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Abstract

In this paper, the design of a distributed Proxy/Registrar
based on Distributed Hash Tables is discussed. Three im-
plementations, relying on OpenChord and Bamboo, are pre-
sented, and two of them are thoroughly tested in registration
and call scenarios. In a distributed configuration with load-
balancing, this distributed Proxy/Registrar manages to han-
dle 1,500+ REGISTER requests per second and 700+ call
attempts per second. These performance show that P2PSIP
is a valid option for large, decentralized set-ups.

1. Introduction

The fast and still growing success of Skype showed
that an (almost) fully decentralized VoIP system [1] is
technically implementable and economically viable. That
brought the SIP/IETF community to wonder whether it can
come up with a similar successful, but open, protocol for
Peer-to-Peer Internet Telephony based on the Session Ini-
tiation Protocol (SIP) [11] and simultaneously decentralize
standard client/server SIP.

A new IETF Working Group (WG) has therefore been
initiated for that project under the name “P2PSIP”. P2PSIP
will use a supernode-based architecture. Therefore a set of
two protocols is currently under specification: the P2PSIP
Peer protocol and the P2PSIP Client protocol, the second
being a subset of the first. The P2PSIP Peer protocol will
be used between the P2PSIP overlay peers, these peers
are the ones that take part to the distribution of data. The
P2PSIP Client protocol will be used by peers prevented
from participating to the overlay due to computing and/or
connectivity limitations (portable devices, disconnected
environments, etc.).

This paper starts by presenting how data distribution
works in a P2PSIP environment. Section 3 introduces the

generic design of a distributed Proxy/Registrar as a SIP
Servlet [4] and quickly lists the different implementations
that have been realized so far. The performance tests of
these Servlets and their results are presented and discussed
in Section 4. Finally, the last section is devoted to conclu-
sions.

2. Distribution in P2PSIP

Some argued that P2PSIP’s main goals, namely dis-
tributing information among the nodes and decentralizing
SIP, could be implemented using existing DNS extensions
(such as mDNS, dynamic DNS, etc.). This has been
(longly) discussed and due to some use cases, especially
the ones involving disconnected environments, the forming
WG clearly stated that P2PSIP would not be built upon
DNS but would rather most likely be using a Distributed
Hash Table (DHT) to distribute the information among the
participating peers. This statement has been confirmed in
the WG Charter [8] approved by the Internet Engineering
Steering Group (IESG) at the end of February 2007 when
the WG has been officially established. The WG will
choose a specific DHT algorithm that will be required
in any P2PSIP implementation but will allow additional
algorithms, to be regarded as optional.

The main DHT algorithms are Chord [15], Pastry [12],
CAN [9], Tapestry [16], Kademlia [6], Bamboo [10]. In
their own way, they all map data identified by a key to a
node participating to the DHT and maintain the structure of
the DHT itself based on the nodes joining and leaving the
network overlay. Some algorithms like Bamboo implement
the data storage itself while others like Chord just handle
the mapping. A short comparison of the major DHT
algorithms is presented on Table 1 whereN stands for the
number of nodes in the DHT andd represents the size of
the CAN hyperspace.

A DHT is similar to a hash table, the main difference
being that the data is stored on the various nodes forming



Algorithm
Lookup
perfor-
mance

Pros Cons

Chord O(log N) simplicity rely on
application
for replication

Pastry O(log N) network
locality

parameters to
tune

CAN O(dN
1

d ) complex
underlying
geometry

Tapestry O(log N) network
locality

complicated
design

Kademlia O(log N) XOR
symmetric
metric

no explicit
key removal

Bamboo O(log N) enhancing
Pastry

features to
choose

Table 1. Comparison of major DHT algorithms

the DHT overlay. An unique identifier is attributed to
each node. These identifiers should be assigned as most
uniformly as possible in the identifier space in order to
efficiently distribute the information. Basically, a DHT
stores(key, value) pairs. The key is used to determine
the pair identifier (usually computing a hash of the key);
this pair identifier resides in the same space as the node
identifier. The pair identifier is then used to determine on
which node the pair should be stored. Also, a DHT has to
cope with the arrival, departure or failure of a node. In each
DHT algorithm, a node maintains information about some
of its “neighbor” nodes in order to help inserting a new
node into the overlay, to allow a node to leave or to detect
failure and react accordingly. The fact that any node can
leave the overlay without previous notification can lead to
data loss. To avoid such loss, most DHT implementations
provide some fault tolerance mechanisms. Fig. 1 shows a
generic representation of a DHT identifier space.

The basic usage of a DHT in P2PSIP is to store the
address bindings of an address-of-record (AOR), hence
achieving the distribution of the Registrar and Location
servers of standard client/server SIP set as one of the main
goals of P2PSIP. Fig. 2 shows such usage on top of a generic
DHT ring. Other usages of the DHT in P2PSIP are dis-
cussed too, such as storing voice mail, service information,
etc.
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Figure 1. Distributed Hash Table (DHT)
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Figure 2. DHT usage in P2PSIP

3. P2PSIP Servlet

The P2PSIP Servlet is a SIP Servlet [4] providing the
functionality of a distributed Proxy/Registrar. In such a
distributed deployment, the client shall not be aware that
the Proxy/Registrar is distributed. It has just to send its
requests to one of the participating servers.

The proposed implementation is an abstract class that
needs to be derived to support a specific DHT implemen-
tation. It has been required that it would support Java and
be asynchronous, so as to fit in the testing environment
of a third party. Given these requirements, a thorough
evaluation of the existing implementations of the major
DHT algorithms in view of their insertion into the P2PSIP
Servlet class lead to the implementation and test of three
instances. Those instances are mono-threaded and rely
exclusively on asynchronous calls and callbacks.

The first one is based on OpenChord [7]. OpenChord is
a Chord implementation that provides both a synchronous
and an asynchronous Application Programming Interface
(API), it supports generic keys and data and provides an



application layer handling storage of the data. The second
implementation uses Bamboo as DHT layer with some
minor modifications regarding time-to-live (TTL) handling.
Bamboo has been designed to support low-latency under
very high churn rates and reliable, high-performance
storage with lowget latencies. The last P2PSIP Servlet
implementation is based on David A. Bryan’s draft [2]
(which, itself, uses techniques from Chord) with some
minor modifications when handling peer failure. However,
only the OpenChord and Bamboo implementations are
fully tested in the next section, as the third P2PSIP Servlet
implementing David A. Bryan”s draft could not be fully
deployed in the tested scenarios.

In this P2PSIP Servlet environment, the protocol used by
the DHT implementation can be considered as the P2PSIP
Peer protocol and SIP as the P2PSIP Client protocol. How-
ever, this comparison is not fully compliant with the WG
Charter [8] since SIP is not a subset of the protocol used by
the DHT implementation.

4. Performance evaluation

4.1. Testing environment

Several tests were performed, in order to determine the
maximum load that the P2PSIP Servlet could support. Each
test was based on two scenarios:

• a simple registration scenario: aSIPp[14] process sim-
ulates an UAC that successfully registers (without au-
thentication) to the Registrar. This Registrar is either a
specific node or the P2PSIP overlay. Fig. 3 details the
callflow which is based on the one presented in sub-
section 2.1 of [3]. This scenario was run using a list
of 150,000 distinct AORs.

200 OK

REGISTER

UAC Registrar

Figure 3. Registration scenario flow diagram

• a basic call scenario: aSIPpprocess simulates a call
from an user to another user simulated by anotherSIPp
process. This call is proxied through the distributed
Proxy/Registrar. The callflow detailed on Fig. 4 is
taken from subsection 4.2 of [13]. In this scenario,
the caller was calling the same callee every time and
the call was immediately terminated by the caller.

Each test was performed on three configurations:
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Figure 4. Call scenario flow diagram

• Single server, up to several nodes

• Up to five servers, up to two nodes per server, no load
balancing

• Up to five servers, up to two nodes per server, load
balancing between active nodes

In the tests, unless otherwise mentioned, the P2PSIP
Servlets were deployed on dual 3.06Ghz Intel Xeon server
equipped with 3.6Gb of RAM; the SIP traffic was gener-
ated usingSIPp from an other server equipped with two
3.4Ghz Intel Xeon CPUs and 3.6Gb of RAM. Also, all test
servers were connected together on a private gigabit Ether-
net LAN. The overlay was initialized previous to the tests
and remained stable during their execution (no churn).

4.2. Deployment on a single server

In this test, a total of 2Gb of RAM has been dedi-
cated to the deployed P2PSIP Servlets in each scenario and
the requests were automatically load balanced on the nodes.

The results of the registration scenario test are presented
on Fig. 5. The ChordSipServlet showed promising results,
being able to deal with 1,050 REGISTER requests per sec-
ond when a single node was deployed. Unfortunately, this
value dropped to 270 REGISTER requests per second when
a second node was added. This performance loss was likely
due to the exchange of DHT maintenance messages be-
tween the nodes. It even dropped lower when more nodes
are added but the decrease of performance was then mainly
due to the overload of CPUs.

The BambooSipServlet showed poor performance (160
REGISTER requests per second) even decreasing (100 and
40 REGISTER requests per second) when adding nodes.
However, this was not due to the CPUs being loaded. Actu-
ally the CPU load level of the nodes remained low but the
processes were wasting time waiting for I/O accesses.



Since Bamboo uses an on-disk database to store the
(key, value) pairs managed by a node and in order to
confirm that these disk accesses were the performance bot-
tleneck, the same test was performed using a RAMDISK1

as storage space for the database. This test exhibited way
better results (790 REGISTER requests per second with
one node and 690 with two nodes). The performance drop
with four nodes is again explained by the overload of the
CPUs.

As already mentioned, the P2PSIP Servlet implementing
David A. Bryan’s draft could not be tested as extensively as
the two other implementations. The only test that could be
performed was the registration scenario with only one de-
ployed node. This test reached 1,100 REGISTER requests
per second.
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Figure 5. Single server deployment: registra-
tion scenario

In the call scenario (see Fig. 6), the ChordSipServlet
started with very good results but dropped quickly as nodes
were added and CPUs got loaded as in the registration sce-
nario.

Bamboo showed better results, logically getting better
with two nodes since the requests were load balanced be-
tween the two. Performance dropped a bit when four nodes
were deployed because the CPUs got overloaded. This per-
formance drop was a little quicker when the RAMDISK was
not used, due to the concurrent accesses to the disk.

4.3. Distributed scenario

The next tests tried to show the influence of the number
of nodes on the load a P2PSIP Servlet can deal with. The
nodes were deployed on up to five different servers with

1Virtual disk actually using a portion of the computer memoryas stor-
age; this greatly improves performance since RAM is a lot faster than a
hard disk
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Figure 6. Single server deployment: call sce-
nario

one or two nodes per server. All the requests were sent to
the same single node running during all tests.

In the registration scenario, the ChordSipServlet once
again started with very interesting results but dropped
quickly as nodes were added. This test could not determine
if the maximum capacity of a fully deployed Chord overlay
was reached as the values kept dropping (see Fig. 7).

At the opposite, Bamboo quickly found its cruise rhythm
oscillating between 100 and 200 REGISTER requests per
second and almost 700 requests per second when using a
RAMDISK.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

1 2 3 4 6 8 10

R
eg

is
te

r 
re

qu
es

ts
 p

er
 s

ec
on

d

Total number of nodes

ChordSipServlet
BambooSipServlet

BambooSipServlet(ramdisk)

Figure 7. Influence of the amount of nodes:
registration scenario

As shown on Fig. 8, during the call scenario, the Chord-
SipServlet started again with a high number of call attempts
per second (caps) but dramatically dropped when nodes
were added. The reason for the drop to 70 caps could not be



found in the SipServlet behavior and most likely lies within
the OpenChord implementation.

The BambooSipServlet, with or without using a
RAMDISK, oscillated between 300 and 350 caps. The fact
that it only reads one(key, value) pair from the DHT in
this scenario explains that the results are similar when us-
ing a RAMDISK or not.
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Figure 8. Influence of the amount of nodes:
call scenario

4.4. Load balancing the requests

In these last tests, the nodes were deployed on the same
servers as in the previous tests but now the requests were
automatically load-balanced on all the running nodes.

In the registration scenario shown on Fig. 9, the Chord-
SipServlet load capabilities dropped when a second node
was added and were then slowly growing towards its ini-
tial rate. Unfortunately, no value for the deployment with
more than four nodes could be measured because Open-
Chord crashed unexpectedly during each test and at vari-
ous moments. The tests with two and four nodes were al-
ready unstable and the values observed should not be con-
sidered as very accurate. This erratic behavior of the Chord-
SipServlet seemed to be directly related to the OpenChord
implementation. Apparently the stress put on the imple-
mentation was too high. Forensic analysis of log files could
not be realised due to a conflict with the log reporting envi-
ronment. Moreover, switching to the official Chord imple-
mentation in C was not an option as the SipServlet should
run asynchronously in Java.

Once again due to the blocking I/O calls, the Bam-
booSipServlet (without using a RAMDISK) produced poor
performance oscillating between 150 and 210 REGISTER
requests per second. This is really a bad behavior since
the CPU usage is almost the same on every node. This
means that the global CPU usage is rising while the per-

formance remain at the same level, which leads to a waste
of resources.

Finally, using the BambooSipServlet with a RAMDISK
proves to be very efficient and to scale quite well.
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Figure 9. Load balancing: registration sce-
nario

During the call scenario (see Fig. 10), the three P2PSIP
Servlets scaled correctly until more than four nodes were
deployed. With more than four nodes per server, perfor-
mance decreased differently with each implementation. The
performance loss with more than four nodes deployed could
be explained by different factors. The growing signaling
traffic could result in increased latencies. The loss could
also be due to the replication management layer of each
DHT implementation. Moreover, the growing size of the
DHT could result in a longer delay in retrieving the contact
address of the callee from the DHT.

The ChordSipServlet dramatically dropped below 200
caps when six nodes were deployed and then turned out to
cope with more caps than the other deployments afterwards.
At first this could look like a testing error but the test with
six nodes has been performed several times and each time
with the same erratic behavior.

Comparing results from the two distributed configura-
tions, one can notice that the load-balancing enables to
achieve performance results up to three times higher than
without load-balancing for both the registration (compare
Fig. 7 to Fig. 9) and the call (compare Fig. 8 to Fig. 10) sce-
narios. As the last configuration is the most realistic with
respect to a real life deployment of a basic P2PSIP scenario
(with only a few deployed nodes), P2PSIP hence appears as
a real option for large, decentralized deployments.

Table 2 summarizes the results of this section for the
registration scenario with a specific set-up, namely two
deployed nodes. As expected the distributed configura-
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Figure 10. Load balancing: call scenario

tion with load-balancing achieves the best performance.
Comparing DHTs Bamboo with RAMDISK doubles up
the number of REGISTER requests processed with Open-
Chord.

OpenChord Bamboo
Bamboo

(RAMDISK)
Single server 270 100 690
Distributed 540 180 730

Load-balanced 590 180 1130

Table 2. Summary of registration scenario re-
sults with two deployed nodes

5. Conclusion

In this paper, the concept of a distributed Proxy/Registrar
based on a DHT has been demonstrated, and promising
performance results have been shown. With load-balancing
enabled, results get even more interesting, such that
P2PSIP turns out to be a real option for large, decentralized
deployments.

However, the performance tests showed that some re-
sults could not be explained by the behavior of the P2PSIP
Servlet but were related to the underlying implementation
of the DHT. When OpenChord’s performance dropped
down or when it started to crash randomly, some limitations
of the implementation could have been reached. This
points out the fact that in order to get optimal performance,
a P2PSIP implementation should have a tight control and
a thorough knowledge of the DHT implementation it is
relying on.

Finally, since the distribution in P2PSIP makes use of
storage and network bandwidth of the participating peers
and since the messages can be relayed by one or more peers

before reaching its final destination, there are security is-
sues that need to be addressed. The main security issues are
nicely summarized in [5]. But these issues are beyond the
scope of this paper, which was only addressing the distribu-
tion system itself.
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