
Master Thesis

Computer Science

Thesis no:

March, 2007

Denial of Service on SIP VoIP Infrastructures

Using DNS Flooding

- Attack Scenario and Countermeasures –

Department of

Security Engineering

School of Engineering

Blekinge Institute of Technology

Box 520

SE-372 25 Ronneby

Sweden

This thesis is submitted to the department of Security Engineering, School of engineering at Blekinge Institute of

Technology, in partial fulfillment of the requirement for the degree of Master of Science in Computer Science. This thesis

is equivalent to 16 weeks of full time studies.

Contact information:

Author:

Ge Zhang

Email: nickchang918 -AT- hotmail.com

External Advisor:

Mr. Sven Ehlert

Address: Fraunhofer Institute FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

Telephone: +493034637378

Email: ehlert -AT- fokus.fraunhofer.de

University Advisor:

Dr. Bengt Carlsson

Department of Security Engineering

Telephone: +46457385813

Email: bca -AT- bth.se

Department of

Security Engineering

School of Engineering

Blekinge Institute of Technology

Box 520

SE-372 25 Ronneby

Sweden

Acknowledgement
This work has been partly conducted in the European Union funded IST-COOP-5892 project SNOCER

(www.snocer.org). The paper included in this thesis was submitted to ACM IPTCOMM conference 2007. I gratefully

acknowledge the research opportunity offered by Fraunhofer FOKUS Institute and especially thank the altruistic help

from my supervisors, Mr. Sven Ehlert and Dr. Bengt Carlsson. Finally, I wish to acknowledge with gratitude the

continued support and encouragement given by my parents and my love, Hui Xie.

Abstract
A simple yet effective Denial of Service (DoS) attack on SIP servers is to flood the server with requests addressed at irresolvable

domain names. In this thesis we evaluate different possibilities to mitigate these effects and show that over-provisioning is not

sufficient to handle such attacks. As a more effective approach we present a solution called the DNS cache solution based on the usage

of a non-blocking DNS cache. Based on various measurements conducted over the Internet we investigate the efficiency of the cache

solution and compare its performance with different caching replacement policies applied.

Introduction
As opposed to PSTN (Public Service Telephone Network), VoIP (Voice over Internet protocol) providers such as skype

are more and more welcomed with taking advantage of its low cost. However, the new network problems, like packet

loss and Quality of Services (QoS) are emerging to the VoIP users. In the past, Security threats are considered minimal in

current circuit switched networks. This is achieved by using a closed networking environment dedicated to a single

application. However, for the VoIP services, which are based on an open environment such as internet, the systems are

totally exposed to the attackers. In order to afford a broad service, the VoIP proxies can be accessed with a flat Internet

access rate by anybody. Therefore, it is possible for an attacker to launch a DoS (Denial of Service) attack to VoIP proxies

with a low cost.

SIP (Session Initial Protocol) is a protocol proposed standard for initiating, modifying and terminating an interactive

user session that involves multimedia elements such as video, voice. It is one of the leading signalling protocols for VoIP.

Whereas, SIP depends much on DNS (Domain Name Service), and this feature could be exploited by attackers to launch

a DoS attacking by difficult-resolvable DNS flooding. In my thesis work, I will investigate this attack and give a possible

countermeasure.

Research questions

This research is focus on a special DoS flooding attack to SIP system. Mentioned in my proposal, I will answer three

questions as following:

� How to find a proper method to mitigate the effect of DoS attack via DNS request?

� Which factors of DNS cache and SIP proxy (e.g. caching replacement policy, cache entry number, parallel processes

number of proxy, etc) are useful to deal with this problem?

� Which kind of combination of the useful factors is the most efficient?

By answering these research questions, a problem and a solution to this problem will be verified.

My contributions to this paper

This kind of attacking had already been noticed by Fraunhofer FOKUS institute before my work started. But most of

the work was based on theory at that time. In my research work, I did the threat evaluation of this DNS flooding attack in

a simulated environment and showed that this attack slowed down message processing of SIP proxy by a fair amount.

Secondly, I developed the prototype --- a DNS cache with some special functions in SIP environment by C in Linux.

Finally, I performed several experiments in the simulated test bed to answer the research questions.

Outline of thesis

The thesis is organized as follow. Firstly, I will exhibit recent study outcome by one of our research papers, “Denial of

Service on SIP VoIP Infrastructures Using DNS Flooding”. Secondly, in the conclusion part, I will answer the research

questions and discuss some problems in the research with possible improvements in the future. Finally, I attached some

details of my work in the appendix.

Denial of Service on SIP VoIP Infrastructures Using DNS

Flooding

- Attack Scenario and Countermeasures –
Ge Zhang, Sven Ehlert, Thomas Magedanz

Fraunhofer Institute FOKUS, Berlin, Germany

{zhang, ehlert, magedanz}@fokus.fraunhofer.de

Dorgham Sisalem

Tekelec, Berlin, Germany

sisalem@tekelec.com

ABSTRACT

In this paper we address the issue of a special denial of service

(DoS) attack targeting a subcomponent of a Session Initiation

Protocol (SIP) based VoIP network. Our focus is targeted at

attacks that are addressed at the Domain Names Service (DNS).

By flooding a SIP element with messages containing

difficult-resolvable domain names, it is possible to block the

target for a considerable amount of time. We evaluate possibilities

to mitigate these effects and show that over-provisioning is not

sufficient to handle such attacks. We present results gained from

testing with actual SIP providers of a counter solution based on a

non-blocking DNS caching solution. Within this cache we

evaluate different caching strategies and show that the

Least-Frequently-Used caching strategy gives best results to

mitigate this kind of attack.

Categories and Subject Descriptors:

C.2.0 [Computer-Communication Networks]: Security and

protection;

General Terms

Security, Measurement, Experimentation

Keywords

SIP, DoS, DNS

1. INTRODUCTION

Security threats are considered minimal in current circuit

switched networks. This is achieved by using a closed networking

environment dedicated to a single application (namely voice). In

an open environment such as the Internet, mounting an attack on a

telephony server is, however, much simpler. This due to the fact

that VoIP services are based on standardized and open

technologies (i.e. SIP or H.323) using servers reachable through

the Internet, implemented in software and provided often over

general purpose computing hardware [1]. A special security

concern is flooding with malicious or useless messages which can

waste a considerable amount of resources of the SIP server.

Instead of generating a multitude of costly voice calls, the attacker

can easily send thousands of VoIP invitations in a similar manner

to attacks on Web servers. These attacks are simple to mount and

with flat rate Internet access are inexpensive for the attacker.

Denial of Service (DoS) attacks [2][3] aim at denying or

degrading a legitimate user's access to a service or network

resource, or at bringing down the servers offering such services.

According to a 2004 CSI/FBI survey report 17% of respondents

detected DoS attacks directed against them, with the respondents

indicating that DoS was the most costly cyber attack for them,

even before theft of proprietary information [4].

Several possibilities exist for an attacker to cause a Denial of

Service in a VoIP infrastructure [5]. Besides launching brute force

attacks by generating a large number of useless VoIP calls,

attackers can use certain features of the used VoIP protocol to

incur higher loads at the servers. Further, the VoIP infrastructure

can be corrupted by launching DoS attacks on components used

by the VoIP infrastructure or the protocols and layers on top of

which the VoIP infrastructure is based such as routing protocols or

TCP. In this paper we investigate a special DoS attack that is

launched utilizing the Domain Name Service, on which SIP

heavily depends on, which we call a SIP DNS attack. We show

that this attack is easy to launch and slows down message

processing by a fair amount. We evaluate possibilities to mitigate

effects of this attack and show that simply over-provisioning is

not sufficient to counter the effects. We present a solution based

on a non-blockable cache design and give results gained from

testing with actual SIP providers. Within our cache solution we

evaluate different caching strategies and show that the

Least-Frequently-Used algorithm gives best results to mitigate the

effects of this attack.

This paper is organized as follows. In Section 2 we present an

overview of the SIP signalling protocol and the special usage of

the Domain Name Service within SIP. In Section 3 we describe in

detail the SIP DNS attack and demonstrate its effectiveness. In

Section 4 we present our test bed, while in Section 5, we provide

currently available solutions which can be deployed to counter

this attack, and give an analysis of their feasibility and limitation.

We outline our own solution and evaluate it based on our test bed

in Section 6. Finally we summarize our work and suggest further

steps in this research direction.

1.1. Related Work

Recently there has been an increase in VoIP security

awareness, as governmental institutions are becoming aware of

the situation (e.g. publications by the US National Institute of

Standards and Technology [6]). In this report, the researchers

classified and analysed theoretical threats to confidentiality,

integrity and availability of SIP system from different aspects.

Finally, they mentioned a possible “CPU resource consumption

attack without any account information” in the appendix which is

similar to our research.

Other works on Denial of Service Protection on SIP servers

exit, however they don’t focus on DNS related attacks.

Geneiatakis et al. [7] propose a framework to defend against

malformed SIP messages by a signature-based technique. SIP

Grammar corrected will be applied to every incoming SIP

messages and malformed messages will be discarded. E.Y. Chen

[8] proposes a concept for detecting DoS Attacks on SIP systems

using a SIP state machine model. The system is designed to detect

unauthorized invalid message flooding and malformed messages,

however no measurements are given in the paper. Sengar er al. [9]

have devised a DoS detection mechanism based on statistical

anomaly detection. In the experiment of detecting TCP SYN

flooding, UDP-based RTP packets flooding and SIP-based

INVITE flooding, the prototype shows high accuracy against

high-rate attacks. Another online detection mechanism based on

Bayesian Model for SIP is proposed by Nassar et al. [10]. The

system is able to detect different kinds of threats towards VoIP

applications besides DoS, including SPIT and Password cracking.

2. BACKGROUND

2.1. Session Initial Protocol

The Session Initiation Protocol (SIP) [11] is ever more

establishing itself as the standard for VoIP services in the Internet

and next generation networks.

A basic SIP infrastructure consists of several components (see

Figure 1), including User Agents that generate or terminate SIP

requests, Registrars, where users log in and announce their

availability in the SIP network and Proxies that forward requests

in the SIP networks. Several proxies can be deployed in a SIP

infrastructure, e.g. outbound proxies that regulate routing

outgoing traffic from one network to a foreign network and

incoming proxies that handle all incoming SIP requests possibly

enforcing additional security checks.

SIP is a text based protocol designed to establish or terminate a

session between two partners. The message format is similar to

the HTTP protocol [12], with message headers and corresponding

values, e.g. FROM: user@sip.org to denote the sender of a

message. The destination of a SIP messages (Request-URI) is

provided in the first line of the message, the request line.

Additionally, several other message headers are dedicated to

routing purposes in the network.

2.2. Domain Names Service

The Domain Name Service (DNS) is the basis for most current

internet services available today, including web and email.

Figure 1: Essential components and their functions of a SIP infrastructure

It is a completely globally distributed and managed database,

providing an essential service for Internet applications and users

i.e. name resolution [13] [14], which is the mapping from human

readable textual domain names (e.g. www.berlin.de) to a

numerical IP address (e.g. 62.50.41.196). Whenever a user

requests a domain resolve, there are generally two cases to

distinguish:

� The DNS server knows the name mapping. The name server

might know the mapping because it is the authoritative name

server for this domain. As such, all mappings for the domain

are preconfigured for this domain server. The server might

also know the name because it has resolved this address

previously. Generally, in this case the mapping is still stored

in the server's internal cache.

� The DNS server does not know the name mapping. In this case

the server will issue a recursive request to other name servers

that might be able to provide an answer. The server will

eventually receive a response, either containing the valid

mapping or an error message that no mapping is possible. In

the former case, the mapping will be stored in the server's

internal cache for a limited period of time. The names server

can also set a time limit for the query. If no answer is received

within this limit, the address is considered unresolvable.

2.3. DNS Usage in SIP Infrastructures

The Domain Name Service plays a key role in every SIP

network at three following aspects [15].

� Many of the header fields in a SIP message contain Fully

Qualified Domain Names (FQDN) that need to be resolved

for further processing from a SIP entity.

� To interconnect the Public Switched Telephone Network

(PSTN) with a SIP network, ENUM telephone number

mapping [16] is used. In short, this allows the mapping of a

PSTN telephone number (e.g. +1 234 567) to a valid SIP

number, if this mapping has been previously established using

the domain name service.

� SIP can utilize different transport level protocols (e.g. UDP or

TLS). To find its right contact server in regard to the used

transport layer protocol, a SIP entity will issue a DNS SRV

[17] request for the domain of the regarding SIP URI. The

response will contain one or more destination hosts that

provide the required service.

In short, a SIP entity might query the DNS subsystem up to

three times (ENUM mapping, server locations and address

resolution) before it can actually process and forward a message.

3. SCOPE OF THE ATTACK

The goal of a DoS attack is to render the service inoperable for

as long as possible. While the kind of attack we describe here can

be launched at any kind of SIP entity (user agent, proxy, registrar,

and redirect). It is most effective against proxies or

registrars/redirectors [2]. In the following we will refer to these

possible targets as SIP servers.

Whenever a SIP server encounters a fully qualified URI in a

header field necessary for routing (e.g. VIA or Route field), it

issues a query to the name server to receive a valid address

mapping. On average it takes 1.3 DNS queries to receive an

answer with the mean resolution latency less than 100 ms [18].

However, due to configuration errors, these numbers can be

considerably higher [19].

The SIP DNS attack targets this relatively high processing time.

It is possible to disturb server operation with specially crafted SIP

messages containing URIs that will cause an even higher

processing time at the DNS server by taking into account an URI

of which the attacker is sure that its mapping will not be in the

cache of a name server and the URI will trigger a request to an

authoritative name server that has a common low response time,

(e.g. because of low bandwidth connection). The former case is

easy to generate by adding random host names to the left side of

the address domain. The latter case can be easily discovered by

querying different name servers and measuring reply times. As an

example for such a SIP message, see Figure 2

Figure 2: Example SIP Message with Unresolvable URIs

Such a message is a well formatted message that complies with

the SIP standard in every respect and as such cannot easily be

filtered out by a SIP server or an Intrusion Detection System [7].

INVITE: SIP:u1@2d4fww.hard-to-resolve.domain SIP/2.0

Via: SIP/2.0/UDP 10.147.65.91; branch=z9hG4bk29FE738

CSeq: 16466 INVITE

To: sip:u1@2d4fww.hard-to-resolve.domain

Content-Type: application/sdp

From: SIP: u2@2d4fww.hard-to-resolve.domain; tag=24564

Call-ID: 1163525243@10.147.65.91

Subject: Message

Content-Length: 184

Contact: SIP: u2@2d4fww.hard-to-resolve.domain

…

<SDP part not shown>

Issuing SIP queries with a variation of such URIs will stop

operation at a SIP server for a considerable time, as the SIP server

can only continue its operation after having received an answer

from the DNS server. For example, the SIP server will wait up to

five seconds from a BIND DNS server [20] which is commonly

used to resolve a request. If it doesn’t receive any answer from the

BIND DNS server within five seconds, this domain name will be

regarded unresolveable and the SIP server will continue to deal

with the next one. The whole processing of is shown in Figure 3.

Thus, a SIP DNS attack can be launched easily by sending

multiple messages containing unresolvable names within.

DNS

Subsystem
Tries to resolve –

generally timeout after 5 seconds

SIP Proxy

5 S. BLOCKED

…

Via: unresolvable.domain.org

From: ..

To: …

Message

Resolve:

unresolvable.domain.org

Answer after 5 s:

unresolvable

Figure 3: The Attacking Scenario by blocking SIP proxy with

messages contain unresolvable URIs

4. TEST BED AND INSTRUMENT

Within our test bed we prove the effectiveness of the attack and

evaluate countermeasures against it. The test bed consists of five

main components.

Figure 4: Test bed architecture

� A SIP proxy as the main target of the attack. In our test bed,

all messages to or from a caller have to go though this proxy.

We have used the SIP Express Router (SER) [21] for this task.

SER is a SIP server which can act as SIP registrar, proxy or

redirect server.

� A local DNS server. The SIP proxy is configured to contact

this server for DNS requests.

� An attack tool generating SIP messages containing

unresolvable domain names. We have developed such a tool

that can continuously send random messages with different

hard to resolve domain names to our proxy.

� User Agents (UA) representing legal users that register

themselves on remote SIP servers. We have set them up

with the SIPp message generating tool [22]. SIPp is a SIP

protocol traffic generator tool and can send and reply to

arbitrary SIP messages, such as INVITE, REGISTER to other

entities in a specified time interval and with defined reply

codes.. We use SIPp to simulate regular SIP REGISTER

traffic, consisting of REGISTER requests with different kinds

of responses from remote servers.

� External SIP providers. We have chosen 100 different SIP

providers from all over the world, mostly located in Europe

and North America. The User Agents will be registered there.

Every external SIP provider is located at a different domain.

The test bed was established on Pentium D double processor

machines with 1 GB RAM (Proxy, User Agent, and Attack tool)

running on Linux Operating Systems, equipped with 100 M Bps

internet access.

 The logical structure of test bed shows is shown in Figure 4.

We have simulated the scenario with the following steps.

� The SIP proxy is setup first and can be configured to have

different parallel processing queues n, with 2≤n≤64.

� According to SIP protocol, the UA has to REGISTER at a SIP

server before it can INVITE others entities or receive INVITE

messages. Therefore, REGISTER is the first essential step for

the whole process and our experiments are focus on this step.

We have configured our UA to send continuously REGISTER

messages from our local network to external SIP proxies. The

external SIP register addressed are given to the UA in textual

representation, as such our proxy has to resolve the domain

before it can forward any request.

� The attacking tool is configured to send crafted messages

containing hard resolvable domain names to the local

outgoing SIP proxy. It is configurable by the attacking interval

i seconds between two attacking messages.

unresolvable

DNS
server

Attacking
tool UA (SIPp)

SER (outgoing proxy)

SIP providers

Internet

To measure the proxy performance, we send out 5000 register

messages from our UA and count the number of responses (r) our

local proxy can process. If we can get any kind of response from

a remote SIP server, it means the domain name of the server has

successfully been resolved by our proxy. 50 INVITE messages to

different external SIP servers which are randomly chosen will be

send in 1 second and every outgoing message from our UA is

routed thought our local SIP proxy, Without any attack, we have

measured r to be close to 5000, while under attack is considerably

lower.

Table 1 shows the variables of experiment.

Table 1: Experiment variables

Variable description Variable symbol

Parallel processing queues of the proxy

under attack.

n

Time interval between two attacking

messages sent from the attacking tool to

our local proxy.

i

Number of reply messages received by

our UA

r

We repeated all experiments are based on this test bed 10 times

and calculated the mean values.

5. LIMITED ATTACK MITIGATION

POSSIBILITIES

DoS attacks are the main suspects for causing lost availability.

Traditionally, the general rule of alleviating impact from a DoS

attack is to trace the source of the attack and block the traffic from

it as close to the source as possible. However, it is difficult to

apply this method on SIP network since the SIP protocol runs at

the application layer [1], thus, back tracing will be very costly in

this case. We explore here different possibilities that might allow

server operation even in case of an attack.

5.1. Reduced FQDN Usage

The source of the described attack is the usage of fully

qualified domain name addresses in SIP messages. Hence, FQDN

should not be used unless necessary. The standard provides means

to reduce FQDN usage in VIA header that indicate the path taken

by the request so far. That is, each proxy that receives a request

adds its URI to the list. The receiver of the request adds the VIA

list to its replies and then sends the reply to the topmost VIA entry.

Each proxy receiving the reply removes the VIA entry indicating

its URI and forwards the reply to the new topmost entry. To avoid

the need for resolving a URI included in a VIA entry of a reply, it

is possible to add a “received” parameter to the VIA entry of the

request with the numeric IP address of the sending entity, thus

eliminating the need to resolve this URI after receiving a reply.

However, the effective of this mechanism to defense against users

with dedicated malicious intend is quite limited. Although we can

use numeric IP address instead of FQDN in the VIA header, we

cannot avert using domain name of extent SIP server in the

REGISTER and INVITE head. It will be inconvenient for user to

remember the IP address of external server. Therefore, the

attackers still can launch the attack by filling unresolvable domain

names in the REGISTER or INVITE head.

5.2. Scalable Server Design

Another option is to design the receiving proxy in a scalable

way to increase performance. Traditionally, two concepts are to

be considered: Synchronous scaling through parallel processing

and asynchronous scaling through message processing

interruption.

5.2.1. Synchronous Scaling through Parallel

Processing

To reduce blocking effects, SIP proxies, including SER, use

parallel message processing. Such a SIP proxy is extended to

operate with threads or parallel processes with each process or

thread responsible for processing one message synchronously.

Such a design is depicted in Figure 5. Here a core part only acts

as a message scheduler distributing incoming messages between

the processes. Each process is then responsible for parsing the

message, initiating any DNS requests or requesting the execution

of an application and finally forwarding the message. State

information can be shared among the processes using some form

of shared memory.

Figure 5: parallel process design of the SIP proxy

This kind of DoS prevention is commonly known as

...

Process n Process 2 Process 1

Message Scheduler

DNS

Message Forward

over-provisioning. Resources, which can easily be exploited by an

attacker, are extended, thus lowering resource exploitation

possibilities. This generally leads to a race condition, where the

attacker increases the attack rate to cope with more powerful

servers. With distributed DoS attacks, this can be easily achieved

[23].

To evaluate the performance of parallel processing under the

attack, we perform an experiment based on our test bed with

different parallel processing queues n and different attack

intervals i.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

attacking interval (s)

me
s
sa
ge

s
re
p
li
ed

PN = 2 PN = 4 PN = 8 PN = 16 PN = 32 PN = 64

Figure 6: the performance of SER with different processes and

attacking interval under attack

The result is shown in Figure 6. With few parallel processing

queues (n ≤ 8) less than 20% of all potential messages can be

processed, even with only one attack message per second. 64

processing queues are needed to adequately cope with the same

attack speed of one malicious message per second. However,

decreasing the attacking interval down to 0.001 seconds (1000

attack message per second), even 64 parallel processing queues

are completely starved.

 Generating 1000 messages per second is easily achieved with a

DDoS attack, where an attacker controls hundreds of slave

machines [3]. For example, Hussain et al. demonstrated an attack

scenario with 100.000 malicious messages per second [23]. In this

scenario, under this attack, even a proxy with 64 or more

processing queues would be totally blocked. On the other side,

more parallel processes cost more memory and CPU resources,

possibly leading to system overload and hence another type of

DoS. In this experiment, we draw a conclusion that it is quite

limited improved to mitigate the attack by simply forking more

processes.

5.2.2. Asynchronous Scaling through Message

Processing Interruption

Another option is to design all requests to external servers as

non-blocking. That is, after issuing a DNS request the server

would not wait until an answer for the request was received but

would queue the request in an event queue, save the data of the

transaction, set the current operation on hold and move to

processing the next request. When a reply for the request arrives

the main process is notified and the broken transaction is

scheduled to continue, thus eliminating a DNS blocking scenario.

The procedure is shown as Figure 7. However, since the states

of unfinished domain name resolving requests have been saved,

the implementation complexity and memory requirements

increase considerably. The server must support effective state

suspend and resume capabilities, as each new DNS requests

requires to completely storing the actual state into memory, and

returning this state upon DNS resolve notification. We have

shown that a SIP attack launched at a SIP proxy running on a

machine with 8GB of RAM all memory can be depleted in about

30 seconds [24].

Figure 7: the procedure of asynchronous scaling design

6. NON-BLOCKING CACHE DESIGN

Our experiment with parallel message processing has shown

some benefits in message processing, although such a design does

not prevent DoS attacks on the DNS system. Additionally, we've

seen that under attack it is not feasibly to try to resolve all

possible malicious domain names when an actual attack is

underway.

DNS

 Request

Domain

Name A

Restore A

State

Continue A

Resolve Domain name B

 Save B

State

 Save A

State

 Request

Domain

Name B

Resolve Domain name A

SIP

Time

Hence, it is mandatory that the proxy under attack conditions

does not attempt to resolve every domain name. This raises two

questions: How can such an attack be detected? And how would

be a countermeasure to other, non-malicious users?

6.1. Attack Detection and Prevention

The goal of a DNS attack is to force a proxy as long as possible

to wait in the operating system's domain resolve call (e.g.

gethosbyname). With this in mind let us assume a SIP proxy S

with n parallel processes as described in section 5.2.1. We define:














=

otherwise

ttimeatreturned

notbutqqueueprocess

incallresolvedomaina

tSq

,0

,

,1

)(
(1)

We also define H as an indicator how many processes are

concurrently resolving a domain name in time t, with

,)(
1

∑
=

=
n

q

q tSH (2)

Hence the proxy will absolutely be blocked when H = n. To

guarantee non blocking proxy operation, the following relation

has to be met: H < n at any time t. To achieve this we define a

minimum operation threshold m, where m is reasonably small and

m < n. Whenever H ≥ R, where R = n – m, the proxy is

informed that further DNS resolve request will have a high

possibility to cause a DoS due to proxy blocking. As a

consequence, the proxy will not try to resolve any domain names

whenever H ≥ R. Instead, the proxy assumes this address to be

unresolvable, and continues its operation. As soon as H < R, the

proxy will again perform DNS lookups.

As an example take a proxy with n=16 processes. We leave

m=1 “emergency process”. Whenever R=15 or more processes are

blocked due to DNS lookup, the remaining 1 process will not

perform such lookup, until at least 1 process is concurrently free

for further operation.

6.2. Operational Consequences

This design has some consequences on non-malicious, regular

users of this proxy. As long as H < R, proxy behaviour is not

affected, with the proxy serving both an attacker and all regular

users. In the other case however, no request from a regular user

will be served. A self-inflicted DoS is thus created, with a similar

effect as intended by the attacker.

To remedy this situation, we introduce a dedicated DNS cache for

the SIP proxy. A DNS cache answers to DNS resolve requests

from the SIP proxy. It saves the results of the previous DNS

queries, if the SIP proxy tries to resolve the same address a

second time, the stored result in the cache can be returned instead

initiating another time consuming query, as such also speeding up

general system performance.

While different operating systems already provide DNS

caches, they lack dedicated features for optimal usage in a SIP

network. As described, a SIP entity uses additionally DNS records

to locate other proxies, including NAPTR / SRV records, while a

general operation system DNS cache does not consider such

records for caching. Furthermore, a dedicated SIP DNS cache

needs a specialized replacement policy, as it should clean out

some records and cache some new records.

Combining the non-blocking design with a dedicated SIP DNS

cache will effectively counter DNS attacks while keeping

negative side effects on regular users to a minimum:

� As long as H < R there should be no visible effect on regular

users.

� In case of an ongoing attack, many regular users won't be

affected: Current connections will be kept, REGISTER

updates are executes without delay. Also, often new requests

could still be served as long as the destination address is

available in the cache.

� Only requests to destinations not currently in the cache will be

dropped. These requests can not be handled at the moment.

As a result, this solution allows reduced operability under attack

conditions. The amount of negative side effects on regular users

mainly depends on the implementation of the caching replacement

policy.

6.3. Operational Performance

To test the feasibility of such a design, we have implemented a

prototype which operates with SER. The DNS cache prototype is

to be implemented for the following three considerations: (1)

the implementation of “emergency process”, which will only look

up DNS record internally instead of forwarding requests to

external DNS servers whenever H ≥ R; (2) The prototype

should cache both regular DNS entries (DNS A records) and DNS

SRV records; (3) Apply different cache replacement policies such

as first in first out (FIFO), least recently used (LRU), least

frequently used (LFU) and Time Cost to replace old records[25]

[26], which we will examine further on.

Figure 8: unblocking evaluation of the cache prototype. With it,

almost no replied message is lost even as n=2. Without it, most

messages are lost whatever n is.

6.3.1. Unblocking Test

 In order to verify the unblocking ability of our prototype,

we've run several endurance tests with our described attack script,

generating 10,000 messages containing difficult resolvable

domain names with 10 ms delay between each message. As an

example see Figure 8 which shows the number of resolved

messages over time at the SIP proxy (n=2, 4, 16, 32, 64, 128, 256)

without DNS cache and proxy (n=2) with cache (optimal). Every

test case runs about 140 seconds.

Looking at Figure 8, we can see that overall performance

depends on the number of active processing queues, with n=256

showing the best results with about 4300 of the 10.000 messages

processed. Contrary to this the proxy can process under 50

requests with n=2. Hence, even with 256 processes, the

performance of the proxy is still very limited in case of an attack.

After deploying our cache solution (FIFO policy, 80 cache entries)

the proxy answers nearly all 10,000 requests, and we found the

result is independent of the number of activated processing

queues n.

Furthermore, we can also see from the picture that without the

cache deployed, the proxy will stop working for several seconds

during the testrun, e.g. at 90s < t < 110s with n=16. During this 20

s the proxy is blocked completely, as all 16 queues are waiting for

a response from the DNS server. Comparing this with the figure

from the testrun with the cache, we can witness the continuous

operation of the proxy.

6.3.2. Cache Replacement Policies Evaluation

As the he number of cache entries (e) can not practically cope

with the unlimited number of possible domain names, we have to

find a way to optimally use the limited number of cache entries.

Even a large cache entry storage can easily be allocated by an

attacker with randomly generated invalid domain names, thus not

leaving space for usable records. Hence, this might cause another

DoS due to the misconfigured DNS cache. Additionally, keeping

DNS entries for a long time or even indefinitely in the cache

might be exploited by an attacker to launch a DNS cache

poisoning attack [27]. We design a cache replacement policy to

counter these threats, where the cache learns about new entries

and replaces old ones.

We consider four established policies; First-in, First-out

(FIFO), Least Recently Used (LRU), Least Frequently Used (LFU)

are well-known cache replacement strategies for paging and web

scenarios [26] [20]. Considering that the time cost of looking up

different domain names maybe different, we consider also a Time

Cost (TC) strategy (see Table 2).

Table 2: different caching replacement policies

Name Primary Key

FIFO Entry Time of Object in Cache

LRU Time Since Last Access

LFU Frequency of Access

TC Request Time Cost

Generally, all replacement strategies applied on a queue of

cache entries. The newest record is inserted into the head of the

cache queue, while entries are deleted from the tail of the cache

queue when the size of the cache storage is exceeded.

� For the FIFO policy, except for newest and oldest entities, all

records will be moved towards the tail by one when a new

record enters the queue.

� LRU policy is similar with FIFO, with the difference that

whenever one record within the cache is accessed, it will be

moved directly to the head of the queue.

� With LFU policy the DNS records are arranged by the

frequency of their usage of DNS records. The higher the

frequency, the closer entries are located toward the head of the

queue.

� TC policy is similar to LFU, but the queue is ordered by the

time cost of the DNS lookup time of an entry. The goal is to

keep entry with a higher lookup time available in the cache.

The higher the lookup time cost of en entry, the closer it is to

the head of the queue.

We repeated the experiment in 5.2.1 with these four caching

strategies twice, one time with n=4 parallel processing queues at

the proxy and then again with n=32. With a testrun we have found

out that within our experiment we will need e=270 entries in our

DNS cache to hold all domain names of the 100 contacted SIP

proxies. The reason for this higher number is that sometimes root

nameservers have to be contacted first before the actual proxy

name can be resolved. (e.g. ns2.mydyndns.org will be contacted

automatically before looking up iptel.org). Cache replacement

strategies can only be tested if the number of possible entries is

lower than the total number looked up in the experiment. To

compare the effectiveness of the replacement strategies we

arbitrarily set the entry number of our cache (e) to 80 which is

reasonably lower than the possible 270 entries. The result can be

seen in Figure 9.

Part (a) of Figure 9 shows the performance of the different

caching strategies for n=4 in case of an attack. We can see clearly

that DNS caching with any caching strategy yields better

performance than without DNS caching. The improvements vary

on the attack interval and the used replacement policy, with Least

Frequently Used (LFU) algorithm giving best results. The figure

shows from 17% successful responses out of 5000 (at i=0.1 s) up

to 61% successful responses (i=1 s). In comparison, figures for

the uncached experiment are from 0.4% (i=0.1 s) up to 6% (i=1

s).

In part (b), showing n=32, we can see a different result.

Especially from attacking interval i>0.5 s, the performance of all

four algorithms are generally equal. This seems to be due to the

increased processing power of the proxy with n=32, as also in the

uncached experiment we see a clear increase in successful resolve

requests. In this case, the attack is simply not powerful enough to

block the proxy. However, with increased attack speed again LFU

shows best results. We measure 44% successful responses (i=0.1 s)

up to nearly 100% successful responses (i=1 s), in comparison to

6% (i=0.1 s) / 60% (i=1 s) for the experiment without cache.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

attacking interval(s)

m
e
s
s
a
g
e
s

r
e
p
l
i
e
d

No cache FIFO LRU LFU TIME COST

(a) The proxy is with 4 parallel processes.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

attacking interval(s)

m
e
s
s
a
g
e
s

r
e
p
l
i
e
d

No cache FIFO LRU LFU TIME COST

(b) The proxy is with 32 parallel processes.

Figure 9: the performance of SIP proxies equip with different

cache replacement policies under attack

 Furthermore, we further decreased the attacking interval to

0.02s which totally blocks the proxy without cache (0%

successful responses); the proxy still manages to process 1936

(38%) messages with the assistant of our LFU cache.

We estimate that higher performance of the LFU algorithm is

caused by the difference of DNS data structure of external server

and internal cache. As we mentioned above, the external DNS

database is organized as a tree structure [10] while our DNS cache

is organized as a two-dimensional hash table, and if the system try

to find the DNS record of a SIP provider (e.g. iptel.org) from

external DNS server, the root name server (e.g. ns2.mydyndns.org)

of it has to be found at first. After that, both the record of iptel.org

and ns2.mydyndns.org will be cached. The root name sever in the

cache is important because it may be helpful to find other SIP

providers later, but it is still not as important as the SIP providers

record, which is we really care about. Next time, when another

DNS request of iptel.org arrives, the system will look up the

iptel.org record in the cache directly without looking up its root

name server because it is no need to find the root in a

two-dimensional table. Therefore, for the same inquiry, the record

in cache of ns2.mydyndns.org will not be used as long as the

record of iptel.org is still in cache. As a result, the proxy will

work better if we keep as much as the record of sip providers

which is used frequently and remove the record of root servers

which is used seldom. Fortunately, the behavior of LFU policy is

to keep the most frequently used records in the cache and wash

out the least frequently used once so that it is easy to withhold the

recorder of SIP providers which is we really wanted and kick that

of the root nameservers out. The other three policies are not based

on this factor. Therefore, we consider that LFU replacement

policy is the most qualified policy than other three for the SIP

infrastructure.

6.3.3. Evaluate the Number of Entries of

Cache

In the last experiment, we survey the relationship of caching

performance in relation to caching entries e. As we mentioned

before, the number of cache entries is limited while the amount of

the domain names in the real world is almost unlimited so that the

cache is impossible to accommodate all the domain names in the

world. On the other hand, more cache entries will cost more

memory and CPU resources to support them. To investigate that

how the number of cache entries will affect the performance of

caches, we set n=4 and x=0.5 (s), and evaluate with different

number of cache entry based on the test bed. The result is shown

in Figure 10.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400

cache entries

me
s
sa
g
es

re
p
li
ed

with LFU cache without cache

Figure 10: the performance of proxy with different number of

cache entries under attack

 From the Figure 10, we can find that when even there are only

5 entries in the cache (least situation in the experiment), the proxy

still works better than without cache. But the more cache entries it

is, the better performance the proxy does. When the number of

cache entries is less than 150, the number of replied messages

grows sharply with the increasing of cache entries while the

growth becomes suddenly relaxed when the number of cache

entries is among 150 and 270. Finally, the curve totally ceases to

ascend when the cache owns more than 270 entries or so, which is

quite similar as we anticipated because there are 270 different

domain names involve in the test, and there is no cache record

will be replaced if the cache entries are enough (e≥270).

Furthermore, we also set cache entries number to 500, 600 until

2000 and all the results are around 3870.

7. CONCLUSION AND FUTURE WORK

Denial of Service attacks can limit SIP server operation to a

large amount. In this paper we have evaluated attacks on SIP

servers that utilize unresolvable DNS names in SIP messages.

Such attacks might be interesting for malicious users, as such SIP

messages can easily be crafted and already a low amount of such

message can reduce server operation by far. With chance, the

attacker can block one processing queue of the server by one

single message for five seconds.

Even over-provisioning the servers with massive parallel

operation and asynchronous DNS lookup capabilities can not

successfully counter such attacks. We have shown that in this case

server operation will not be blocked; however, an even more

severe Denial of Service was easily achieved through message

flooding eventually leading to Out-of-Memory errors and

following server shut-down.

Hence, we postulate that a server will never be able to be on par

with a DoS attack. Instead, intelligent design is necessary to alarm

the server on an imminent attack under way with an “emergency

operation mode” in case of attack.

We've demonstrated such an alternate operation mode, which

tries to take into account two imminent contradicting conditions,

that a server should stay operational even under attack load that

normally would consume all server's resources, and still serve all

regular users without adverse effects or them. Our solution based

on non-blocking name resolving together with DNS name caching,

keeps the server operational while still providing substantial

service to regular users.

This experiment has been conducted with a limited number of

SIP proxies; hence the figures can not accurately reflect a real-life

scenario where requests need to be processed with a higher

number of domain names. In further work we'd like to investigate

virtualization techniques to simulate testruns that closer match the

real life.

8. ACKNOLEDGEMENT

This work has been partly conducted in the European Union

funded IST-COOP-5892 project SNOCER (www.snocer.org).

9. REFERENCE

[1] F. Cao and S. Malik, “Security Analysis and Solutions for

Deploying IP Telephony in the Critical Infrastructure”,

Security and Privacy for Emerging Areas in Communication

Networks, 2005, Workshop of the 1st International

Conference on.

[2] M. Handley and A. Greenhalgh, “Steps Towards a

DoS-resisteant Internet Architecture”, SIGCOMM’04

Workshops, Sep 3, 2004, Portland, Oregon, USA.

[3] J. Mirkovic, S. Dietrich, D. Dittrich and P. Reiher, “Internet

Denial of Service: Attack and Defence Mechanisms”, 2004 -

Prentice Hall PTR Upper Saddle River, NJ, USA.

[4] L. Gordon et al., “CSI/FBI Computer Crime and Security

Survey”, Computer Security Inst., 2004.

[5] D. Sisalem, J. Kuthan and S. Ehlert, “Denial of Service

Attacks Targeting a SIP VoIP Infrastructure: Attack

Scenarios and Prevention Mechanisms”, IEEE Network Vol.

20, No. 5 - Special Issue on Securing VoIP, Sep. 2006.

[6] D. R. Kuhn, T. J. Walsh and S. Fries, “Security

Considerations for Voice over IP Systems”,

Recommendations of the National Institute of Standards and

Technology, January 2005.

[7] D. Geneiatakis, G. Kambourakis, T. Dagiuklas, C.

Lambrinoudakis and S. Gritzalis, “A Framework for

Detecting Malformed Messages in SIP Networks”, Local

and Metropolitan Area Networks, 200, LANMAN 2005, the

14th IEEE Workshop on.

[8] E. Y. Chen, “Detecting DoS Attacks on SIP System”, VoIP

Management and Security, 2006, 1st IEEE Workshop on, 3

April 2006.

[9] H. Sengar, D. Wijesekera, H. Wang and S. Jajodia, “Fast

Detection of Denial of Service Attacks on IP Telephone”,

Proceedings of IEEE IWQoS’2006, New Haven, CT, June

2006.

[10] M. Nassar, R. State, O. Festor, “Intrusion Detection

Mechanisms for VoIP Applications”, 3rd Annual VoIP

Security Workshop, Jun 2006, Berlin, Germany.

[11] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, R.

Spark, M. Handley, E. Schooler, “RFC 3261: SIP -- Session

Initiation Protocol”, 2002.

[12] H. Schulzrinne, J. Rosenberg, “The Session Initation

Protocol: Internet-centric signaling”, Communications

Magazine, IEEE, Oct 2000.

[13] P. V. Mockapetris, “RFC 1034: Domain names – concepts

and facilities,” Nov. 1987.

[14] P. V. Mockapetris, “RFC 1035: Domain names –

implementation and specification,” Nov. 1987.

[15] J. Rosenberg, H. Schulzrinne, “RFC 3063: SIP -- Locating

SIP Servers”, June, 2002.

[16] J. Peterson, H. Liu, J. Yu and B. Campbell, “RFC 3824:

Using E.164 Numbers with the Session Initiation Protocol

(SIP)”, 2004.

[17] A. Gulbrandsen, P. Vixie and L. Esibov, “RFC 2782 - A

DNS RR for specifying the location of services (DNS

SRV)”, Feb 2000.

[18] J. Jung, E. Sit, H. Balakrishnan and R. Morris, “DNS

Performance and the Effectiveness of Caching”, IEEE/ACM

Transactions on Networking (TON), Jan 9, 2002.

[19] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis and L. Zhang,

“Impact of Configuration Errors on DNS Robustness”,

SIGCOMM’04 Workshops, Sep 3, 2004, Portland, Oregon,

USA.

[20] Berkeley Internet Name Domain (BIND), Open source

domain name source, http://www.isc.org/index, accessed at

Oct, 2006.

[21] SIP Express Router, Open source SIP proxy,

http://www.iptel.org/ser,

[22] SIPp, traffic generator, http://sipp.sourceforge.net/, accessed

at 21st Aug 2006.

[23] A. Hussain, J. Heidemann and C. Papadopoulos, “A

Framework for Classifying Denial of Service Attacks”,

Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for computer

communications, 2003.

[24] D. Sisalem, S. Ehlert, et al. "General Reliability and

Security Framework for VoIP Infrastructures" Technical

Report SNOCER-D2.2, Sep 2005, www.snocer.org.

[25] A. Silberschatz and P. B. Galvin, Operating Systems

Concepts, fourth ed. Reading, Addison-Wesley, 1994.

[26] C. Aggarwal, J. Wolf, and P. Yu, “Caching on the World

Wide Web”, IEEE Transactions on knowledge and data

engineering, Vol. 11, No. 1, Jan 1999.

[27] T. Olzak, “DNS Cache Poisoning: Definition and

prevention”,

http://www.infosecwriters.com/text_resources/pdf/DNS_TO

lzak.pdf, accessed at Oct, 2006.

Conclusion
 First of all, I would like to answer the three research questions mentioned in the proposal.

� How to find a proper method to mitigate the effect of DoS attack via DNS request?

During the thesis work, I developed the proposed prototype, compared the performance of it with other methods and

evaluated in the simulated SIP environment. The result of it is obviously better than other methods from different aspects.

Therefore, up to now, the special DNS cache is the best method to solve this problem in our research scope.

� Which factors of DNS cache and SIP proxy (e.g. caching replacement policy, cache entry number, parallel processes

number of proxy, etc) are useful to deal with this problem?

During the thesis work, I measured six different parameters: the number of emergency processes, hash table entry

number, caching replacement policy, cache entry number, parallel processes number of proxy and attacking interval.

These six factors are the most general in SIP architecture despite of hardware and platform. Through these experiments, I

found last four factors quite affect the performance of SIP proxy. The relationship of these four factors and the

performance of SIP proxy are as follow, (Assume there are not enough cache entries to accommodate all records): (1)

LFU policy could help cache to work better than other replacement policies. (2) If there are enough CPU and memory

resource, the more parallel processes of SIP proxy, the better performance of SIP proxy. (3) If there are enough CPU and

memory resource, the more cache entries, the better performance of SIP proxy. (4) The longer attacking interval, the

better performance of SIP proxy.

� Which kind of combination of the useful factors is the most efficient?

Mentioned in the last question, there are four factors affect the performance of SIP proxy. The most efficient is

supposed to be a SIP proxy with more parallel processes, a DNS cache with LFU cache replacement policy and more

cache entries. Whereas the number of parallel processes and cache entries should be controlled according to the server’s

capacity.

In summary, Denial of Service attacks can limit SIP server operation to a large amount. In this paper we have evaluated

attacks on SIP servers that utilize unresolvable DNS names in SIP messages. Such attacks might be interesting for

malicious users, as such SIP messages can easily be crafted and already a low amount of such message can reduce server

operation by far.

Our tests also show that over-provisioning the servers with massive parallel operation and asynchronous DNS lookup

capabilities as well as reducing the usage of DNS names in the SIP messages can not successfully counter such attacks.

That is while such measures can improve the performance under attack a severe attack will also manage to block the

server at some point. By combining DNS caching with a blocking threshold after which no new DNS requests are issues,

we have shown that a SIP server can continue working even under a heavy attack. This threshold can be either the

percentage of blocked process in a SIP server designed to process messages in a synchronous manner. For servers

processing messages in an asynchronous manner this threshold could represent the percentage of used memory. Finally,

in case the used cache can not accommodate all possible DNS names, our experiments suggest that using a least

frequently used replacement strategy for the cache has resulted in the highest hit rate.

Future Work
In this research, we have verified that the cache mechanism could mitigate this kind of attack by a certain amount. But

it is not a perfect solution: there are still lots of sessions lost when the attacker decrease the attacking interval. And on the

other side, with the new subsystem (DNS cache) introduced, new security issue comes to life, such as DNS cache

poisoning, etc. Furthermore, the test bed we based on is quite limited so that we cannot simulate all the SIP session traffic,

(e.g., there is only REGISTER message sent to proxy, not INVITE, ACK and BYE messages). In the future work, we will

start following three aspects:

� Enhancement the defence system. For example, in the research, we already know that caching replacement policy,

cache entry number, parallel processes number of proxy and attacking interval affect the performance of cache and

proxy. We can determine the former three factors from the server side but the attacking interval depends on the

attacker, not us. Fortunately, it is possible to decrease attacking speed by some intelligence filter technique. Now we

devote to combine this solution with other IDS and IPS in the SIP infrastructure and constructing a scalable defence

system.

� Consider the new threat introduced by DNS subsystem. For example, we will exam the possibility of cache poisoning

in our prototype and try to mitigate the threat by improving TTL (Time to Live) algorithm of DNS records. We will

develop a DNS cache poisoning tool which could maliciously modify cache records and compare with the previous

result. We also will take cache TTL as a important parameter in the experiments.

� Accurate the research result. In this thesis, the test bed only covering SIP REGISTER traffic environment, which is

only the first step of SIP processing. Therefore we plan to construct the new test bed to simulate the whole process of

SIP session building, include REGISTER, INVITE, ACK, BYE, etc. We tried this before, while the configuration

complexity increases considerably because every SIP provider has their own restrict rules on outgoing request. To

perform such a test, it is quite difficult to rely on the SIP providers in the real world. We plan to construct a new test

bed based on virtualized machines. We will still use SIPp UA to simulate traffic, consisting of REGISTER and

INVITE requests with successive OK responses. We will use one SIPp UA as the caller and another as the callee.

After caller, callee registered in the server, caller would send INVITE request to callee continuously. The architecture

showed in Figure App.1.

Figure App.1: an architecture of new test bed

unresolvable

Attacking tool

SIP providers

Callee

Internet

Caller

DNS

server

SER (outgoing proxy)

Appendix A ----The Design of DNS Cache for SIP Proxy
The DNS cache prototype is to be implemented for the following three considerations: (1) keep at least one SIP proxy

child process unblocked; (2) add SRV, NAPTR record into the cache; (3) apply different cache replacement policies

(FIFO, LFU, LRU, Time Cost)to knock out old records.

1. View as a whole

Figure App.2: the fundamental role of DNS cache in the SIP environment

Three parts are involved in the system, SER proxy, DNS cache and external DNS server. SER proxy is taken as a

server which helps users to build a connection with another remote SER proxy. Generally speaking, it is forked into

several parallel processes to deal with the request of multiple users in the same time. Furthermore, sometimes local SER

proxy searches another remote SER proxy via domain name. If the local SER proxy receives a request to send SIP

messages to Alice@ABC.com, it will try to find the target IP address of the SIP server by domain name ABC.com at first.

Of course, the SER proxy can execute a DNS request to upper DNS server directly, but it is very awful efficiency and

easily suffers from Denial of Service attack since the DNS server maybe take several seconds to reply. DNS cache is

introduced to solve the problem. It will save some DNS records temporally in the cache, and if the SER proxy has to

make a DNS inquiry, it will search the DNS cache at first, then external DNS server if there is no result in the cache.

In the Figure App.1, the Child 1 performs a DNS request to DNS cache at first, and gets the record in the cache. While

the child 4 cannot find its record in DNS cache, as a result the cache requests it from upper DNS server. The record will

saved in the cache and sent back to SER proxy after the upper DNS server replies.

2. Architecture Design of DNS Cache

There are three parts in the DNS cache, (1) communication interface; (2) packets dispatch; (3) cache structure.

Communication interface is used to exchange packets with the children processes and the upper DNS server. For DNS,

UDP and port 53 should be adopted. Two sockets will be created when the DNS cache initialized, one to communicate

with SER, and another with External DNS server.

To avoid complex structure and bugs, single-process will be adopted instead of multiple-process. But on the other side,

the children process of SER proxy shouldn’t be blocked when they send request in the same time. Fortunately, packets

dispatch will be introduced to solve this problem. When DNS cache receives a request packet form a child process, it will

save the IP address and the port of the packet source in a record and assign a unique ID to the record. Next, the DNS

SER Proxy

DNS Cache External

DNS Server

Child 1

Child 2

Child 3

Child 4

cache will replace the packet ID with the record unique ID and transmit the packet to upper DNS Server. Then, the DNS

cache will not wait for the reply of upper DNS server and can freely deal with requests from other children. Until upper

DNS server replies, the DNS cache will find the target address and port by the packet ID from the structure and transmit

the reply packet back. Furthermore, if there is no response received from external DNS server to a certain request for up

to 5 seconds, the state will be removed and send back unresolvable.

ID TTL (S) Source Address

… …. …

3456 2 {10.1.20.9, 2531}

3457 3 {10.1.20.45, 4638}

3458 3 {10.1.20.9, 3056}

3459 4 {10.1.20.7, 8930}

… …. …

Table App.1: an example of the request dispatch table in the cache

To solve the first problem we mentioned at the beginning: “(1) keep at least one SER proxy child process unblocked.”,

the DNS cache will know how many parallel processes the SER proxy has and save it in a global counter. Every time the

DNS cache receives a request from SER proxy, the counter will minus one. By contrast, the counter will add one if the

cache gets a reply from upper DNS server or a request is timeout. When the counter is less than two, which means only

one unblocked child process left, the DNS cache will not transmit the request packet to upper DNS server, instead, it will

only look up locally and reply immediately.

Since there are a lot of SRV and NAPTR application in SIP environment besides A, we should save all these three kind

of records into the cache; the node structure (the unit of cache) is designed as follow,

struct node {

struct node *next; //used for cache algorithm

struct node *prev; //used for cache algorithm

struct node *hash_next; //used for hash table

unsigned short type; //used to the type of record, A,SRV, NAPTR

time_t ttd; // time to die

union {

struct all_addr addr; //A record

struct srv_record srv; //SRV record

struct naptr_record naptr; //NAPTR record

}

Unsigned int weight; //used for cache algorithm

unsigned short flags; //reserved

char name[MAX_NAME]; //the domain name

};

The nodes exist as two kinds of data structures in the same time, (1) hash table; (2) double linked list.

Hash table is used to accelerate the search speed. The nodes which have the same digest value will share the same hash

entry. Hash entry should be found before look up the node to locate the entry. When a new node is added into the hash

table, the hash entry will be calculated and it will be inserted as the first node of the entry.

HASH

Figure App.3: an overview of the cache entries organized as hash table

When the cache receives a reply of new DNS request, the new record will be inserted. When the number of nodes

exceeds the limit, some nodes will be knocked out via cache algorithm. To achieve it, a queue of double linked list will be

adopted.

head tail

Figure App.4: an overview of the cache entries organized as double linked list

� FIFO: the new node will be inserted after head and the old one will be knocked out from the tail.

� LFU: the queue is sorted by the visit frequency, the head points to the most frequent one and the tail points to the

least frequent one. If the frequency is the same, the least recently used nodes will be knocked out.

� LRU: every new node or just visited will be moved to the head. The node pointed by tail will be knocked out.

� Lookup Time Consuming: the queue will be sorted by the lookup time consuming, and the least time consume node

will be knocked out.

node node node

node node

node node node

node node node node

Appendix B ----the scenario script of SIPp
SIPp is a free Open Source test tool / traffic generator for the SIP protocol. In our test bed, it was used to simulate the

normal REGISTER traffic. I wrote the following script to create the REGISTER scenario.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE scenario SYSTEM "sipp.dtd">

<scenario name="RIGISTER">

 <send>

 <![CDATA[

 REGISTER sip:[field1] SIP/2.0

 Via: SIP/2.0/UDP [local_ip]:[local_port];branch=[branch]

 Cseq: 3349 REGISTER

 To: "nick" <sip:[field2]@[field1]>

 Expires: 1800

 From: "nick" <sip:[field2]@[field1]>

 CALL-ID: [call_id]

 Content-Length: 0

 User-Agent: SIPp

 Event: registration

 Allow-Events: presence

 Contact: "nick" <sip:[field2]@[local_ip]:5067;transport=udp;>;methods="INVITE"

]]>

 </send>

 <recv response="478" option="true">

 </recv>

 <recv response="408" option="true">

 </recv>

</scenario>

 The code between <send> </send> indicates sending a REGISTER message to a randomly selected external SIP

provider via SER proxy. Next, the SIPp will perform a DNS inquiry to locate the IP address of the external SIP provider.

In our experiment, there are four possible situations in the following:

� Due to attacking, all the parallel processes of SER are blocked. Therefore, no process could handle this REGISTER

message so that the message will be ignored by SER proxy. As a result, nothing will be replied to SIPp.

� Due to attacking, only one emergency processes is not blocked, and the REGISTER message will be handled by it.

No result is found in the internal cache and “478 cannot resolve the domain name” will be replied to SIPp.

� The domain name of the external SIP provider in the REGISTER is successfully resolved and the message is

forwarded to the provider. But Due to attacking, the proxy may not receive the reply from the provider. In this case,

“408 timeout” will be sent to SIPp.

� The domain name of the external SIP provider in the REGISTER is successfully resolved and the message is

forwarded to the provider. After while, the proxy get the reply from external provider and forward the reply message

to SIPp.

In this scenario, if SIPp get a response from external providers, a successful session will be counted. Since “478” and

“408” is the reply generated by proxy, not from external providers, therefore we have to filter them (see the two

<receive> </receive> parts in the script).

Appendix C ----A difficult-resolvable DNS flooding tools

 First of all, let us recall that whenever a user requests a domain resolve, there are generally two cases to distinguish:

� The DNS server knows the name mapping. The name server might know the mapping because it is the authoritative

name server for this domain. As such, all mappings for the domain are preconfigured for this domain server. The

server might also know the name because it has resolved this address previously. Generally, in this case the mapping

is still stored in the server's internal cache.

� The DNS server does not know the name mapping. In this case the server will issue a recursive request to other name

servers that might be able to provide an answer. The server will eventually receive a response, either containing the

valid mapping or an error message that no mapping is possible. In the former case, the mapping will be stored in the

server's internal cache for a limited period of time. The names server can also set a time limit for the query. If no

answer is received within this limit, the address is considered unresolvable.

Figure App.4: an example of the organization of DNS

 For example, showed in figure App.4, suppose if there are two local DNS server, fokus and bth, Alice is a host of fokus

and Martin is a host of bth. When Alice would like to look up the IP address of Martin, Alice will send request to fokus at

first. If no matched record returns, focus will reply Alice:”I don’t know, please ask other servers”. The DNS request will

be forward to other DNS servers recursively, for example, de, se, bth. Finally, bth will answer the IP address of Martin.

 Now let us imagine two possible situations as follow:

� If the access bandwidth from bth to fokus is low, much time has to be spent on connection.

� If the DNS server of bth is mis-configured or there are plenty of hosts in bth domain, the processing of looking up

will cost much time.

An attacker could easily exploit this vulnerability by fill random host name in front of bth domain automatically, such as

(sdf.bth.se, asfgsf.bth.se). Therefore, a difficult-resolvable DNS flooding tool can be created.

Root

com de net se

bth fokus

Alice Bob Martin

Appendix D --- Experiment Setup and validation
1. Experiment 1

In this test, I took parallel processing queues n and different attacking intervals i as variables. The experiment

verified that it was quite easy to launch such a DNS flooding attack to reduce the availability of service. It was also

showed that the solution of increasing parallel process number of the proxy was limited. I did these experiments

with n processes of proxy and i attacking interval for ten times. The Figure App.5 shows the average calculated

from them.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

attacking interval (S)

m
e
s
s
a
ge
s

r
e
pl
i
e
d

PN = 2 PN = 4 PN = 8 PN = 16 PN = 32 PN = 64

Figure App.5: processing performance of the local proxy for different processing

queues n and varying attacking intervals i

2. Experiment 2

Experiment 2 could verify the unblocking ability of our prototype. This experiment is the only one not based on the

test bed we mentioned before. I wrote a script on the server so that it could log timestamp in a log file when the

server answered a SIP request. I did these experiments with n processes of proxy and i attacking interval in two

situations, with cache solution and without cache solution. Without cache, the result is the same despite of different

process numbers. Before the experiment, I did a pre-test and found the result is irrelative with emergency number.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120 140

attacking interval(S)

m
es
sa
g
e
s
 r
ep
li
ed

n=2, with unblocking design

n=256

n=128

n=64

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140

attacking interval (S)

m
es
sa
g
es
 r
ep
li
ed

n=32

n=16

n=4

n=2

Figure App.6: Message processing capabilities. The more parallel queues n are configured, the more messages can be

processed during an attack. With the DNS cache implementation nearly all

 messages can be processed independently of n.

3. Experiment 3

The purpose of experiment 3 is to find out which cache replacement policy is more qualified in this situation. The

parameters include cache replacement policy, attacking interval, process number of proxy. The experiment is based

on the test bed. Before the experiment, I also did a pre-test and found 270 cache entries will be occupied to resolve

these 100 providers, therefore, the maximum cache entries number was intentionally set to 80 so that the

replacement policy worked. The picture shows the results of average values of ten times repeated test.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

attacking interval(S)

m
e
s
s
a
g
e
s

r
e
p
l
i
e
d

No cache FIFO LRU LFU TIME COST

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

attacking interval (S)

m
e
s
s
a
g
e
s

r
e
p
l
i
e
d

No cache FIFO LRU LFU TIME COST

Figure App.7: performance of SIP proxies equipped with different cache replacement policies under attack

4. Experiment 4

The last experiment is to investigate the relationship of cache entry number and the performance of the proxy. The

cache entry number is the only variable. The picture shows the results of average values of ten times repeated test.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400

cache entries

m
es
sa
ge
s
 r
ep
li
e
d

with LFU cache without cache

Figure App.8: performance of proxy with different number of cache entries under attack

Appendix E ----100 external SIP providers used in the experiments
1 iptel.org

2 voiz.irepublics.com

3 calamar0.nikotel.com

4 bluesip.net

5 fwd.pulver.com

6 sipgate.co.uk

7 sipnumber.net

8 proxy01.sipphone.com

9 voiptalk.org

10 sip.voipuser.org

11 register.voipgate.com

12 sip1.sippal.com

13 sip.inphonex.com

14 babble.net

15 sip.freeipcall.com

16 proxy1.sipsnip.com

17 proxy2.sipsnip.com

18 xchange.terracall.com

19 sip.webphone.com

20 sip.voipfone.co.uk

21 sipbroker.com

22 sip.myvoipaccount.net

23 sip2go.com

24 nadiz.com

25 sip.broadvoice.com

26 voip.eutelia.it

27 sip.stanaphone.com

28 voztele.com

29 sip.libretel.com

30 sip.alteline.com

31 voxalot.com

32 callcentric.com

33 sip2.bbpglobal.com

34 sip.net2phone.com

35 sip.sinapsys.net

36 sip.televoip.no

37 voipuser.org

38 sip.callunion.com

39 sip.gradwell.net

40 sip.telic.net

41 proxy.lax.broadvoice.com

42 proxy.dca.broadvoice.com

43 proxy.mia.broadvoice.com

44 proxy.atl.broadvoice.com

45 proxy.chi.broadvoice.com

46 proxy.bos.broadvoice.com

47 proxy.nyc.broadvoice.com

48 calamar.nikotel.com

49 sip.ucs.sfu.ca

50 gw1.voicepulse.com

51 gw2.voicepulse.com

52 register.zivvaoffice.com

53 sip.starshipcorp.com

54 thekompany.com

55 sip.3c-hungary.hu

56 sip.3c-russia.ru

57 sip.inphonex.com

58 sip.callclarity.net

59 bbtele.se

60 sip.winradius.net

61 sip.mobitus.com

62 sip.webphone.com

63 sip.voipbuster.com

64 northamerica.sipphone.com

65 sipdr.quantumvoice-sip.com

66 sip.force9.net

67 draytel.org

68 sipdr.quantumvoice-sip.com

69 Voip-co2.teliax.com

70 sip.unlimitel.ca

71 sip.peoplecall.com

72 voip.cascotec.com

73 talk.rabbitpoint.net

74 sip.ixcall.net

75 atlas-east.vonage.net

76 sip.varphonex.com

77 sip.televoip.no

78 sip.voise.com.au

79 sip.internetphoneco.com

80 sip.1und1.de

81 sip.simply-connect.de

82 sipgate.de

83 sip.gmx.net

84 iphone.freenet.de

85 proxy.de.sipgate.net

86 sip.tiscali.de

87 sip-gmx.net

88 sip.sipservice.eu

89 voipgateway.org

90 sipdiscount.com

91 tel.t-online.de

92 freephonie.net

93 sip.schlund.de

94 callcentric.com

95 at43.tuwien.ac.at

96 sip.backbone.ch

97 ch03.sip-fon.eu

98 proxy.digisip.net

99 deu1.purtel.com

100 sip.a1.net

