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Abstract 
A simple yet effective Denial of Service (DoS) attack on SIP servers is to flood the server with requests addressed at irresolvable 

domain names. In this thesis we evaluate different possibilities to mitigate these effects and show that over-provisioning is not 

sufficient to handle such attacks. As a more effective approach we present a solution called the DNS cache solution based on the usage 

of a non-blocking DNS cache. Based on various measurements conducted over the Internet we investigate the efficiency of the cache 

solution and compare its performance with different caching replacement policies applied. 



 

Introduction 
As opposed to PSTN (Public Service Telephone Network), VoIP (Voice over Internet protocol) providers such as skype 

are more and more welcomed with taking advantage of its low cost. However, the new network problems, like packet 

loss and Quality of Services (QoS) are emerging to the VoIP users. In the past, Security threats are considered minimal in 

current circuit switched networks. This is achieved by using a closed networking environment dedicated to a single 

application. However, for the VoIP services, which are based on an open environment such as internet, the systems are 

totally exposed to the attackers. In order to afford a broad service, the VoIP proxies can be accessed with a flat Internet 

access rate by anybody. Therefore, it is possible for an attacker to launch a DoS (Denial of Service) attack to VoIP proxies 

with a low cost.   

SIP (Session Initial Protocol) is a protocol proposed standard for initiating, modifying and terminating an interactive 

user session that involves multimedia elements such as video, voice. It is one of the leading signalling protocols for VoIP. 

Whereas, SIP depends much on DNS (Domain Name Service), and this feature could be exploited by attackers to launch 

a DoS attacking by difficult-resolvable DNS flooding. In my thesis work, I will investigate this attack and give a possible 

countermeasure. 

 

Research questions 

This research is focus on a special DoS flooding attack to SIP system. Mentioned in my proposal, I will answer three 

questions as following: 

� How to find a proper method to mitigate the effect of DoS attack via DNS request? 

� Which factors of DNS cache and SIP proxy (e.g. caching replacement policy, cache entry number, parallel processes 

number of proxy, etc) are useful to deal with this problem? 

� Which kind of combination of the useful factors is the most efficient? 

By answering these research questions, a problem and a solution to this problem will be verified.  

 

My contributions to this paper 

This kind of attacking had already been noticed by Fraunhofer FOKUS institute before my work started. But most of 

the work was based on theory at that time. In my research work, I did the threat evaluation of this DNS flooding attack in 

a simulated environment and showed that this attack slowed down message processing of SIP proxy by a fair amount. 

Secondly, I developed the prototype --- a DNS cache with some special functions in SIP environment by C in Linux. 

Finally, I performed several experiments in the simulated test bed to answer the research questions. 

 

Outline of thesis 

The thesis is organized as follow. Firstly, I will exhibit recent study outcome by one of our research papers, “Denial of 

Service on SIP VoIP Infrastructures Using DNS Flooding”. Secondly, in the conclusion part, I will answer the research 

questions and discuss some problems in the research with possible improvements in the future. Finally, I attached some 

details of my work in the appendix. 
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ABSTRACT 

In this paper we address the issue of a special denial of service 

(DoS) attack targeting a subcomponent of a Session Initiation 

Protocol (SIP) based VoIP network. Our focus is targeted at 

attacks that are addressed at the Domain Names Service (DNS). 

By flooding a SIP element with messages containing 

difficult-resolvable domain names, it is possible to block the 

target for a considerable amount of time. We evaluate possibilities 

to mitigate these effects and show that over-provisioning is not 

sufficient to handle such attacks. We present results gained from 

testing with actual SIP providers of a counter solution based on a 

non-blocking DNS caching solution. Within this cache we 

evaluate different caching strategies and show that the 

Least-Frequently-Used caching strategy gives best results to 

mitigate this kind of attack.  

Categories and Subject Descriptors: 

C.2.0 [Computer-Communication Networks]: Security and 

protection;  

General Terms 

Security, Measurement, Experimentation 

Keywords 

SIP, DoS, DNS 

 

1. INTRODUCTION 

Security threats are considered minimal in current circuit 

switched networks. This is achieved by using a closed networking 

environment dedicated to a single application (namely voice). In 

an open environment such as the Internet, mounting an attack on a 

telephony server is, however, much simpler. This due to the fact 

that VoIP services are based on standardized and open 

technologies (i.e. SIP or H.323) using servers reachable through 

the Internet, implemented in software and provided often over 

general purpose computing hardware [1]. A special security 

concern is flooding with malicious or useless messages which can 

waste a considerable amount of resources of the SIP server. 

Instead of generating a multitude of costly voice calls, the attacker 

can easily send thousands of VoIP invitations in a similar manner 

to attacks on Web servers. These attacks are simple to mount and 

with flat rate Internet access are inexpensive for the attacker.  

Denial of Service (DoS) attacks [2][3] aim at denying or 

degrading a legitimate user's access to a service or network 

resource, or at bringing down the servers offering such services. 

According to a 2004 CSI/FBI survey report 17% of respondents 

detected DoS attacks directed against them, with the respondents 

indicating that DoS was the most costly cyber attack for them, 

even before theft of proprietary information [4].  

Several possibilities exist for an attacker to cause a Denial of 

Service in a VoIP infrastructure [5]. Besides launching brute force 

attacks by generating a large number of useless VoIP calls, 

attackers can use certain features of the used VoIP protocol to 

incur higher loads at the servers. Further, the VoIP infrastructure 

can be corrupted by launching DoS attacks on components used 

by the VoIP infrastructure or the protocols and layers on top of 

which the VoIP infrastructure is based such as routing protocols or 

TCP. In this paper we investigate a special DoS attack that is 

launched utilizing the Domain Name Service, on which SIP 

heavily depends on, which we call a SIP DNS attack. We show 

that this attack is easy to launch and slows down message 

processing by a fair amount. We evaluate possibilities to mitigate 

effects of this attack and show that simply over-provisioning is



not sufficient to counter the effects. We present a solution based 

on a non-blockable cache design and give results gained from 

testing with actual SIP providers. Within our cache solution we 

evaluate different caching strategies and show that the 

Least-Frequently-Used algorithm gives best results to mitigate the 

effects of this attack.  

This paper is organized as follows. In Section 2 we present an 

overview of the SIP signalling protocol and the special usage of 

the Domain Name Service within SIP. In Section 3 we describe in 

detail the SIP DNS attack and demonstrate its effectiveness. In 

Section 4 we present our test bed, while in Section 5, we provide 

currently available solutions which can be deployed to counter 

this attack, and give an analysis of their feasibility and limitation. 

We outline our own solution and evaluate it based on our test bed 

in Section 6. Finally we summarize our work and suggest further 

steps in this research direction. 

1.1. Related Work 

Recently there has been an increase in VoIP security 

awareness, as governmental institutions are becoming aware of 

the situation (e.g. publications by the US National Institute of 

Standards and Technology [6]). In this report, the researchers 

classified and analysed theoretical threats to confidentiality, 

integrity and availability of SIP system from different aspects. 

Finally, they mentioned a possible “CPU resource consumption 

attack without any account information” in the appendix which is 

similar to our research. 

Other works on Denial of Service Protection on SIP servers 

exit, however they don’t focus on DNS related attacks. 

Geneiatakis et al. [7] propose a framework to defend against 

malformed SIP messages by a signature-based technique. SIP 

Grammar corrected will be applied to every incoming SIP 

messages and malformed messages will be discarded. E.Y. Chen 

[8] proposes a concept for detecting DoS Attacks on SIP systems 

using a SIP state machine model. The system is designed to detect 

unauthorized invalid message flooding and malformed messages, 

however no measurements are given in the paper. Sengar er al. [9] 

have devised a DoS detection mechanism based on statistical 

anomaly detection. In the experiment of detecting TCP SYN 

flooding, UDP-based RTP packets flooding and SIP-based 

INVITE flooding, the prototype shows high accuracy against 

high-rate attacks. Another online detection mechanism based on 

Bayesian Model for SIP is proposed by Nassar et al. [10]. The 

system is able to detect different kinds of threats towards VoIP 

applications besides DoS, including SPIT and Password cracking.  

 

2. BACKGROUND 

2.1. Session Initial Protocol 

The Session Initiation Protocol (SIP) [11] is ever more 

establishing itself as the standard for VoIP services in the Internet 

and next generation networks.  

A basic SIP infrastructure consists of several components (see 

Figure 1), including User Agents that generate or terminate SIP 

requests, Registrars, where users log in and announce their 

availability in the SIP network and Proxies that forward requests 

in the SIP networks. Several proxies can be deployed in a SIP 

infrastructure, e.g. outbound proxies that regulate routing 

outgoing traffic from one network to a foreign network and 

incoming proxies that handle all incoming SIP requests possibly 

enforcing additional security checks. 

SIP is a text based protocol designed to establish or terminate a 

session between two partners. The message format is similar to 

the HTTP protocol [12], with message headers and corresponding 

values, e.g. FROM: user@sip.org to denote the sender of a 

message. The destination of a SIP messages (Request-URI) is 

provided in the first line of the message, the request line. 

Additionally, several other message headers are dedicated to 

routing purposes in the network.  

2.2. Domain Names Service 

The Domain Name Service (DNS) is the basis for most current 

internet services available today, including web and email. 

Figure 1: Essential components and their functions of a SIP infrastructure 



It is a completely globally distributed and managed database, 

providing an essential service for Internet applications and users 

i.e. name resolution [13] [14], which is the mapping from human 

readable textual domain names (e.g. www.berlin.de) to a 

numerical IP address (e.g. 62.50.41.196). Whenever a user 

requests a domain resolve, there are generally two cases to 

distinguish: 

� The DNS server knows the name mapping. The name server 

might know the mapping because it is the authoritative name 

server for this domain. As such, all mappings for the domain 

are preconfigured for this domain server. The server might 

also know the name because it has resolved this address 

previously. Generally, in this case the mapping is still stored 

in the server's internal cache. 

� The DNS server does not know the name mapping. In this case 

the server will issue a recursive request to other name servers 

that might be able to provide an answer. The server will 

eventually receive a response, either containing the valid 

mapping or an error message that no mapping is possible. In 

the former case, the mapping will be stored in the server's 

internal cache for a limited period of time. The names server 

can also set a time limit for the query. If no answer is received 

within this limit, the address is considered unresolvable. 

2.3. DNS Usage in SIP Infrastructures 

The Domain Name Service plays a key role in every SIP 

network at three following aspects [15].  

� Many of the header fields in a SIP message contain Fully 

Qualified Domain Names (FQDN) that need to be resolved 

for further processing from a SIP entity.  

� To interconnect the Public Switched Telephone Network 

(PSTN) with a SIP network, ENUM telephone number 

mapping [16] is used. In short, this allows the mapping of a 

PSTN telephone number (e.g. +1 234 567) to a valid SIP 

number, if this mapping has been previously established using 

the domain name service. 

� SIP can utilize different transport level protocols (e.g. UDP or 

TLS). To find its right contact server in regard to the used 

transport layer protocol, a SIP entity will issue a DNS SRV 

[17] request for the domain of the regarding SIP URI. The 

response will contain one or more destination hosts that 

provide the required service. 

In short, a SIP entity might query the DNS subsystem up to 

three times (ENUM mapping, server locations and address 

resolution) before it can actually process and forward a message. 

3. SCOPE OF THE ATTACK 

The goal of a DoS attack is to render the service inoperable for 

as long as possible. While the kind of attack we describe here can 

be launched at any kind of SIP entity (user agent, proxy, registrar, 

and redirect). It is most effective against proxies or 

registrars/redirectors [2]. In the following we will refer to these 

possible targets as SIP servers. 

Whenever a SIP server encounters a fully qualified URI in a 

header field necessary for routing (e.g. VIA or Route field), it 

issues a query to the name server to receive a valid address 

mapping. On average it takes 1.3 DNS queries to receive an 

answer with the mean resolution latency less than 100 ms [18]. 

However, due to configuration errors, these numbers can be 

considerably higher [19]. 

The SIP DNS attack targets this relatively high processing time. 

It is possible to disturb server operation with specially crafted SIP 

messages containing URIs that will cause an even higher 

processing time at the DNS server by taking into account an URI 

of which the attacker is sure that its mapping will not be in the 

cache of a name server and the URI will trigger a request to an 

authoritative name server that has a common low response time, 

(e.g. because of low bandwidth connection). The former case is 

easy to generate by adding random host names to the left side of 

the address domain. The latter case can be easily discovered by 

querying different name servers and measuring reply times. As an 

example for such a SIP message, see Figure 2 

 

Figure 2: Example SIP Message with Unresolvable URIs 

Such a message is a well formatted message that complies with 

the SIP standard in every respect and as such cannot easily be 

filtered out by a SIP server or an Intrusion Detection System [7]. 

INVITE: SIP:u1@2d4fww.hard-to-resolve.domain SIP/2.0 

Via: SIP/2.0/UDP 10.147.65.91; branch=z9hG4bk29FE738 

CSeq: 16466 INVITE 

To: sip:u1@2d4fww.hard-to-resolve.domain 

Content-Type: application/sdp 

From: SIP: u2@2d4fww.hard-to-resolve.domain; tag=24564 

Call-ID: 1163525243@10.147.65.91 

Subject: Message 

Content-Length: 184 

Contact: SIP: u2@2d4fww.hard-to-resolve.domain 

… 

<SDP part not shown> 



Issuing SIP queries with a variation of such URIs will stop 

operation at a SIP server for a considerable time, as the SIP server 

can only continue its operation after having received an answer 

from the DNS server. For example, the SIP server will wait up to 

five seconds from a BIND DNS server [20] which is commonly 

used to resolve a request. If it doesn’t receive any answer from the 

BIND DNS server within five seconds, this domain name will be 

regarded unresolveable and the SIP server will continue to deal 

with the next one. The whole processing of is shown in Figure 3. 

Thus, a SIP DNS attack can be launched easily by sending 

multiple messages containing unresolvable names within. 

DNS 

Subsystem
Tries to resolve –

generally timeout after 5 seconds

SIP Proxy

5 S. BLOCKED

…

Via: unresolvable.domain.org

From: ..

To: …

Message

Resolve: 

unresolvable.domain.org

Answer after 5 s: 

unresolvable

 

Figure 3: The Attacking Scenario by blocking SIP proxy with 

messages contain unresolvable URIs 

 

4. TEST BED AND INSTRUMENT 

Within our test bed we prove the effectiveness of the attack and 

evaluate countermeasures against it. The test bed consists of five 

main components. 

 

Figure 4: Test bed architecture 

 

� A SIP proxy as the main target of the attack. In our test bed, 

all messages to or from a caller have to go though this proxy. 

We have used the SIP Express Router (SER) [21] for this task. 

SER is a SIP server which can act as SIP registrar, proxy or 

redirect server.  

� A local DNS server. The SIP proxy is configured to contact 

this server for DNS requests. 

� An attack tool generating SIP messages containing 

unresolvable domain names. We have developed such a tool 

that can continuously send random messages with different 

hard to resolve domain names to our proxy. 

� User Agents (UA) representing legal users that register 

themselves on remote SIP servers.  We have set them up 

with the SIPp message generating tool [22]. SIPp is a SIP 

protocol traffic generator tool and can send and reply to 

arbitrary SIP messages, such as INVITE, REGISTER to other 

entities in a specified time interval and with defined reply 

codes.. We use SIPp to simulate regular SIP REGISTER 

traffic, consisting of REGISTER requests with different kinds 

of responses from remote servers.  

� External SIP providers. We have chosen 100 different SIP 

providers from all over the world, mostly located in Europe 

and North America. The User Agents will be registered there. 

Every external SIP provider is located at a different domain. 

The test bed was established on Pentium D double processor 

machines with 1 GB RAM (Proxy, User Agent, and Attack tool) 

running on Linux Operating Systems, equipped with 100 M Bps 

internet access.  

  The logical structure of test bed shows is shown in Figure 4. 

We have simulated the scenario with the following steps.  

� The SIP proxy is setup first and can be configured to have 

different parallel processing queues n, with 2≤n≤64. 

� According to SIP protocol, the UA has to REGISTER at a SIP 

server before it can INVITE others entities or receive INVITE 

messages. Therefore, REGISTER is the first essential step for 

the whole process and our experiments are focus on this step. 

We have configured our UA to send continuously REGISTER 

messages from our local network to external SIP proxies. The 

external SIP register addressed are given to the UA in textual 

representation, as such our proxy has to resolve the domain 

before it can forward any request.  

� The attacking tool is configured to send crafted messages 

containing hard resolvable domain names to the local 

outgoing SIP proxy. It is configurable by the attacking interval 

i seconds between two attacking messages. 

unresolvable 

DNS 
server 

Attacking 
tool UA (SIPp) 

SER (outgoing proxy) 

SIP providers 

Internet 



To measure the proxy performance, we send out 5000 register 

messages from our UA and count the number of responses (r) our 

local proxy can process.  If we can get any kind of response from 

a remote SIP server, it means the domain name of the server has 

successfully been resolved by our proxy. 50 INVITE messages to 

different external SIP servers which are randomly chosen will be 

send in 1 second and every outgoing message from our UA is 

routed thought our local SIP proxy, Without any attack, we have 

measured r to be close to 5000, while under attack is considerably 

lower. 

Table 1 shows the variables of experiment.  

Table 1: Experiment variables 

Variable description Variable symbol 

Parallel processing queues of the proxy 

under attack. 

n 

Time interval between two attacking 

messages sent from the attacking tool to 

our local proxy. 

i 

Number of reply messages received by 

our UA  

r 

We repeated all experiments are based on this test bed 10 times 

and calculated the mean values. 

5. LIMITED ATTACK MITIGATION 

POSSIBILITIES 

DoS attacks are the main suspects for causing lost availability. 

Traditionally, the general rule of alleviating impact from a DoS 

attack is to trace the source of the attack and block the traffic from 

it as close to the source as possible. However, it is difficult to 

apply this method on SIP network since the SIP protocol runs at 

the application layer [1], thus, back tracing will be very costly in 

this case. We explore here different possibilities that might allow 

server operation even in case of an attack. 

5.1. Reduced FQDN Usage 

The source of the described attack is the usage of fully 

qualified domain name addresses in SIP messages. Hence, FQDN 

should not be used unless necessary. The standard provides means 

to reduce FQDN usage in VIA header that indicate the path taken 

by the request so far. That is, each proxy that receives a request 

adds its URI to the list. The receiver of the request adds the VIA 

list to its replies and then sends the reply to the topmost VIA entry. 

Each proxy receiving the reply removes the VIA entry indicating 

its URI and forwards the reply to the new topmost entry. To avoid 

the need for resolving a URI included in a VIA entry of a reply, it 

is possible to add a “received” parameter to the VIA entry of the 

request with the numeric IP address of the sending entity, thus 

eliminating the need to resolve this URI after receiving a reply.  

However, the effective of this mechanism to defense against users 

with dedicated malicious intend is quite limited. Although we can 

use numeric IP address instead of FQDN in the VIA header, we 

cannot avert using domain name of extent SIP server in the 

REGISTER and INVITE head. It will be inconvenient for user to 

remember the IP address of external server. Therefore, the 

attackers still can launch the attack by filling unresolvable domain 

names in the REGISTER or INVITE head. 

 

5.2. Scalable Server Design 

Another option is to design the receiving proxy in a scalable 

way to increase performance. Traditionally, two concepts are to 

be considered: Synchronous scaling through parallel processing 

and asynchronous scaling through message processing 

interruption. 

5.2.1. Synchronous Scaling through Parallel 

Processing 

To reduce blocking effects, SIP proxies, including SER, use 

parallel message processing. Such a SIP proxy is extended to 

operate with threads or parallel processes with each process or 

thread responsible for processing one message synchronously. 

Such a design is depicted in Figure 5. Here a core part only acts 

as a message scheduler distributing incoming messages between 

the processes. Each process is then responsible for parsing the 

message, initiating any DNS requests or requesting the execution 

of an application and finally forwarding the message. State 

information can be shared among the processes using some form 

of shared memory. 

 

Figure 5: parallel process design of the SIP proxy 

This kind of DoS prevention is commonly known as 

... 

Process n Process 2 Process 1 

Message Scheduler 

   

DNS 

Message Forward 



over-provisioning. Resources, which can easily be exploited by an 

attacker, are extended, thus lowering resource exploitation 

possibilities. This generally leads to a race condition, where the 

attacker increases the attack rate to cope with more powerful 

servers. With distributed DoS attacks, this can be easily achieved 

[23].  

To evaluate the performance of parallel processing under the 

attack, we perform an experiment based on our test bed with 

different parallel processing queues n and different attack 

intervals i. 
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Figure 6: the performance of SER with different processes and 

attacking interval under attack 

 

The result is shown in Figure 6. With few parallel processing 

queues (n ≤ 8) less than 20% of all potential messages can be 

processed, even with only one attack message per second. 64 

processing queues are needed to adequately cope with the same 

attack speed of one malicious message per second. However, 

decreasing the attacking interval down to 0.001 seconds (1000 

attack message per second), even 64 parallel processing queues 

are completely starved. 

  Generating 1000 messages per second is easily achieved with a 

DDoS attack, where an attacker controls hundreds of slave 

machines [3]. For example, Hussain et al. demonstrated an attack 

scenario with 100.000 malicious messages per second [23]. In this 

scenario, under this attack, even a proxy with 64 or more 

processing queues would be totally blocked. On the other side, 

more parallel processes cost more memory and CPU resources, 

possibly leading to system overload and hence another type of 

DoS. In this experiment, we draw a conclusion that it is quite 

limited improved to mitigate the attack by simply forking more 

processes. 

5.2.2. Asynchronous Scaling through Message 

Processing Interruption 

Another option is to design all requests to external servers as 

non-blocking. That is, after issuing a DNS request the server 

would not wait until an answer for the request was received but 

would queue the request in an event queue, save the data of the 

transaction, set the current operation on hold and move to 

processing the next request. When a reply for the request arrives 

the main process is notified and the broken transaction is 

scheduled to continue, thus eliminating a DNS blocking scenario. 

The procedure is shown as Figure 7.  However, since the states 

of unfinished domain name resolving requests have been saved, 

the implementation complexity and memory requirements 

increase considerably. The server must support effective state 

suspend and resume capabilities, as each new DNS requests 

requires to completely storing the actual state into memory, and 

returning this state upon DNS resolve notification. We have 

shown that a SIP attack launched at a SIP proxy running on a 

machine with 8GB of RAM all memory can be depleted in about 

30 seconds [24]. 

 

Figure 7: the procedure of asynchronous scaling design 

6. NON-BLOCKING CACHE DESIGN 

Our experiment with parallel message processing has shown 

some benefits in message processing, although such a design does 

not prevent DoS attacks on the DNS system. Additionally, we've 

seen that under attack it is not feasibly to try to resolve all 

possible malicious domain names when an actual attack is 

underway. 
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Hence, it is mandatory that the proxy under attack conditions 

does not attempt to resolve every domain name. This raises two 

questions: How can such an attack be detected? And how would 

be a countermeasure to other, non-malicious users? 

 

6.1. Attack Detection and Prevention 

The goal of a DNS attack is to force a proxy as long as possible 

to wait in the operating system's domain resolve call (e.g. 

gethosbyname). With this in mind let us assume a SIP proxy S 

with n parallel processes as described in section 5.2.1. We define: 






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otherwise
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We also define H as an indicator how many processes are 

concurrently resolving a domain name in time t, with  

,)(
1

∑
=

=
n

q

q tSH  (2) 

Hence the proxy will absolutely be blocked when H = n. To 

guarantee non blocking proxy operation, the following relation 

has to be met: H < n at any time t. To achieve this we define a 

minimum operation threshold m, where m is reasonably small and 

m < n. Whenever H ≥ R, where R = n – m,  the proxy is 

informed that further DNS resolve request will have a high 

possibility to cause a DoS due to proxy blocking. As a 

consequence, the proxy will not try to resolve any domain names 

whenever H ≥ R. Instead, the proxy assumes this address to be 

unresolvable, and continues its operation. As soon as H < R, the 

proxy will again perform DNS lookups.  

As an example take a proxy with n=16 processes. We leave 

m=1 “emergency process”. Whenever R=15 or more processes are 

blocked due to DNS lookup, the remaining 1 process will not 

perform such lookup, until at least 1 process is concurrently free 

for further operation. 

6.2. Operational Consequences 

This design has some consequences on non-malicious, regular 

users of this proxy. As long as H < R, proxy behaviour is not 

affected, with the proxy serving both an attacker and all regular 

users. In the other case however, no request from a regular user 

will be served. A self-inflicted DoS is thus created, with a similar 

effect as intended by the attacker. 

To remedy this situation, we introduce a dedicated DNS cache for 

the SIP proxy. A DNS cache answers to DNS resolve requests 

from the SIP proxy. It saves the results of the previous DNS 

queries, if the SIP proxy tries to resolve the same address a 

second time, the stored result in the cache can be returned instead 

initiating another time consuming query, as such also speeding up 

general system performance.  

While different operating systems already provide DNS 

caches, they lack dedicated features for optimal usage in a SIP 

network. As described, a SIP entity uses additionally DNS records 

to locate other proxies, including NAPTR / SRV records, while a 

general operation system DNS cache does not consider such 

records for caching. Furthermore, a dedicated SIP DNS cache 

needs a specialized replacement policy, as it should clean out 

some records and cache some new records.  

Combining the non-blocking design with a dedicated SIP DNS 

cache will effectively counter DNS attacks while keeping 

negative side effects on regular users to a minimum: 

� As long as H < R there should be no visible effect on regular 

users. 

� In case of an ongoing attack, many regular users won't be 

affected: Current connections will be kept, REGISTER 

updates are executes without delay. Also, often new requests 

could still be served as long as the destination address is 

available in the cache. 

� Only requests to destinations not currently in the cache will be 

dropped. These requests can not be handled at the moment.  

As a result, this solution allows reduced operability under attack 

conditions. The amount of negative side effects on regular users 

mainly depends on the implementation of the caching replacement 

policy. 

6.3. Operational Performance 

To test the feasibility of such a design, we have implemented a 

prototype which operates with SER. The DNS cache prototype is 

to be implemented for the following three considerations:  (1) 

the implementation of “emergency process”, which will only look 

up DNS record internally instead of forwarding requests to 

external DNS servers whenever H ≥  R; (2) The prototype 

should cache both regular DNS entries (DNS A records) and DNS 

SRV records; (3) Apply different cache replacement policies such 

as first in first out (FIFO), least recently used (LRU), least 

frequently used (LFU) and Time Cost to replace old records[25] 

[26], which we will examine further on. 



 

 

Figure 8: unblocking evaluation of the cache prototype. With it, 

almost no replied message is lost even as n=2. Without it, most 

messages are lost whatever n is. 

 

6.3.1. Unblocking Test 

 In order to verify the unblocking ability of our prototype, 

we've run several endurance tests with our described attack script, 

generating 10,000 messages containing difficult resolvable 

domain names with 10 ms delay between each message. As an 

example see Figure 8 which shows the number of resolved 

messages over time at the SIP proxy (n=2, 4, 16, 32, 64, 128, 256) 

without DNS cache and proxy (n=2) with cache (optimal). Every 

test case runs about 140 seconds.  

Looking at Figure 8, we can see that overall performance 

depends on the number of active processing queues, with n=256 

showing the best results with about 4300 of the 10.000 messages 

processed. Contrary to this the proxy can process under 50 

requests with n=2. Hence, even with 256 processes, the 

performance of the proxy is still very limited in case of an attack. 

After deploying our cache solution (FIFO policy, 80 cache entries) 

the proxy answers nearly all 10,000 requests, and we found the 

result is independent of the number of activated processing 

queues n.  

Furthermore, we can also see from the picture that without the 

cache deployed, the proxy will stop working for several seconds 

during the testrun, e.g. at 90s < t < 110s with n=16. During this 20 

s the proxy is blocked completely, as all 16 queues are waiting for 

a response from the DNS server. Comparing this with the figure 

from the testrun with the cache, we can witness the continuous 

operation of the proxy. 

 

6.3.2. Cache Replacement Policies Evaluation 

As the he number of cache entries (e) can not practically cope 

with the unlimited number of possible domain names, we have to 

find a way to optimally use the limited number of cache entries. 

Even a large cache entry storage can easily be allocated by an 

attacker with randomly generated invalid domain names, thus not 

leaving space for usable records. Hence, this might cause another 

DoS due to the misconfigured DNS cache. Additionally, keeping 

DNS entries for a long time or even indefinitely in the cache 

might be exploited by an attacker to launch a DNS cache 

poisoning attack [27]. We design a cache replacement policy to 

counter these threats, where the cache learns about new entries 

and replaces old ones.  

We consider four established policies; First-in, First-out 

(FIFO), Least Recently Used (LRU), Least Frequently Used (LFU) 

are well-known cache replacement strategies for paging and web 

scenarios [26] [20]. Considering that the time cost of looking up 

different domain names maybe different, we consider also a Time 

Cost (TC) strategy (see Table 2). 

Table 2: different caching replacement policies 

Name Primary Key 

FIFO Entry Time of Object in Cache 

LRU Time Since Last Access 

LFU Frequency of Access 

TC Request Time Cost 

 

Generally, all replacement strategies applied on a queue of 

cache entries. The newest record is inserted into the head of the 

cache queue, while entries are deleted from the tail of the cache 

queue when the size of the cache storage is exceeded.  

� For the FIFO policy, except for newest and oldest entities, all 

records will be moved towards the tail by one when a new 

record enters the queue. 

� LRU policy is similar with FIFO, with the difference that 

whenever one record within the cache is accessed, it will be 

moved directly to the head of the queue. 

� With LFU policy the DNS records are arranged by the 



frequency of their usage of DNS records. The higher the 

frequency, the closer entries are located toward the head of the 

queue.  

� TC policy is similar to LFU, but the queue is ordered by the 

time cost of the DNS lookup time of an entry. The goal is to 

keep entry with a higher lookup time available in the cache. 

The higher the lookup time cost of en entry, the closer it is to 

the head of the queue. 

We repeated the experiment in 5.2.1 with these four caching 

strategies twice, one time with n=4 parallel processing queues at 

the proxy and then again with n=32. With a testrun we have found 

out that within our experiment we will need e=270 entries in our 

DNS cache to hold all domain names of the 100 contacted SIP 

proxies. The reason for this higher number is that sometimes root 

nameservers have to be contacted first before the actual proxy 

name can be resolved. (e.g. ns2.mydyndns.org will be contacted   

automatically before looking up iptel.org). Cache replacement 

strategies can only be tested if the number of possible entries is 

lower than the total number looked up in the experiment. To 

compare the effectiveness of the replacement strategies we 

arbitrarily set the entry number of our cache (e) to 80 which is 

reasonably lower than the possible 270 entries. The result can be 

seen in Figure 9. 

Part (a) of Figure 9 shows the performance of the different 

caching strategies for n=4 in case of an attack. We can see clearly 

that DNS caching with any caching strategy yields better 

performance than without DNS caching. The improvements vary 

on the attack interval and the used replacement policy, with Least 

Frequently Used (LFU) algorithm giving best results. The figure 

shows from 17% successful responses out of 5000 (at i=0.1 s) up 

to 61% successful responses (i=1 s). In comparison, figures for 

the uncached experiment are from 0.4% (i=0.1 s) up to 6% (i=1 

s).  

In part (b), showing n=32, we can see a different result. 

Especially from attacking interval i>0.5 s, the performance of all 

four algorithms are generally equal. This seems to be due to the 

increased processing power of the proxy with n=32, as also in the 

uncached experiment we see a clear increase in successful resolve 

requests. In this case, the attack is simply not powerful enough to 

block the proxy. However, with increased attack speed again LFU 

shows best results. We measure 44% successful responses (i=0.1 s) 

up to nearly 100% successful responses (i=1 s), in comparison to 

6% (i=0.1 s) / 60% (i=1 s) for the experiment without cache. 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

attacking interval(s)

m
e
s
s
a
g
e
s
 
r
e
p
l
i
e
d

No cache FIFO LRU LFU TIME COST

 

(a) The proxy is with 4 parallel processes. 
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(b) The proxy is with 32 parallel processes. 

Figure 9: the performance of SIP proxies equip with different 

cache replacement policies under attack 

  Furthermore, we further decreased the attacking interval to 

0.02s which totally blocks the proxy without cache (0% 



successful responses); the proxy still manages to process 1936 

(38%) messages with the assistant of our LFU cache. 

We estimate that higher performance of the LFU algorithm is 

caused by the difference of DNS data structure of external server 

and internal cache. As we mentioned above, the external DNS 

database is organized as a tree structure [10] while our DNS cache 

is organized as a two-dimensional hash table, and if the system try 

to find the DNS record of a SIP provider (e.g. iptel.org) from 

external DNS server, the root name server (e.g. ns2.mydyndns.org) 

of it has to be found at first. After that, both the record of iptel.org 

and ns2.mydyndns.org will be cached. The root name sever in the 

cache is important because it may be helpful to find other SIP 

providers later, but it is still not as important as the SIP providers 

record, which is we really care about. Next time, when another 

DNS request of iptel.org arrives, the system will look up the 

iptel.org record in the cache directly without looking up its root 

name server because it is no need to find the root in a 

two-dimensional table. Therefore, for the same inquiry, the record 

in cache of ns2.mydyndns.org will not be used as long as the 

record of iptel.org is still in cache. As a result, the proxy will 

work better if we keep as much as the record of sip providers 

which is used frequently and remove the record of root servers 

which is used seldom. Fortunately, the behavior of LFU policy is 

to keep the most frequently used records in the cache and wash 

out the least frequently used once so that it is easy to withhold the 

recorder of SIP providers which is we really wanted and kick that 

of the root nameservers out. The other three policies are not based 

on this factor. Therefore, we consider that LFU replacement 

policy is the most qualified policy than other three for the SIP 

infrastructure.  

 

6.3.3. Evaluate the Number of Entries of 

Cache 

In the last experiment, we survey the relationship of caching 

performance in relation to caching entries e. As we mentioned 

before, the number of cache entries is limited while the amount of 

the domain names in the real world is almost unlimited so that the 

cache is impossible to accommodate all the domain names in the 

world. On the other hand, more cache entries will cost more 

memory and CPU resources to support them. To investigate that 

how the number of cache entries will affect the performance of 

caches, we set n=4 and x=0.5 (s), and evaluate with different 

number of cache entry based on the test bed. The result is shown 

in Figure 10. 
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Figure 10: the performance of proxy with different number of 

cache entries under attack 

  From the Figure 10, we can find that when even there are only 

5 entries in the cache (least situation in the experiment), the proxy 

still works better than without cache. But the more cache entries it 

is, the better performance the proxy does. When the number of 

cache entries is less than 150, the number of replied messages 

grows sharply with the increasing of cache entries while the 

growth becomes suddenly relaxed when the number of cache 

entries is among 150 and 270. Finally, the curve totally ceases to 

ascend when the cache owns more than 270 entries or so, which is 

quite similar as we anticipated because there are 270 different 

domain names involve in the test, and there is no cache record 

will be replaced if the cache entries are enough (e≥270). 

Furthermore, we also set cache entries number to 500, 600 until 

2000 and all the results are around 3870.  

 

7. CONCLUSION AND FUTURE WORK 

Denial of Service attacks can limit SIP server operation to a 

large amount. In this paper we have evaluated attacks on SIP 

servers that utilize unresolvable DNS names in SIP messages. 

Such attacks might be interesting for malicious users, as such SIP 

messages can easily be crafted and already a low amount of such 

message can reduce server operation by far. With chance, the 

attacker can block one processing queue of the server by one 

single message for five seconds. 

Even over-provisioning the servers with massive parallel 

operation and asynchronous DNS lookup capabilities can not 

successfully counter such attacks. We have shown that in this case 

server operation will not be blocked; however, an even more 



severe Denial of Service was easily achieved through message 

flooding eventually leading to Out-of-Memory errors and 

following server shut-down.  

Hence, we postulate that a server will never be able to be on par 

with a DoS attack. Instead, intelligent design is necessary to alarm 

the server on an imminent attack under way with an “emergency 

operation mode” in case of attack. 

We've demonstrated such an alternate operation mode, which 

tries to take into account two imminent contradicting conditions, 

that a server should stay operational even under attack load that 

normally would consume all server's resources, and still serve all 

regular users without adverse effects or them. Our solution based 

on non-blocking name resolving together with DNS name caching, 

keeps the server operational while still providing substantial 

service to regular users.  

This experiment has been conducted with a limited number of 

SIP proxies; hence the figures can not accurately reflect a real-life 

scenario where requests need to be processed with a higher 

number of domain names. In further work we'd like to investigate 

virtualization techniques to simulate testruns that closer match the 

real life. 
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Conclusion 
  First of all, I would like to answer the three research questions mentioned in the proposal.  

� How to find a proper method to mitigate the effect of DoS attack via DNS request? 

During the thesis work, I developed the proposed prototype, compared the performance of it with other methods and 

evaluated in the simulated SIP environment. The result of it is obviously better than other methods from different aspects. 

Therefore, up to now, the special DNS cache is the best method to solve this problem in our research scope. 

 

� Which factors of DNS cache and SIP proxy (e.g. caching replacement policy, cache entry number, parallel processes 

number of proxy, etc) are useful to deal with this problem? 

During the thesis work, I measured six different parameters: the number of emergency processes, hash table entry 

number, caching replacement policy, cache entry number, parallel processes number of proxy and attacking interval. 

These six factors are the most general in SIP architecture despite of hardware and platform. Through these experiments, I 

found last four factors quite affect the performance of SIP proxy. The relationship of these four factors and the 

performance of SIP proxy are as follow, (Assume there are not enough cache entries to accommodate all records): (1) 

LFU policy could help cache to work better than other replacement policies. (2) If there are enough CPU and memory 

resource, the more parallel processes of SIP proxy, the better performance of SIP proxy. (3) If there are enough CPU and 

memory resource, the more cache entries, the better performance of SIP proxy. (4) The longer attacking interval, the 

better performance of SIP proxy. 

 

� Which kind of combination of the useful factors is the most efficient? 

Mentioned in the last question, there are four factors affect the performance of SIP proxy. The most efficient is 

supposed to be a SIP proxy with more parallel processes, a DNS cache with LFU cache replacement policy and more 

cache entries. Whereas the number of parallel processes and cache entries should be controlled according to the server’s 

capacity. 

 

In summary, Denial of Service attacks can limit SIP server operation to a large amount. In this paper we have evaluated 

attacks on SIP servers that utilize unresolvable DNS names in SIP messages. Such attacks might be interesting for 

malicious users, as such SIP messages can easily be crafted and already a low amount of such message can reduce server 

operation by far. 

Our tests also show that over-provisioning the servers with massive parallel operation and asynchronous DNS lookup 

capabilities as well as reducing the usage of DNS names in the SIP messages can not successfully counter such attacks. 

That is while such measures can improve the performance under attack a severe attack will also manage to block the 

server at some point. By combining DNS caching with a blocking threshold after which no new DNS requests are issues, 

we have shown that a SIP server can continue working even under a heavy attack. This threshold can be either the 

percentage of blocked process in a SIP server designed to process messages in a synchronous manner. For servers 

processing messages in an asynchronous manner this threshold could represent the percentage of used memory. Finally, 

in case the used cache can not accommodate all possible DNS names, our experiments suggest that using a least 

frequently used replacement strategy for the cache has resulted in the highest hit rate. 



Future Work 
In this research, we have verified that the cache mechanism could mitigate this kind of attack by a certain amount. But 

it is not a perfect solution: there are still lots of sessions lost when the attacker decrease the attacking interval. And on the 

other side, with the new subsystem (DNS cache) introduced, new security issue comes to life, such as DNS cache 

poisoning, etc. Furthermore, the test bed we based on is quite limited so that we cannot simulate all the SIP session traffic, 

(e.g., there is only REGISTER message sent to proxy, not INVITE, ACK and BYE messages). In the future work, we will 

start following three aspects: 

� Enhancement the defence system. For example, in the research, we already know that caching replacement policy, 

cache entry number, parallel processes number of proxy and attacking interval affect the performance of cache and 

proxy. We can determine the former three factors from the server side but the attacking interval depends on the 

attacker, not us. Fortunately, it is possible to decrease attacking speed by some intelligence filter technique. Now we 

devote to combine this solution with other IDS and IPS in the SIP infrastructure and constructing a scalable defence 

system.  

� Consider the new threat introduced by DNS subsystem. For example, we will exam the possibility of cache poisoning 

in our prototype and try to mitigate the threat by improving TTL (Time to Live) algorithm of DNS records. We will 

develop a DNS cache poisoning tool which could maliciously modify cache records and compare with the previous 

result. We also will take cache TTL as a important parameter in the experiments. 

� Accurate the research result. In this thesis, the test bed only covering SIP REGISTER traffic environment, which is 

only the first step of SIP processing. Therefore we plan to construct the new test bed to simulate the whole process of 

SIP session building, include REGISTER, INVITE, ACK, BYE, etc. We tried this before, while the configuration 

complexity increases considerably because every SIP provider has their own restrict rules on outgoing request. To 

perform such a test, it is quite difficult to rely on the SIP providers in the real world. We plan to construct a new test 

bed based on virtualized machines. We will still use SIPp UA to simulate traffic, consisting of REGISTER and 

INVITE requests with successive OK responses. We will use one SIPp UA as the caller and another as the callee. 

After caller, callee registered in the server, caller would send INVITE request to callee continuously. The architecture 

showed in Figure App.1.  

 

Figure App.1: an architecture of new test bed 
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Appendix A ----The Design of DNS Cache for SIP Proxy 
The DNS cache prototype is to be implemented for the following three considerations: (1) keep at least one SIP proxy 

child process unblocked; (2) add SRV, NAPTR record into the cache; (3) apply different cache replacement policies 

(FIFO, LFU, LRU, Time Cost)to knock out old records. 

1. View as a whole 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure App.2: the fundamental role of DNS cache in the SIP environment 

Three parts are involved in the system, SER proxy, DNS cache and external DNS server. SER proxy is taken as a 

server which helps users to build a connection with another remote SER proxy. Generally speaking, it is forked into 

several parallel processes to deal with the request of multiple users in the same time. Furthermore, sometimes local SER 

proxy searches another remote SER proxy via domain name. If the local SER proxy receives a request to send SIP 

messages to Alice@ABC.com, it will try to find the target IP address of the SIP server by domain name ABC.com at first. 

Of course, the SER proxy can execute a DNS request to upper DNS server directly, but it is very awful efficiency and 

easily suffers from Denial of Service attack since the DNS server maybe take several seconds to reply. DNS cache is 

introduced to solve the problem. It will save some DNS records temporally in the cache, and if the SER proxy has to 

make a DNS inquiry, it will search the DNS cache at first, then external DNS server if there is no result in the cache.  

In the Figure App.1, the Child 1 performs a DNS request to DNS cache at first, and gets the record in the cache. While 

the child 4 cannot find its record in DNS cache, as a result the cache requests it from upper DNS server. The record will 

saved in the cache and sent back to SER proxy after the upper DNS server replies.  

 

2. Architecture Design of DNS Cache 

There are three parts in the DNS cache, (1) communication interface; (2) packets dispatch; (3) cache structure.  

Communication interface is used to exchange packets with the children processes and the upper DNS server. For DNS, 

UDP and port 53 should be adopted. Two sockets will be created when the DNS cache initialized, one to communicate 

with SER, and another with External DNS server.  

To avoid complex structure and bugs, single-process will be adopted instead of multiple-process. But on the other side, 

the children process of SER proxy shouldn’t be blocked when they send request in the same time. Fortunately, packets 

dispatch will be introduced to solve this problem. When DNS cache receives a request packet form a child process, it will 

save the IP address and the port of the packet source in a record and assign a unique ID to the record. Next, the DNS 
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cache will replace the packet ID with the record unique ID and transmit the packet to upper DNS Server. Then, the DNS 

cache will not wait for the reply of upper DNS server and can freely deal with requests from other children. Until upper 

DNS server replies, the DNS cache will find the target address and port by the packet ID from the structure and transmit 

the reply packet back. Furthermore, if there is no response received from external DNS server to a certain request for up 

to 5 seconds, the state will be removed and send back unresolvable.  

 

ID TTL (S) Source Address 

… …. … 

3456 2 {10.1.20.9, 2531} 

3457 3 {10.1.20.45, 4638} 

3458 3 {10.1.20.9, 3056} 

3459 4 {10.1.20.7, 8930} 

… …. … 

Table App.1: an example of the request dispatch table in the cache 

To solve the first problem we mentioned at the beginning: “(1) keep at least one SER proxy child process unblocked.”, 

the DNS cache will know how many parallel processes the SER proxy has and save it in a global counter. Every time the 

DNS cache receives a request from SER proxy, the counter will minus one. By contrast, the counter will add one if the 

cache gets a reply from upper DNS server or a request is timeout. When the counter is less than two, which means only 

one unblocked child process left, the DNS cache will not transmit the request packet to upper DNS server, instead, it will  

only look up locally and reply immediately. 

Since there are a lot of SRV and NAPTR application in SIP environment besides A, we should save all these three kind 

of records into the cache; the node structure (the unit of cache) is designed as follow, 

struct node { 

struct node *next; //used for cache algorithm 

struct node *prev; //used for cache algorithm 

struct node *hash_next;  //used for hash table 

unsigned short type;  //used to the type of record, A,SRV, NAPTR 

time_t ttd;   // time to die 

union { 

struct all_addr addr; //A record 

struct srv_record srv; //SRV record 

struct naptr_record naptr; //NAPTR record 

} 

Unsigned int weight; //used for cache algorithm 

unsigned short flags; //reserved 

char name[ MAX_NAME]; //the domain name 

}; 

 

The nodes exist as two kinds of data structures in the same time, (1) hash table; (2) double linked list.   

Hash table is used to accelerate the search speed. The nodes which have the same digest value will share the same hash 

entry. Hash entry should be found before look up the node to locate the entry. When a new node is added into the hash 

table, the hash entry will be calculated and it will be inserted as the first node of the entry.  
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Figure App.3: an overview of the cache entries organized as hash table 

 

When the cache receives a reply of new DNS request, the new record will be inserted. When the number of nodes 

exceeds the limit, some nodes will be knocked out via cache algorithm. To achieve it, a queue of double linked list will be 

adopted.  

head                                                        tail 

 

 

 

Figure App.4: an overview of the cache entries organized as double linked list 

� FIFO: the new node will be inserted after head and the old one will be knocked out from the tail. 

� LFU: the queue is sorted by the visit frequency, the head points to the most frequent one and the tail points to the 

least frequent one. If the frequency is the same, the least recently used nodes will be knocked out. 

� LRU: every new node or just visited will be moved to the head. The node pointed by tail will be knocked out. 

� Lookup Time Consuming: the queue will be sorted by the lookup time consuming, and the least time consume node 

will be knocked out.  
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Appendix B ----the scenario script of SIPp  
SIPp is a free Open Source test tool / traffic generator for the SIP protocol. In our test bed, it was used to simulate the 

normal REGISTER traffic. I wrote the following script to create the REGISTER scenario.  

<?xml version="1.0" encoding="ISO-8859-1" ?> 

<!DOCTYPE scenario SYSTEM "sipp.dtd"> 

<scenario name="RIGISTER"> 

   <send> 

  <![CDATA[  

     REGISTER sip:[field1] SIP/2.0 

     Via: SIP/2.0/UDP [local_ip]:[local_port];branch=[branch] 

     Cseq: 3349 REGISTER 

     To: "nick" <sip:[field2]@[field1]> 

       Expires: 1800 

       From: "nick" <sip:[field2]@[field1]> 

       CALL-ID: [call_id]  

       Content-Length: 0 

       User-Agent: SIPp 

       Event: registration 

       Allow-Events: presence 

       Contact: "nick" <sip:[field2]@[local_ip]:5067;transport=udp;>;methods="INVITE" 

      ]]> 

    </send>   

     <recv response="478" option="true"> 

     </recv> 

    <recv response="408" option="true"> 

    </recv> 

</scenario> 

  The code between <send> </send> indicates sending a REGISTER message to a randomly selected external SIP 

provider via SER proxy. Next, the SIPp will perform a DNS inquiry to locate the IP address of the external SIP provider. 

In our experiment, there are four possible situations in the following: 

� Due to attacking, all the parallel processes of SER are blocked. Therefore, no process could handle this REGISTER 

message so that the message will be ignored by SER proxy. As a result, nothing will be replied to SIPp. 

� Due to attacking, only one emergency processes is not blocked, and the REGISTER message will be handled by it. 

No result is found in the internal cache and “478 cannot resolve the domain name” will be replied to SIPp. 

� The domain name of the external SIP provider in the REGISTER is successfully resolved and the message is 

forwarded to the provider. But Due to attacking, the proxy may not receive the reply from the provider. In this case, 

“408 timeout” will be sent to SIPp. 

� The domain name of the external SIP provider in the REGISTER is successfully resolved and the message is 

forwarded to the provider. After while, the proxy get the reply from external provider and forward the reply message 

to SIPp.  

In this scenario, if SIPp get a response from external providers, a successful session will be counted. Since “478” and 

“408” is the reply generated by proxy, not from external providers, therefore we have to filter them (see the two 

<receive> </receive> parts in the script).  



Appendix C ----A difficult-resolvable DNS flooding tools 
 

  First of all, let us recall that whenever a user requests a domain resolve, there are generally two cases to distinguish: 

� The DNS server knows the name mapping. The name server might know the mapping because it is the authoritative 

name server for this domain. As such, all mappings for the domain are preconfigured for this domain server. The 

server might also know the name because it has resolved this address previously. Generally, in this case the mapping 

is still stored in the server's internal cache. 

� The DNS server does not know the name mapping. In this case the server will issue a recursive request to other name 

servers that might be able to provide an answer. The server will eventually receive a response, either containing the 

valid mapping or an error message that no mapping is possible. In the former case, the mapping will be stored in the 

server's internal cache for a limited period of time. The names server can also set a time limit for the query. If no 

answer is received within this limit, the address is considered unresolvable.  

 

 

Figure App.4: an example of the organization of DNS 

  For example, showed in figure App.4, suppose if there are two local DNS server, fokus and bth, Alice is a host of fokus 

and Martin is a host of bth. When Alice would like to look up the IP address of Martin, Alice will send request to fokus at 

first. If no matched record returns, focus will reply Alice:”I don’t know, please ask other servers”. The DNS request will 

be forward to other DNS servers recursively, for example, de, se, bth. Finally, bth will answer the IP address of Martin.  

  Now let us imagine two possible situations as follow: 

� If the access bandwidth from bth to fokus is low, much time has to be spent on connection.  

� If the DNS server of bth is mis-configured or there are plenty of hosts in bth domain, the processing of looking up 

will cost much time.  

An attacker could easily exploit this vulnerability by fill random host name in front of bth domain automatically, such as 

(sdf.bth.se, asfgsf.bth.se). Therefore, a difficult-resolvable DNS flooding tool can be created. 

 

Root 

com de net se 

bth fokus 

Alice Bob Martin 



Appendix D --- Experiment Setup and validation 
1. Experiment 1 

In this test, I took parallel processing queues n and different attacking intervals i as variables. The experiment 

verified that it was quite easy to launch such a DNS flooding attack to reduce the availability of service. It was also 

showed that the solution of increasing parallel process number of the proxy was limited. I did these experiments 

with n processes of proxy and i attacking interval for ten times. The Figure App.5 shows the average calculated 

from them. 
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Figure App.5: processing performance of the local proxy for different processing  

queues n and varying attacking intervals i 

 

2. Experiment 2 

Experiment 2 could verify the unblocking ability of our prototype. This experiment is the only one not based on the 

test bed we mentioned before. I wrote a script on the server so that it could log timestamp in a log file when the 

server answered a SIP request. I did these experiments with n processes of proxy and i attacking interval in two 

situations, with cache solution and without cache solution. Without cache, the result is the same despite of different 

process numbers. Before the experiment, I did a pre-test and found the result is irrelative with emergency number. 
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Figure App.6: Message processing capabilities. The more parallel queues n are configured, the more messages can be 

processed during an attack. With the DNS cache implementation nearly all 

 messages can be processed independently of n. 



 

3. Experiment 3 

The purpose of experiment 3 is to find out which cache replacement policy is more qualified in this situation. The 

parameters include cache replacement policy, attacking interval, process number of proxy. The experiment is based 

on the test bed. Before the experiment, I also did a pre-test and found 270 cache entries will be occupied to resolve 

these 100 providers, therefore, the maximum cache entries number was intentionally set to 80 so that the 

replacement policy worked. The picture shows the results of average values of ten times repeated test. 
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Figure App.7: performance of SIP proxies equipped with different cache replacement policies under attack 

 

4. Experiment 4 

The last experiment is to investigate the relationship of cache entry number and the performance of the proxy. The 

cache entry number is the only variable. The picture shows the results of average values of ten times repeated test. 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400

cache entries

m
es
sa
ge
s
 r
ep
li
e
d

with LFU cache without cache

 

Figure App.8: performance of proxy with different number of cache entries under attack 

 



 

Appendix E ----100 external SIP providers used in the experiments 
1 iptel.org 

2 voiz.irepublics.com 

3 calamar0.nikotel.com 

4 bluesip.net 

5 fwd.pulver.com 

6 sipgate.co.uk 

7 sipnumber.net 

8 proxy01.sipphone.com 

9 voiptalk.org 

10 sip.voipuser.org 

11 register.voipgate.com 

12 sip1.sippal.com 

13 sip.inphonex.com 

14 babble.net 

15 sip.freeipcall.com 

16 proxy1.sipsnip.com 

17 proxy2.sipsnip.com 

18 xchange.terracall.com 

19 sip.webphone.com 

20 sip.voipfone.co.uk 

21 sipbroker.com 

22 sip.myvoipaccount.net 

23 sip2go.com 

24 nadiz.com 

25 sip.broadvoice.com 

26 voip.eutelia.it 

27 sip.stanaphone.com 

28 voztele.com 

29 sip.libretel.com 

30 sip.alteline.com 

31 voxalot.com 

32 callcentric.com 

33 sip2.bbpglobal.com 

34 sip.net2phone.com 

35 sip.sinapsys.net 

36 sip.televoip.no 

37 voipuser.org 

38 sip.callunion.com 

39 sip.gradwell.net 

40 sip.telic.net 

41 proxy.lax.broadvoice.com 



42 proxy.dca.broadvoice.com 

43 proxy.mia.broadvoice.com 

44 proxy.atl.broadvoice.com 

45 proxy.chi.broadvoice.com 

46 proxy.bos.broadvoice.com 

47 proxy.nyc.broadvoice.com 

48 calamar.nikotel.com 

49 sip.ucs.sfu.ca 

50 gw1.voicepulse.com 

51 gw2.voicepulse.com 

52 register.zivvaoffice.com 

53 sip.starshipcorp.com 

54 thekompany.com 

55 sip.3c-hungary.hu 

56 sip.3c-russia.ru 

57 sip.inphonex.com 

58 sip.callclarity.net 

59 bbtele.se 

60 sip.winradius.net 

61 sip.mobitus.com 

62 sip.webphone.com 

63 sip.voipbuster.com 

64 northamerica.sipphone.com 

65 sipdr.quantumvoice-sip.com 

66 sip.force9.net 

67 draytel.org 

68 sipdr.quantumvoice-sip.com 

69 Voip-co2.teliax.com 

70 sip.unlimitel.ca 

71 sip.peoplecall.com 

72 voip.cascotec.com 

73 talk.rabbitpoint.net 

74 sip.ixcall.net 

75 atlas-east.vonage.net 

76 sip.varphonex.com 

77 sip.televoip.no 

78 sip.voise.com.au 

79 sip.internetphoneco.com 

80 sip.1und1.de 

81 sip.simply-connect.de 

82 sipgate.de 

83 sip.gmx.net 

84 iphone.freenet.de 

85 proxy.de.sipgate.net 



86 sip.tiscali.de 

87 sip-gmx.net 

88 sip.sipservice.eu 

89 voipgateway.org 

90 sipdiscount.com 

91 tel.t-online.de 

92 freephonie.net 

93 sip.schlund.de 

94 callcentric.com 

95 at43.tuwien.ac.at 

96 sip.backbone.ch 

97 ch03.sip-fon.eu 

98 proxy.digisip.net 

99 deu1.purtel.com 

100 sip.a1.net 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


