FreeSWITCH as a Kickass SBC

Moises Silva <moy@sangoma.com>
Manager, Software Engineering
FreeSWITCH as a Kickass SBC

Moises Silva <moy@sangoma.com>
Manager, Software Engineering

facebook.com/Sangoma
twitter.com/Sangoma
youtube.com/SangomaTechnologies
blog.sangoma.com
SBC: The Mythical Beast

• No precise technical definition
• Not standardized anywhere
• B2BUA or Proxy?
• Handles signaling or media?
• More of a marketing term than technical?
SBC: The Mythical Beast
SBC: The Mythical Beast

Enterprise Network

IP-PBX

Intranet

SIP-Endpoints

SBC

Internal Firewall

DMZ

External Firewall

SIP trunk

ITSP

Internet

PSTN

Telco
SBC: The Mythical Beast

- Carrier SBC sits at the edge of service provider networks
- Enterprise SBC sits at the edge between customer and service provider
SBC: Definition

• Recently loosely described by RFC 5853
SBC: Definition

- Topology Hiding
- Media Traffic Management
- Fix capability mismatches
- SIP NAT
- Access Control
- Protocol Repair
- Media Encryption
- Threat protection (i.e., DoS, Malformed packets)
Topology Hiding

• Hide the service provider or enterprise network implementation details

• Use of RFC 3323 (privacy) not enough

• B2BUA required in most cases
Topology Hiding

- INVITE before topology hiding

INVITE sip:calle@u2.domain.example.com SIP/2.0
Via: SIP/2.0/UDP p3.middle.example.com;branch=z9hG4bK48jq9w174131.1
Via: SIP/2.0/UDP p2.example.com;branch=z9hG4bK18an6i9234172.1
Via: SIP/2.0/UDP p1.example.com;branch=z9hG4bK39bn2e5239289.1
Via: SIP/2.0/UDP u1.example.com;branch=z9hG4bK92fj4u7283927.1
Contact: sip:caller@u1.example.com
Record-Route: <sip:p3.middle.example.com;lr>
Record-Route: <sip:p2.example.com;lr>
Record-Route: <sip:p1.example.com;lr>
Topology Hiding

- INVITE after topology hiding

```plaintext
INVITE sip:callee@u2.domain.example.com SIP/2.0
Via: SIP/2.0/UDP p4.domain.example.com;branch=z9hG4bK92es3w230129.1
Contact: sip:caller@u1.example.com
Record-Route: <sip:p4.domain.example.com;lr>
```
Topology Hiding in FreeSWITCH

• FreeSWITCH is a B2BUA

• Header manipulation using SIP dialplan variables

• Do not enable SDP pass-thru (bypass_media=true)
Topology Hiding Cons

• It is a B2BUA!

• Breaks end to end security mechanisms such as RFC 4474

• Obviously no difference from a MITM attack
Media Traffic Management

• SBC may modify SDP to stay in media path
• Operators enforce the use of certain codecs
• Single point for audition (ie Lawful Interception)
Media Traffic Management

• SDP before media management

```
v=0
o=owner 2890844526 2890842807 IN IP4 192.0.2.4
c=IN IP4 192.0.2.4
m=audio 49230 RTP/AVP 96 98
a=rtpmap:96 L8/8000
a=rtpmap:98 L16/16000/2
```
Media Traffic Management

- SDP after media management

```
v=0
ox=owner 2890844526 2890842807 IN IP4 192.0.2.4
c=IN IP4 192.0.2.4
m=audio 49230 RTP/AVP 96
a=rtpmap:96 L8/8000
```

- Session attribute removed enforcing a policy
Media Traffic Management

• Allows operators to use different billing model according to the media type (Voice, Video, Text)

• Fix ‘lost’ or ‘ignored’ BYE issue

• QoS based routing
Media Traffic Management in FreeSWITCH

- Flexible codec configuration in SIP profiles or dialplan
- Media timeout via SIP profile configuration or channel variable “rtp_timeout_sec”
- Flexible SDP manipulation thru variables
Media Traffic Management in FreeSWITCH

• Set codec preferences

```xml
<action application="set" data="absolute_codec_string=PCMU,G722"/>
<action application="bridge" data="sofia/gateway/myprovider/123456"/>
```

• SDP manipulation

```xml
<action application="export" data="sip_append_audio_sdp=a=fmtp:18 annexb=no"/>
<action application="bridge" data="sofia/gateway/myprovider/123456"/>
```
Media Traffic Management in FreeSWITCH

- Use record_session for local recordings

- Use oreka_record to send media to recording server (pending merge on official git repo)
 - git@github.com:moises-silva/freeswitch.git
Media Traffic Management in FreeSWITCH

- SIP UA → FreeSWITCH
- G.722
- FreeSWITCH → G.729
- G.711 → Oreka Recording Server (orkaudio)
- Oreka Recording Server (orkaudio) → SIP UA
Media Traffic Management Cons

• Increase length of media path

• SBC must be aware of all types of media, slowing adoption of new media features
Fix Capability Mismatches

• Allow interconnection of user agents with different capabilities (ie: codecs)

• IPv4 to IPv6 internetworking

• SIP over UDP to TCP etc
Fix Capability Mismatches in FreeSWITCH

• Virtually every codec in the industry
• HD voice codecs such as G.722 and Siren 7
• Hardware transcoding available
Fix Capability Mismatches in FreeSWITCH

• SIP over UDP/TCP/TLS

• IPv4 and IPv6 support
Fix Capability Mismatches

SIP UA → FreeSWITCH → PRI GW

G.729 / TLS / IPv6 → G.711 / UDP / IPv4
SIP NAT

• Detect when a UA is behind NAT
• Help maintain NAT bindings alive
• Provides a publicly reachable IP address
SIP NAT in FreeSWITCH

- Automatic RTP adjustment when media comes from different address than advertised on SDP
 - Aggressive NAT detection
 - STUN and ICE support
Access Control

• It’s all about control, yes, sys admins are control freaks

• The network edge of the operator or enterprise is a convenient place to enforce policies

• All SIP and RTP traffic to/from a single point (the SBC)
Access Control in FreeSWITCH

• Flexible ACL configuration available

• `mod_limit` for call rate and general resource limiting per IP or ‘realm’

• Distributed limits across servers
Protocol Repair

• The world isn’t perfect, broken devices are everywhere

• Not feasible to throw all broken equipment to the garbage (that’d be too easy wouldn’t it?)
Protocol Repair in FreeSWITCH

• Allows matching and fixing of SIP header values

• Allows modifying SDP contents

• Not always possible, SIP stack may discard messages if deemed malformed (ie FUBAR)
Media Encryption

• Desirable to perform encryption on public network

• Internal network may need un-encrypted media (ie, lawful interception, endpoints without SRTP support)
Media Encryption in FreeSWITCH

- TLS / SRTP support
- ZRTP / SRTP support
Threat Protection

- DoS
- Malformed and/or malicious packets
- SIP REGISTER scans (ie: sipvicious)
- SIP INVITE scans
Threat Protection for FreeSWITCH

- DoS limitation using iptables hashlimit (Kristian’s famous script)

- iptables hashlimit does not work on TLS obviously

- iptables hashlimit does not help with malformed packets
Threat Protection for FreeSWITCH

- Fail2ban for registration scans
- Depends on log line format, good enough?
- mod_fail2ban makes things easier (by kyconquers on github)
Threat Protection

• Use SIP ACLs

• Even trusted networks can become compromised

• IP spoofing on UDP traffic makes things complicated
Sofia Limits

- Extension to mod_sofia to specify SIP message limits, per host optionally (no ACL yet 😞)

- Uses mod_hash (or any limit interface) to keep track of messages

- Launch ESL event when limit is exceeded

- Malformed packets are accounted for as well
Sofia Limits

```xml
<profile name="external">
  <settings>
    <!-- settings here -->
  </settings>
  <limits>
    <!-- 100 requests per minute coming from any host -->
    <request-rate host="ANY" method="ANY" rate="100/60" />
    <!-- 1 REGISTER per minute coming from any host -->
    <request-rate host="ANY" method="REGISTER" rate="1/60" />
    <!-- 30 INVITEs per second coming from 10.1.1.1 -->
    <request-rate host="10.1.1.1" method="INVITE" rate="30/1" />
    <!-- 1 malformed message per minute -->
    <request-rate host="ANY" method="MALFORMED" rate="1/60" />
  </limits>
</profile>
```
Conclusion

- Yes, SBCs get in the way, and that’s a useful and desirable feature in some businesses.

- FreeSWITCH core foundations go a long way in implementing most common SBC features.
THANK YOU.