
Towards effective SIP load Balancing
Georgios

Kambourakis
Dimitris

Geneiatakis
Tasos

Dagiuklas
Costas

Lambrinoudakis
Stefanos
Gritzalis

Laboratory of Information and Communication Systems Security

Department of Information and Communication Systems Engineering
University of the Aegean

Karlovassi, GR-83200 Samos, Greece
Tel: +30-22730-82247

Email:{gkamb, dgen, ntan, clam, sgritz}@aegean.gr

ABSTRACT
Session Initiation Protocol (SIP) high availability, reliability and
redundancy are determined by the ability of the core SIP network
components to offer high quality SIP services in the event(s) of
high call transactions, link outages, device failures,
misconfigurations and security attacks. In this context, load
balancers can be used to achieve redundancy and active load
balancing of SIP transactions. In load balancing schemes, new
requests are allocated across available servers using a selection
algorithm. Although considerable work has been already done for
Web traffic balancing, little research effort is primarily aiming to
SIP load balancing. This paper proposes a SIP dedicated load
balancing solution, which is currently under development within
the EC funded project SNOCER. We describe in detail our
balancing scheme, its associated architecture elements and
provide implementation details showing that it is simple to
realize, effective, flexible, robust and secure.

Categories and Subject Descriptors
C2.1 [Computer Communication Networks]: Network
Architecture and Design, C.2.2 Network Protocols.

General Terms
Design, Reliability, Security.

Keywords
Session Initiation Protocol; Load balancing; SIP architectures;
Redundancy.

1. INTRODUCTION
Large scale corporate Voice over IP (VoIP) service may
necessitate the deployment of multiple servers in order to serve
transactions requested by several VoIP clients concurrently.
Multiple installed servers or even clusters of servers aim at
“absorbing” smoothly heavy VoIP traffic so that VoIP services

can be delivered unattended without delays contributing to the
high quality of service (QoS).

Generally, in load-balancing schemes, new requests are assigned
to existing servers following a pre-determined algorithm. A
common selection algorithm targeting in statistical load balancing
is the well known round-robin scheme [1], which has to be better
considered as a load distribution option rather than a “pure” load
balancing mechanism. Another eminent category of balancing
approaches is weighted or adaptive balancing, which distributes
requests proportional to the weight assigned to each available
choice or route.

More specifically, load balancing can be adaptive or not adaptive,
depending on whether or not run-time load conditions influence
load balancing decisions. Adaptive load balancing policies use
real-time system state information based on various metrics (e.g.
CPU consumption, free available memory etc), to take load
balancing decisions, whereas non-adaptive or static load
balancing do not. In any case, to be able to distribute effectively
and fairly VoIP traffic in the corresponding redundant servers, the
introduction of the appropriate balancing mechanism during the
initiation of the call is considered as the most crucial factor. In a
VoIP environment the call establishment is accomplished through
the utilization of standard signalling protocols like H.323, SIP,
MGCP, etc. However, Session Initiation Protocol (SIP) seems to
overwhelm all the rest, mainly due to the fact that it has been
adopted by various standardisation organisations (i.e. IETF, ETSI,
3GPP) as the protocol to establish multimedia sessions at both
wireline and wireless world in the Next Generation Networks
(NGN) era. There are different ways to calculate the SIP servers’
workload and different schemes to deal with it. However, in
practice, the effectiveness of adaptive load balancing depends on
the load metrics chosen and on other load run-time parameters
needed.

While many load balancing strategies and various techniques (see
Section 2.1) have been considered and thoroughly tested mainly
for Web servers, significant research must be targeted towards
loading-balancing schemes for real-time services. Current SIP
servers’ implementations do not include native SIP balancing
modules and usually rely on add-on or peripheral balancing
methods. To the best of our knowledge, the only SIP-oriented
balancing scheme is the Vovida’s one (www.vovida.org) which,
at least until know, is far from being complete [2]. This paper
focuses on load SIP balancing, proposing a novel but simple
approach that can be implemented in any SIP realm. We address

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VSW’06, June, 2006, Berlin, Germany.
Copyright 2006 ACM 1-59593-387-5.

architecture requirements and describe in detail how the proposed
solution can be applied, discussing alternative scenarios. As a
final point, we also touch on some failover issues and security
parameters that stem from the presentation and are considered
important for the proposed scheme to work.

The rest of this paper is structured as follows: Section 2 provides
a short introductory to balancing techniques focusing on SIP and
presents our solution in general. Section 3 analyses the anticipated
balancing scheme in detail presenting its interactions with the
other architecture components, discussing its advantages and
showing that is robust and simple enough to realize. Last Section
concludes the paper and gives pointers to future work.

2. SIP BALANCING PRELIMINARIES
2.1 Load Balancing Schemes
Some well-known solutions in the literature mainly about Web
servers balancing include the following (here we have made some
adaptations for the SIP case):

Round Robin (RR): Upon to a new SIP request, the SIP balancer
selects the next IP address record for the specific SIP server alias
name as stored in the Domain Name System (DNS). This solution
is considered as non adaptive, due to the fact that it does not
require from the balancer to maintain and update workload
information from the available SIP servers in the domain. For
Web balancing this mechanism is built-in into the DNS. One will
argue that SIP load balancing can be applied directly to the DNS
as it is already supported for other Web services. Using this
principle, there is no real need for the balancer independent
machine. However, the DNS will assign one of IP addresses of
SIP servers to each address resolving request. As a result, the
name-to-address mapping will be cached in name servers along
the path from the DNS all way down to the client and consequent
address requests reaching the same name servers will be resolved
with cached addresses. Only after the name-to-address mapping in
the cache expires, due to Time-to-Live (TTL) field, is possible to
serve new requests with a fresh RR decision. Additionally, RR is
proved ineffective when all servers do not have equal processing
performance and resources. Even the improved Two-Tier-Round-
Robin (RR2) algorithm [3], which takes into account client
domain information, does not really improve balancing for SIP
applications.

Adaptive versus Dynamic Weighting: This means that it is
selected the server which currently handles the least number of
SIP transactions or it has the minimum overall workload. This
category of solutions for Web servers includes Asynchronous
Alarms (AAlarm) [4], Ibnamed [5] and TENBIN [6] algorithms for
DNS. For the SNOCER architecture, we propose the following
general balancing schema:

- The Load Balancer (LB) module (process or daemon) at fixed
time intervals (e.g. 30 minutes) requests the current number of
SIP servers (SRV records) [7] available within the DNS server
and resolves their Fully Qualified Domain Names (FQDNs).
Clearly, this means that for each SIP domain, the DNS server has
multiple SRV records corresponding to (redundant) SIP proxies
attached to it.

- After that, the LB at predefined or dynamically assigned
intervals (say 120 seconds) queries all the available SIP home

network proxies for information like CPU usage percentage and
memory consumption. Generally, the following examples of
“availability” metrics can be taken into account: Performance of
each server, load average of CPU in each server, network load,
network distance (hops) between a SIP client and a SIP server,
vote from users, using predefined availability as add-on to
dynamic load balancing. Based on the returned data, the LB
generates a SIP proxy preference list from the least to the most
utilized. In addition, every SIP Home proxy can send at regular
thick-time intervals heartbeats to the LB machine saying “I am
alive”. Therefore, in case a SIP proxy goes down or suffers a
sudden attack, the LB will be indirectly informed.

In the proposed load balancing method, when a SIP client
requests to initiate a SIP call, the proposed entity called “SIP
Load Balancer” (LB) will perform a selection of the most
appropriate SIP server, based: (a) on the DNS SRV records of the
available SIP servers and (b) on various workload metrics
collected from the existing SIP proxy servers, such as locations of
the client and SIP server, SIP server load in terms of processing
transactions, overall workload in each SIP server, etc. Clearly, the
selection of a certain proxy to serve any initial request is
completely transparent to the client. One can argue that there is no
real need for the LB to query each time the SIP proxies
consuming network bandwidth, rather simply keep locally
statistics about how many transactions have been assigned to each
of them. However, this solution is rather static as: (a) does not
provide real time load metrics because as one or more SIP jobs
finish in the proxies there is no way to inform back the LB and (b)
in case a SIP proxy goes down e.g. due to hardware failure, the
LB will continue to send it new transactions to dispatch. For the
above reasons, we consider the frequent communication between
the LB and SIP proxies as mandatory.

2.2 Load Balancing within SNOCER
Architecture
This section describes the use of the load balancing scheme
within the SNOCER architecture. The LB network element will
reside inside the internal High Availability Network (HAN) as
described in Figure 1. Key components of the high availability
SIP architecture within the SNOCER architecture, as proposed in
[8], are the following:
- Bastion Host: This host acts as a gatekeeper into the internal

VoIP network of the operator. Its assignment is to detect
basic attacks on the VoIP systems and deny access to
unsolicited traffic into the network through a firewall.

- Enhanced SIP Proxy: SIP proxies are enhanced in two ways.
An integrated IDS system will be able to detect more
sophisticated attacks on the SIP proxy, which the bastion
host might have missed. Furthermore, the proxy’s
performance is optimised through the addition of a
specialized DNS module to enhance throughput capabilities
and repel DNS related attacks.

- The High Availability Network: Key components of the
VoIP network will be secured trough an internal high
availability network providing failover capabilities to these
components.

- Operator’s console: At a centralized point the status of the
enhanced VoIP infrastructure can be observed and
controlled.

Figure 1. General high availability architecture for SIP domains

3. IMPLEMENTATION DETAILS
The LB is an add-on entity which is responsible to query DNS and
maintain SRV records of all the available SIP proxies in the
corresponding domain. For each SIP client’s request the LB is
responsible to forward the request to the most appropriate SIP
proxy, in terms of workload, to serve it. In other words, as
described in Figures 2 and 3, SIP clients firstly communicate with
the LB entity to find out the best SIP proxy available. If the LB is
not responding the SIP client can communicate directly with the
DNS to retrieve all the available SRV records corresponding to
SIP servers in the domain and select one.

Figure 2. General SIP load balancing architecture

However, having in mind that until now most SIP clients do not
support DNS direct transactions, another solution for them is to
communicate directly with another available SIP proxy in the
same domain. The IP addresses of the LB and the backup SIP
proxies can be pre-configured in the SIP client device. As a result,
the IP address of the most appropriate SIP proxy is selected by the

LB and while the initial message (e.g. INVITE) goes through the
LB the subsequent messages for the same session go directly to
the selected by the LB SIP proxy.

Figure 3. LB Decision Flowchart
To be more precise, the only SIP message types that need to pass
through the LB entity are: REGISTER, INVITE, SUBSCRIBE
and OPTIONS. Naturally, in case the LB is implemented as
another SIP proxy e.g. the open source Express Router (SER)
(www.iptel.org/ser/), it will normally insert its own VIA header in
the incoming SIP message prior to forwarding it to the
corresponding SIP proxy. This standard (for SIP proxies) VIA-
adding procedure do have undesired implications as all the
corresponding responses referred to the same session will pass
through the balancer entity.
To resolve this problem have proposed the following solutions,
while the exchanged messages between all the involved entities
are depicted in Figure 4:
- One possible solution, is to manage to somehow have the

LB’s VIA header not inserted at all, inducing this way all the
consequent messages to go directly to the home SIP proxy in

charge. For example, this can be done by utilizing the routing
engine of the corresponding proxy. In the case of SER, it
would be possible to use the SEND command as described in
the SER’s developers’ guide [10].

- A second alternative is to modify the proxy core source code
to force it to ignore the VIA-received header added by the
LB. However, this solution is proxy dependent or
implementation specific and of course not portable.

- The final option is to spoof the source addresses (IP and port)
of packets (e.g. INVITE messages) which are forwarded by
the LB so that proper routing takes place. According to this
scenario we set the IP address and port to the address and
port from which the packet arrived to the LB. By employing
this solution the LB is more transparent and we don’t need to
do any changes in the proxy’s source code.

Figure 4. Call flow between all the involved entities (The Via in
brackets means optionally (depends on the solution selected, see below)

One other transparency problem that emerged with the utilization
of the LB is that the subsequent requests belonging to the same
dialog must not pass through the LB. For this reason it is
suggested the SIP proxies in the home network, to introduce the
Record-Route header field [9]. By doing this, the clients would
then send follow-up requests regarding that session to the home
SIP proxy assigned by the balancer in the first place. This should
then not forward them to the request-URI (the LB) but process
them by itself. In addition, this solution even has the advantage
that new calls are load balanced because the route set is valid only
for one session.
As already mentioned earlier, an orthogonal to the proposed
balancing method, as in AAlarm algorithm, is to enable the SIP
home proxies to dynamically inform at any time the LB entity
when some workload parameters (e.g. concurrent number of SIP
transactions) exceed a specified threshold. For example, consider
the case where suddenly one or more SIP proxies are under a
DoS/DDoS attack. In fact, this capability requires the installation

of an appropriate daemon or module in each SIP proxy to monitor
the corresponding workload metrics. In case that all available SIP
servers are overloaded, it is selected the one with the least current
overload. Therefore, it is expected that the SIP home network
proxies are selected based to the rate of availability as following:

To be more precise, assume that there exist n operational SIP
servers in the domain, with availabilities A1, A2, A3,…An, where
(0 ≤ Ai ≤ Amax) and Amax is the upper bound of the “Availability”
parameter. Under this situation, the i-th SIP server is chosen by

the probability ∑ =

n

j j

i

A

A

1 . This situation is depicted in Figure 5.
Considering also the worst and of course rare case when all SIP
proxy servers are not desirable or down, the LB can choose one
SIP proxy randomly and simultaneously display a message to the
operator’s console).

Summarizing the above paragraphs, the SNOCER solution is DNS
independent, so it does not require any modification or extension
to existing DNS records or mechanisms nor to the core source
code of the employed SIP proxy to act as LB. The only actual
requisitions are:

(a) The addition of the LB independent machine implemented as
an existing SIP proxy (e.g. SER). The SIP server is only
required to support DNS-SRV records but this functionality
is already mandatory by the SIP standard (RFC 3261) [9].
Moreover, the employment of a standard SIP server to serve
as the LB means that there is no need to develop from the
scratch a lot of new software. Only the decision-and-forward
engine and the communication modules with the proxies have
to be implemented. Note, that in case of a large SIP network,
including many SIP proxies, we can realize a LB solution
consisting of several geographically distributed SIP proxy
clusters controlled by equal number of LBs.

(b) A daemon or process running in each SIP home network
proxy sending heartbeats, collecting workload metrics and
handling the incoming queries from the LB and optionally,

(c) Inform in an asynchronous fashion the LB when a certain
threshold is violated.

(d) All SIP home network proxies use either one shared or more
(mirrored) databases.

In our opinion the most compatible with the RFC 3261 of
heardbeating functionality is the utilization of SIP-Specific Event
Notification [11] due to the fact that, it has been designed as a
framework by which SIP components can request notification
from remote nodes indicating that certain events have been
occurred. In this case the LB forks and send a SUBSCRIBE
request to all the available SIP proxies. Consequently proxies
responds to SUBSCRIBE request with NOTIFY message. LB
needs to refresh subscriptions on a periodic basis using a new
SUBSCRIBE message on the same dialog as defined in RFC
3261. When a certain SIP proxy does not send NOTIFY messages
during a pre-set time period then it is considered unavailable. The
body of NOTIFY messages can carry all the necessary
information like CPU load, memory consumption or even
introduce new headers like WORKLOAD_INFO. Such a header
can have the following general structure: WORKLOAD_INFO =
{CPU_USAGE, MEMORY_CONSUMPTION, etc}. However,
such information must be considered vulnerable to malicious
modifications it is suggested to utilize S/MIME to protect either
the header or the body from malicious modifications. Moreover,
the exchanged messages (see Figure 6) are lightweight having

minimum impact on home SIP proxy servers’ performance and
network bandwidth. In case the SIP proxy initiates the

communication only the last two arrows are present.

SIP Home Servers

8%

23%

38%

8%
0%

23%
0%

A

B

C

D

E

F

G

Figure 5. Example of selection rate

In addition, for security reasons, the exchanged messages between
the LB and the SIP proxies can be signed using symmetric or
asymmetric key technology to protect against replay attacks,
tampering and man-in-the-middle attacks. For instance, messages
can be protected using the de-facto TLS protocol [12]. Last but
not least, to increase LB availability it is also possible to have one
or more backup mirrored balancers to defend against possible DoS
or DDoS attacks, physical or human disasters, etc. The most
practical solution to this issue enables the backup LB to take over
the IP address of main LB in the case of main LB’s failure.
Additionally, we must utilize some type of heart beating between
the main and the backup(s) LB to ensure the latter is alive. This
can be easily ensured by using standard HA built into e.g. the
Linux operating system (http://linux-ha.org).

Figure 6. Indicative communication protocol between the
Balancer and SIP proxies

We should also mention that user location database is another
important issue that is related with the balancing scheme. There
are two alternatives. First, to use a shared by all proxies database
and secondly to have more databases that are replicated real-time.
As the first solution introduces a sensitive single point of failure
we intent to select the second one. However, this issue remains out
of the scope of this paper.

4. CONCLUSIONS
As VoIP deployments continue to increase and become adopted
by more and more commercial organisations, reliability and
availability issues turn out to be increasingly important. In this
context, balancing the load of SIP transactions raises as a major
factor in terms of high availability, redundancy and QoS. Despite
the different balancing approaches that have been proposed and
developed for Web applications, until now, no SIP-oriented
complete balancing solution has emerged.

In this paper we describe a complete, lightweight SIP load
balancing scheme which is currently under development in the
context of EC SNOCER project. Several implementation issues
were analysed including architecture, components, interactions,
etc, showing that the anticipated balancing method is practical and
above all easy to implement. We also touch upon some
complementary questions like failover and security that we would
like to continue investigating. Currently, we are planning to
thoroughly evaluate the projected solution, which is almost
finished, in terms of robustness and performance. As future work,
we would like to expand this study considering clusters of SIP
proxies controlled by different LBs. Furthermore, considering that
the LB is a sensitive and tempting for the attackers’ network
entity, it is of our interest to systematically probe the security
parameters e.g. threats that may be compromise its smooth
operation.

5. ACKNOWLEDGMENTS
This work was conducted with the support of the EC under the
2005 project COOP-005892 - SNOCER

The authors would like to thank the FhG FOKUS (DE) and the
Nextsoft (CZ) SNOCER partners for their contribution to this
work

6. REFERENCES
[1] T. Brisco, DNS Support for Load Balancing, RFC 1794,

April 1995.
[2] Vovida.org, Load Balancer Proxy Readme, Version 1.0.0,

July 2002 (www.vovida.org).
[3] M. Colajanni, P. S. Yu & D. M. Dias, Analysis of task

assignment policies in scalable distributed Web-server
systems, IEEE Transactions on Parallel and Distributed
Systems, 9(6), June 1998.

[4] M. Colajanni, P.S. Yu, D.M. Dias, Scheduling algorithms for
distributed Web servers, 17th IEEE International Conference
on Distributed Computing Systems (ICDCS '97), 1997.

[5] R. J. Schemers III, Ibnamed: A load balancing name server in
Perl, in LISA ’95 conference, Stanford University, Sept.
1995.

[6] T. Shimokawa, N. Yoshida & K. Ushijima, DNS-based
Mechanism for Policy-added Server Selection,
http://www.tenbin.org.

[7] A. Gulbrandsen, P. Vixie & L. Esibov, A DNS RR for
specifying the location of services (DNS SRV), RFC 2782,
Feb. 2000.

[8] T. Dagiuklas, D. Geneiatakis, G. Kambourakis, D. Sisalem,
S. Ehlert, J. Fiedler, J. Markl, M. Rokos, O. Botron, J.
Rodriguez & J. Liu, General Reliability and Security
Framework for VoIP Infrastructures, http://www.snocer.org,
Aug. 2005.

[9] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.
Peterson, R. Spark, M. Handley & E. Schooler, Session
Initiation Protocol, RFC 3261, June 2002.

[10] Janak, J., Kuthan, J., Iancu, B., SIP Express Router v0.8.8,
Developer’s Guide, http://www.iptel.org.

[11] A. B. Roach, Session Initiation Protocol (SIP)-Specific Event
Notification, RFC 3265, June 2002.

[12] T. Dierks & C. Allen, The TLS Protocol Version 1.0, RFC
2246, Jan. 19

