenario.

3. EXPERIMENTAL TESTBED
In this Section we describe the software and hardware

utilized in our experiments.



3.1 SIP Server Software
We use the Open SIP Express Router version 1.1.0 (Open-

SER) [12], a freely-available, open source SIP proxy server.
OpenSER is a “fork” of SIP Express Router (SER) [3],
sharing much of its code base. Both proxies are written
in C, use standard process-based concurrency with shared
memory segments for sharing state, and are considered to
be highly efficient. Janak’s thesis [4] describes many per-
formance optimizations that are utilized in SER (and by
implication, OpenSER). Each proxy has large feature sets,
considerable user bases, active mailing lists, and third-party
contributions (e.g., from sip.edu and onsip.org). We chose
OpenSER over SER due its better documentation, but we
believe our results will hold with SER as well.

In configurations where a user database was required, we
use MySQL [11] 4.1.12-3.RHEL4.1, which we populated with
10,000 unique user names and passwords. OpenSER is con-
figured to use a write-back caching policy, to maintain client
state across restarts but also to achieve close to in-memory
DB performance.

3.2 SIP Client Workload Generator
We use the SIPp [2] SIP workload generator, another

freely available open-source tool. SIPp allows a wide range
of SIP scenarios to be tested, such as user-agent clients
(UAC), user-agent servers (UAS) and third-party call con-
trol (3PCC). SIPp is also extensible by writing third-party
XML scripts that define new call flows; we wrote new flows
that were not included with SIPp to handle authentica-
tion. SIPp has many run-time options we took advantage
of, such as multiple transport (UDP/TCP/TLS) support;
MD5-based hash digest authentication, and scriptable sup-
port to allow calls to be generated from a list of users.

We made several modifications to SIPp to improve its per-
formance, so as to reduce the amount of client resources re-
quired to drive the server to saturation. Most importantly,
we removed a restriction that limits the number of outstand-
ing calls to three times the requested load level. This ar-
tificially limits the offered load, effectively making SIPp a
closed-loop workload generator. Since we are interested not
only in the maximum capacity of the server but also how
well it behaves under overload, we removed this limitation
in SIPp. Our improvements have been contributed back to
the open source community and have been incorporated into
the latest development releases of SIPp.

3.3 Client and Server OS Software
The servers in our experiments uses RedHat Enterprise

Linux AS Release 4 update 3, using a locally-built Linux
kernel 2.6.17.8, which is more recent than the 2.6.9 kernel
variant that ships with RedHat. Our client machines use
the SuSE SLES 9 release 2 Enterprise distribution, with a
2.6.5-9 kernel.

3.4 Hardware and Connectivity
The server hardware used is an IBM blade server resid-

ing in an IBM BladeCenter. The blade has 2 Intel Xeon
3.06 GHz processors with 4 GB RAM and 100 GB Toshiba
MK4019GAXB ATA disk drives. However, for our experi-
ments, we only use one processor. The blade has 2 Broad-
com NetXtreme BCM5704S Copper Gigabit interfaces; each
interface is connected to a separate Nortel Gigabit switch
that is included with the BladeCenter. One switch is con-

nected to our building’s regular LAN, while the other is
connected to our private experimental network. To mini-
mize experimental perturbation and variability, all of our
measurements are conducted over the experimental network,
where minimal other traffic occurs (e.g., spanning-tree). Also
residing on the private experimental network are 10 client
machines used for load generation; half as UACs and half as
UASs. Each client machine is an IBM Intellistation with a
1.7 GHz Intel Pentium 4 processor, 512 MB of RAM, an 18
GB SCSI disk, and an Intel E1000 Gigabit Ethernet adapter.

3.5 Experiments and Metrics
In our experiments, we wish to measure both throughput

and latency as a function of load on the server. Throughput
is relatively straightforward to define, in terms of the number
of the appropriate completed operations per second.

Latency is defined as the time between when the INVITE

is sent and the eventual successful 200 OK is received. This
is the latency as perceived by the user for initiating a call,
which we believe is of more interest than latency that in-
cludes the call duration or termination (i.e., BYE). This is
similar to the Session Request Delay (SRD) as defined in
[5], except that there the latency timer is stopped when a
180 RINGING response is received. Since there is no pro-
grammed delay between the 180 RINGING and the BYE on
the UAS, we believe the difference is minimal.

For each metric (throughput, latency, and CPU profile)
that we report, the number is the average over 5 runs. La-
tency and throughput curves include 95th percentile confi-
dence intervals. Each run lasts for 120 seconds after a 5
second warm-up time. We also show the cumulative distri-
bution function (CDF) of response times for various load
levels, to illustrate how response time varies with load, par-
ticularly at 95th and higher percentiles.

3.6 Restrictions, Limitations, and Scope
Note that our setup by no means covers the entire space

of configurations for SIP. Results for two major SIP server
scenarios, registration and redirection, are excluded due to
space limitations, but are available in a companion technical
report [6]. We do not consider non-VoIP scenarios such as
Instant Messaging or Presence. In addition, there are many
VoIP situations not measured by our experiments, includ-
ing outbound proxying, PSTN gatewaying, ENUM process-
ing, SSL and SCTP as a transport layer, or error processing
for unregistered or unauthenticated users. Each of these
presents opportunities for future work.

4. RESULTS
Before detailing our proxying results, we believe it is nec-

essary to mention a significant performance fix for transaction-
stateful proxying that influences many of our results.

While examining the CPU profiling results generated us-
ing oprofile, one problem we observed very quickly was the
extremely large amounts of CPU cycles spent in the Open-
SER module responsible for transaction-stateful processing.
Figure 2 shows an example of this, in the left-hand bar
marked “Original.”

Looking more closely, we saw that this time was com-
ing from a single function, insert timer unsafe(), which
inserted new transactions into a timer structure for retrans-
missions in the future. This list is sorted by expiration time,
yet the routine needlessly searched through the list even
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though the timer needed only to be appended to the end
of the list. This function becomes a bottleneck because, at
high loads, each new call results in two new transactions
(the INVITE and the BYE), each of which requires a timer to
be set and canceled in the common case. This bug is also
present in the released version (0.9.6) of SER.

A one-line fix corrected this problem, increasing the peak
throughput by over a factor of ten in the transaction-stateful
scenario without authentication, from 400 to 4012 calls per
second. Performance increases by 250 percent for the sce-
nario with authentication, from 300 to 701. Figure 2 also
shows the CPU profile for the same load after applying our
fix, in the right-hand bar marked “New.” All results re-
ported below include our fix.

Throughputs
Figure 3 shows throughputs versus offered load for stateful
and stateless proxying, with and without authentication, us-
ing both UDP and TCP as transport protocols. Note that
both X and Y axes are in log scale. Peak throughputs for
each curve are also reported in Figure 5. Peak throughputs
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are calculated as the maximum throughput achieved while
maintaining at least a 99 percent success rate.

As can be seen in Figures 3 and 5, the achieved through-
puts vary considerably, depending on on how the systems are
configured. Starting with the results for stateless proxying
with UDP and no authentication as a “best case,” we can
illustrate how the various features and functions influence
performance.

The most significant feature that influences performance
is whether authentication is used. Depending on the con-
figuration, enabling authentication can reduce performance
anywhere from 60 percent (in the stateful TCP case) to
90 percent (in the stateless UDP case). CPU profiles for
these tests, given in Figure 4, illustrates why performance
degrades with authentication. Observe that when authenti-
cation is enabled, the profiles show almost half the cycles are
spent in the MySQL database and the standard C library
functions. Neither of these components are significant when
authentication is not enabled; thus, we attribute the C li-
brary usage to MySQL. The actual MD5 hash calculation,
shown in the profile under the ‘Crypto’ heading, is typi-
cally less than 1 percent. The reason is that the database
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is consulted much more aggressively when authentication is
used, even though OpenSER is configured to use a write-
back caching policy, as described in Section 3.1. A straight-
forward solution would, of course, be to locate the DB on a
separate machine, but that would be increasing the resources
available, and we wish to study the performance limits of a
single node in this work.

The next most significant performance feature is which
transport protocol is used, TCP or UDP. Using TCP can
reduce performance anywhere from 43 percent (the stateful
proxying scenario with authentication) to 65 percent (state-
less proxying without authentication). Looking at Figure 4,
one can see that the time spent in the OpenSER core goes
up significantly, and that the time spent in the kernel al-
most doubles. TCP is a much more complex protocol than
UDP, providing much more functionality, and thus requires
significantly larger code paths.

Finally, we see that the choice of stateless vs. stateful pro-
cessing can also have a significant impact on performance,
depending on the configuration. Enabling stateful process-
ing can reduce performance by as much as 60 percent (for
the proxying configuration using TCP with no authentica-
tion) to having effectively no impact on performance (in the
configuration using TCP with authentication).

Observe also that OpenSER does not preserve throughput
under overload, as achieved throughput falls quickly when
load exceeds the capacity for that configuration. Ideally, a
system should maintain maximum throughput even when
subjected to overload; this is difficult to achieve in practice,
of course, and is the subject of active research. This demon-
strates that overload management and control are issues in
OpenSER for the future.

Latencies
Figure 6 shows average response times versus load. Note
that both X and Y axes use log scales. SIPp has a 1 millisec-
ond timer granularity; thus, any responses that occur within
less than a millisecond are treated as zero. Thus, many la-
tencies are not observable on the graph until the load on the
server approaches its maximum capacity. At those points,
latencies rise rapidly, but the slope of the response times
changes once the server is in an overloaded state. Recall
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that response times are only tracked for successful calls.
Figures 7 and 8 shows the cumulative distributions of the

response times measured at several loads for two sample
configurations: stateful proxying using authentication with
UDP and TCP, respectively. Note that the X axes are in
log scale. An obvious and expected result is that, as the
loads increase, the response times increase as well (i.e., the
curves shift to the right on the graph). There are, however
two other interesting features of the graphs.

First, curves tend to cluster in two clearly different regions
of the Figures: One, towards the upper left of the graphs,
and other, closer to the center and lower right. The charac-
teristic that differentiates these two regions is whether the
loads are below or above capacity, i.e., whether the system
is under overload. We can see that, when overloaded, the
response time distributions become significantly worse, and
very quickly (i.e., not linearly in proportion to the load).
For example, the stateful UDP auth configuration has a peak
throughput of 700 calls/second, yet the gap between the 700
curve and the 800 curve is significant, especially considering
the log scale. The TCP curve exhibits a similar gap between
400 and 500 calls/second, as the TCP configuration peaks at
400 CPS. This response time behavior is particularly impor-
tant for SIP servers, which need to provide service quickly
and smoothly, as they are used for real-time media such as
voice and video.

Second, observe that several significant jumps occur in
the UDP curve at certain response times (e.g., 64 ms, 500
ms, 1000 ms, etc.). The TCP curve, however, does not
exhibit this behavior and is much smoother. These jumps
are due to the various retransmission timers used by SIP
for reliability when UDP is used as the transport protocol.
SIP’s primary packet retransmission timer, called Timer A,
uses an exponential backoff starting at 500 milliseconds and
doubles each subsequent time that it fires. When the system
is overloaded, we see the manifestations of these timers firing
by the jumps in response time at those timer values. This
is because when SIP runs over TCP, it uses TCP’s packet
reliability and retransmission mechanisms rather than its
own Timer A as is done with UDP. However, higher-level
timers, e.g., the transaction timeout timer, are used with
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both transport protocols.

5. RELATED WORK
Due to space limitations, we only briefly discuss related

work in the SIP server performance area.
Janak’s Thesis [4] describes many of the performance op-

timizations that are used by SER (and by implication, Open-
SER). For example, rather than using zero terminated strings
as defined by the C language, SER uses counted strings
where the length of each string is stored with the string,
making many operations constant time rather than linear
based on the length of the string. SER also takes advan-
tage of UTF-8 encoding to canonicalize certain headers for
comparing in linear time, despite SIP’s requirement to be
case-insensitive. Finally, SER uses lazy parsing to only parse
those headers necessary rather than naively parsing all head-
ers, and incremental parsing to only scan needed fields within
a header.

Salsano et al. [9] present an experimental performance
analysis of SIP security mechanisms using an open source
SIP proxy implemented in Java. They found that adding di-
gest authentication to an INVITE transaction increases pro-
cessing overhead by about 80% for a stateless proxy and
45% for a stateful proxy. They found minimal overhead us-
ing TCP or TLS instead of UDP. The server performance in
these experiments was on the order of tens of calls per sec-
ond. Given these relatively low numbers, we are not certain
how representative these results are.

Cortes et al. [1] measured the performance of four trans-
action stateful SIP proxies using a suite of five tests. Proxy
performance ranged from 90 to 700 calls per second. The
tests used UDP only and evaluated parsing, string process-
ing, memory allocation, thread overhead and overall capac-
ity. Their results showed each of these components signif-
icantly affected performance, with parsing, string handling
and memory management contributing from 33% to 88% of
processing time.

6. SUMMARY
In this paper, we evaluate SIP proxy server performance,

examining the impact of authentication and transport pro-

tocol on performance, as well as statelessness vs. stateful-
ness. We study these issues experimentally, using OpenSER,
a high-performance open-source SIP server, and SIPp, the
de-facto standard for SIP performance benchmarking.

We find that performance varies widely, by an order of
magnitude. Depending on the configuration (authentica-
tion enabled/disabled, UDP or TCP, stateful or stateless),
throughput can vary from hundreds of operations a second
to thousands. Authentication has the greatest impact across
all configurations, due to the increased use of the database.
TCP is more expensive than UDP for most configurations,
and stateful proxying slower than stateful proxying. We
show that latency distributions are highly influenced by the
load, especially when the system is in an overloaded state.

Based on our results, we believe many potential future
research issues exist, including examining other SIP server
scenarios, optimizations identified by profiling, overload con-
trol, and using SSL/TLS as a transport.

The full scope of this work is available as an IBM Research
Report [6]. A short 2-page extended abstract appears in [7].
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