Testing Dialog-Verification of SIP Phones with
Single-Message Denial-of-Service Attacks

Jan Seedorf, Kristian Beckers, Felipe Huici

NEC Laboratories Europe
Kurfuerstenanlage 36, 69115 Heidelberg
{firstname.lastname}@nw.neclab.eu

Abstract. The Session Initiation Protocol (SIP) is widely used for sig-
naling in multimedia communications. However, many SIP implementa-
tions are still in their infancy and vulnerable to malicious messages. We
investigate flaws in the SIP implementations of eight phones, showing
that the deficient verification of SIP dialogs further aggravates the prob-
lem by making it easier for attacks to succeed. Our results show that the
majority of the phones we tested are susceptible to these attacks.

1 Introduction

The Session Initiation Protocol (SIP) [2] is a protocol for setting up, managing,
and tearing down multimedia sessions. Much of its success and popularity are
due to its use in Voice-over-IP (VoIP) devices. VoIP is a rapidly growing market
with high potential for the future, and so competition is fierce. This leads to fast
and immature development of SIP products; indeed, it is no secret that quite a
few SIP implementations are vulnerable to malformed messages [1]. In this paper
we investigate the robustness of SIP phones against two specific, single-message
Denial-of-Service (DoS) attacks: Cancel and Bye attacks.

2 Description of Attacks

To establish a VoIP session with SIP, user Alice first sends an INVITE request to
its proxy, which forwards it to the proxy of Bob’s domain (Figure 1). This proxy
knows his current location (IP address) and can forward him the INVITE request.
The proxies and Bob’s SIP user agent signal back to Alice’s user agent that the
call is being established (100-trying/180-ringing). At this point an attacker
can carry out a Cancel attack by sending a CANCEL request to Bob before the
session is completely set up, resulting in DoS (step 6 in the figure). A normal
connection would continue by Bob sending a 200 OK message (steps 10-12) and
Alice replying with an ACK message (not shown in the figure for simplicity).
After the connection is established, an attacker can perform a Bye attack, in
which he sends a BYE message to Bob, prematurely ending his conversation with
Alice (step 13).

3. Invite

/
-
PR L E——
8. 180 Ringiny

SIP Proxy 11. 200 Ok SIP Proxy

Atlanta Biloxy
1. Invite 2. 100 Trying 5. Invite

SIP:mallory@biloxy.com

7 v

.é’} s,

9. 180 Ringing =, 7
[‘&

o’ s S

10. 200 Ok s %

12. 200 Ok e
7. 180 Ringing R
(ﬂ I

SIP:alice@atlanta.com SIP:bob@biloxy.com

Fig. 1. SIP call establishment showing Cancel and Bye attacks.

In general, SIP messages are of different types (e.g., INVITE, CANCEL, BYE),
contain various header fields and a body, and are sent either as requests or
responses. To distinguish between different sessions, SIP uses so-called dialog
identifiers [2]. A SIP dialog ID is composed of the Call-ID, the From-tag (con-
tained in the From-header) and the To-tag (contained in the To-header). Thus,
any SIP entity can verify that a message belongs to a dialog (and therefore in
principle prevent Cancel and Bye attacks) by checking that:

1. The Call-ID is the same as that of previous messages within the dialog
2. The tag in the From header matches that of previous messages within the dialog
3. The tag in the To header matches that of previous messages within the dialog

Figure 2 shows the establishment of a SIP session including the dialog-ID
components sent between the entities. The Call-ID and the From-tag are set
by the caller and the To-tag by the callee. These tags remain in every SIP
message throughout the dialog, and if a message does not match an existing
dialog it should be discarded. While tags are optional, if a message contains one
or both these tags, all messages in the dialog must also contain them. The figure
also shows how attacker Mallory could, in principle, carry out Cancel and Bye
attacks. However, in order to do so, she would have to know several components
of the corresponding dialog in order to succeed. We will show that with quite a
few SIP implementations such attacks can be carried out with less knowledge.

3 Testing SIP Dialog Verification

We were interested in the robustness of currently-available User Agent SIP im-
plementations against forged dialog-IDs. We consider a dialog-ID to be forged
if one component that comprises the dialog-ID differs from the component orig-
inally chosen by either the caller or the callee. For our testing we sent both
CANCEL and BYE requests, forging either the Call-id, the From-tag, or the
To-tag. Note that even though a CANCEL can be sent without a To-tag at
all, a CANCEL with an unknown To-tag should be ignored. Our goal was to

Alice Proxy A Proxy B Bob Mallory

Invite >
Call-ID, From Tag Invite
Call-ID, From Tag

Invite >
Call-ID, From Tag

< 100 Trying < 100 Trying
Call-ID, From Tag Call-ID, From Tag
CANCEL
— Call-ID, From Tag
< 180 Ringin
Call-ID, From Tag, To Tag

200 OK

- Call-ID, From Tag, To Tag
ACK >
Call-ID, From Tag, To Tag =
RTP »

< Call-ID, From Tag, To Tag

Fig. 2. Detailed view of SIP Cancel and Bye attacks.

see in which of these cases we would be successful in carrying out a Cancel or
Bye attack. To do so we needed a testing tool that was both stateful and re-
active: the former in order to trigger a forged BYE or CANCEL message after
previous messages had been exchanged; and the latter to parse the To-tag in
SIP responses from the user agent under test (this was needed to execute tests
where the To-tag differs slightly from the one in the current dialog). Most SIP
testing tools are neither stateful nor reactive (e.g., Protos [4]). Therefore, we
implemented the test cases ourselves using SIPp [3] as a message generator and
parser. We tested four SIP hardphones and four SIP softphones against messages
with forged SIP dialog-IDs. Table 1 summarises the results. The right-most col-
umn shows which phones accepted a particular forged request, with the labels
representing anonymised phone names (softphones: S1-S4; hardphones: H1-H4).
The hardphones were tested out-of-the-box as well as after a firmware update.
As none of the phones we tested was susceptible against an attack with a forged
Call-id, these results are left out in the table. Our results demonstrate that
a majority of SIP softphones is vulnerable to these kind of attacks as well as
two hardphones with their unpatched, out-of-the box firmware. Only three SIP
phones we tested (S3, H2, H4) ignored messages in all our test-cases with forged
dialog-components.

Request|Forged Header Field|Vulnerable Phones
From Tag S1, S2, S4, H1*, H3*

Cancel To Tag S1, S2, S4, H1*, H3*
From Tag S1, S2, S4, H1*, H3*

Bye To Tag S1, S2, S4, H1*, H3*

Table 1. Results of vulnerabilities to forged SIP header field attacks for four softphones
(S1-S4) and four hardphones (H1-H4). Starred entries denote vulnerabilities that were
only found with the unpatched firmware version of the particular phone.

4 Discussion of Results

In the previous section we presented results showing several vulnerabilities in the
eight phones tested. The goal of the attacker is to cause DoS either by preventing
call establishment with a Cancel attack or by terminating an existing call with

a Bye attack; we will now discuss the extent to which these flaws enable the
attacker to be successful. We assume that Mallory is able to sniff the outgoing
INVITE message, but not the reply message from Bob containing the To-tag; this
would be the case if Mallory could see messages going to Alice’s proxy, but not
those going directly from Bob to Alice!. In this scenario, Mallory could very
easily deny communication by sending CANCEL or BYE messages with the val-
ues obtained from the sniffed INVITE message and any value for the To-tag, an
attack that would succeed on five of the phones we tested. While admittedly
this attack puts constraints on the scenarios in which it would be successful,
it is nonetheless of concern. More importantly though, these results shed some
light on the weakness of current SIP implementations, and hint at perhaps even
more serious flaws to be discovered. Worse, despite manufacturers releasing fixes,
not all phones are kept up to date but instead are used continuously with un-
patched firmware versions. Our results show that while hardphones seem better
protected against Cancel or Bye attacks than softphones, two of the hardphones
we tested were not protected against these attacks with an unpatched firmware
version. Motivated by these results, we intend to further investigate similar at-
tacks with other forged SIP headers. For instance, at present we are working on
more sophisticated test-cases to help in finding related flaws, e.g., with forged
transaction components like the via-branch.

5 Conclusion

We tested several SIP implementations against simple yet effective DoS Cancel
and Bye attacks using forged dialog IDs. Our results are worrying and show that
a majority of the softphones we tested as well as two hardphones with unpatched
firmware are vulnerable, allowing attackers to prevent or prematurely end VoIP
sessions. The results further illustrate the weakness of current SIP implementa-
tions, and we are continuing to investigate these and related vulnerabilities. As
part of these efforts, we are currently developing a tool to enable discovery of
perhaps even more serious flaws quickly.

Acknowledgement: The authors would like to thank Stephan Sutardi for his
help in implementing test-cases and testing phones.

References

1. CERT Advisory CA-2003-06, Multiple vulnerabilities in implementations of the Ses-
ston Initiation Protocol (SIP), http://www.cert.org/advisories/CA-2003-06.html

2. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley, M., Schooler, E., SIP: Session Initiation Protocol, RFC 3261, 2002

3. SIPp, Welcome to sipp, http://sipp.sourceforge.net/

4. Wieser, C., Laakso, M., Schulzrinne, H., SIP Robustness Testing for Large-Scale
Use, 1st Int. Workshop on Software Quality (SOQUA 2004), Erfurt, Germany, 2004

! SIP as specified in [2] allows the callee to send the 180-ringing and 200-ok directly
to the caller and not via the proxies (unlike the message flow shown in figure 2).

