
SIP Server
Technical Overview

NOTICE

© 2004 RADVISION Ltd. All intellectual property rights in this publication are owned by
RADVISION Ltd. and are protected by United States copyright laws, other applicable copyright laws
and international treaty provisions. RADVISION Ltd. retains all rights not expressly granted.
No part of this publication may be reproduced in any form whatsoever or used to make any
derivative work without prior written approval by RADVISION Ltd.
No representation of warranties for fitness for any purpose other than what is specifically mentioned
in this guide is made either by RADVISION Ltd. or its agents.
RADVISION Ltd. reserves the right to revise this publication and make changes without obligation to
notify any person of such revisions or changes. RADVISION Ltd. may make improvements or
changes in the product(s) and/or the program(s) described in this documentation at any time.
If there is any software on removable media described in this publication, it is furnished under a
license agreement included with the product as a separate document. If you are unable to locate a
copy, please contact RADVISION Ltd. and a copy will be provided to you.
Unless otherwise indicated, RADVISION registered trademarks are registered in the United States
and other territories. All registered trademarks recognized.

For further information contact RADVISION or your local distributor or reseller.

SIP Server version 2.0, April, 2004
Publication 1
http://www.radvision.com

http://www.radvision.com

iii

1111 SIP Server Technical Overview
Introduction 1
What is a SIP Server? 1
Registrar Server 3
Redirect Server 4
Proxy Server 6

Stateful and Stateless Proxies 7
Request Validation 10
Address Resolution 12
Determining the Target-set 12
DNS Resolution 13
Stateful Message Forwarding 13
Symmetric Record-Route 18
Loose-Routing 19
Forking 20
Authentication 23
Loop detection and Max Forwards 24
Message Spiraling 25
Outbound Proxy 25
Policy 26

B2BUA 27
Events Server 30

Event Package Name 31
Subscribe Duration 31
Authentication 31

Presence Server 32

CONTENTS

iv RADVISION SIP Server Technical Overview

2222 RADVISION SIP Server Platform
SIP Server Development Challenges 37

Minimizing Development Time and Cost 38
RADVISION SIP Server Platform 38

Standards Compliance 39
Interoperability 40
Robustness 40
Extensibility 41
Flexibility and Customization 41
Performance and Capacity 42
Maintainability 42
Portability 43

SIP Server Platform Capabilities 43
Standards compliance 43
General Capabilities 44
Proxy Capabilities 45
Registrar Capabilities 45
Redirect Capabilities 46
Back-to-Back User Agent 46
Events Server 47
Non-SIP capabilities 48

Application Layout 48
SIP Server Platform Architecture 51

SIP Server Platform Coding 52
SIP Server Platform Package 52

Operating System Support 53
RADVISION Family of SIP Development Solutions 53

SIP Server Technical Overview 1

1
SIP SERVER TECHNICAL OVERVIEW

INTRODUCTION SIP Servers are essential network elements that enable SIP endpoints to
exchange messages, register user location, and seamlessly move between
networks. SIP Servers enable network operators to install routing and security
policies, authenticate users and manage user locations.
SIP Server applications may take many forms, but the SIP standard defines three
general types of server functionality that apply to all—Proxy, Redirect and
Registrar servers. These standard functionalities can be used according to the
needs of the specific implementation. A SIP Server can also function as a
Presence Server or a Back-to-Back User Agent (B2BUA). In addition, since SIP
defines other event types, such as Winfo and Register, a SIP Server may
function as an Events Server for handling the various SIP events.
With the advance of SIP, server logic has become increasingly complex. SIP
Servers need to deal with varying network topologies (such as public Internet
networks, cellular networks, broadband residential networks), complex routing
policies, security and SIP extensions. SIP Servers often need to handle high
message/transaction rates and yield real-time performance and scalability, high
throughput, and low delay. This chapter discusses the protocol aspects of SIP
Server behavior and the usage of the RADVISION SIP Server Platform to
address the challenges of effective SIP Server development.

WHAT IS A SIP
SERVER?

The SIP baseline specification RFC 3261 (previously RFC 2543bis) divides SIP
Server functionality into the following parts:

���� SIP Registrar Server—handles location registration messages.
���� SIP Redirect Server—returns “contact this address” responses.
���� SIP Proxy Server—forwards SIP requests and responses.

2 RADVISION SIP Server Technical Overview

What is a SIP Server?

In addition to the functionality of the above three SIP Servers, the SIP
specification and its related drafts also refers to two other types of SIP Server:

���� Back-2-Back User Agent (B2BUA)—acts as UA server to one
side and as UA client to the other side.

���� Presence Server—provides a Watcher with presence
information of a Presentity, as defined in draft-ietf-simple-
presence-07.txt and in draft-ietf-impp-cpim-pidf-06.txt. Also
provides Watcher information to Presentities, as defined in
draft-ietf-simple-winfo-package-05.txt.

���� Events Server—in this document, the term “Events Server” is
used for the network element, acting as Notifier, which receives
SUBSCRIBE messages for different SIP Event types, such as
Registration and MWI (Message Waiting Indication). This type
of general Notifier functionality is defined in RFC 3265: SIP
Specific Event Notification.

Note The document version number may change as newer versions
are published.

The authors of SIP have made this functional separation for ease of
understanding, and not necessarily as a guideline for implementers. In other
words, it is acceptable to have one “box” do more than just one type of server
functionality. For example, a SIP Server may benefit from having a routing
capability to forward some SIP messages as a proxy and redirect others as a
redirect server. There are existing SIP Server implementations that have a few
types of functionalities in one product running in the same process space, while
others prefer to distribute functionality, with different machines performing
different server functions. In fact, the SIP standard does not prohibit a SIP UA
(endpoint) from having server capabilities, since UAs may redirect requests or
process registrations. It is important to understand that proxy, redirect and
registrar are functionalities that may be put to use in any way that benefits the
application.

SIP Server Technical Overview 3

Registrar Server

The behavior of SIP Servers is discussed in RFC 3261, but you can find more
detailed examples of message flows in “SIP Call Flow Examples” in the
RFC 3665 document draft-ietf-sipping-call-flows-01.txt, found at the IETF site
or one of its mirror sites. (http://www.ietf.org/rfc/rfc3665.txt?number=3665)

Note The document version number may change as newer versions are
published.

REGISTRAR
SERVER

The SIP standard defines a registrar server as “a server that accepts REGISTER
requests and places the information it receives in those requests into the location
service for the domain it handles”. REGISTER requests are generated by clients
in order to establish or remove a mapping between their externally known SIP
address(es) and the address(es) they wish to be contacted at. The REGISTER
request can also be used to retrieve all the existing mappings saved for a specific
address.
The Registrar processes the REGISTER request for a specific set of domains. It
uses a “location service”—an abstract location database—in order to store and
retrieve location information. The location service may run on a remote machine
and may be contacted using any appropriate protocol (such as LDAP). The SIP
standard leaves this decision to the implementation. Some implementations may
co-locate the location service and the registrar server on the same machine.
A registrar server may authenticate incoming REGISTER requests using the 401
(Unauthorized) response.

http://www.ietf.org/rfc/rfc3665.txt?number=3665

4 RADVISION SIP Server Technical Overview

Redirect Server

Figure 1-1 Registration Process

REDIRECT SERVER Redirect server functionality is the simplest of the three functionalities. A
redirect server receives SIP requests and responds with 3xx (redirection)
responses, directing the client to contact an alternate set of SIP addresses. The
alternate addresses are returned as Contact headers in the response message.
Table 1-1 shows the 3xx responses that are currently defined by SIP.

Registrar
Server

Location
Service2: Store

4: Lookup1: Register

5: INVITE
bob@ph12345.

acme.com

Bob
ph1234

Proxy

SIP.acme.com

3: INVITE
bob@acme.com

Alice

5: INVITE
bob@acme.com

SIP Server Technical Overview 5

Redirect Server

In most cases, 301 and 302 responses are used by redirect servers. 300 can also
be used, although it is more ambiguous to the calling client.

Table 1-1 3xx Responses

Response Meaning

300 Multiple Choices The address in the request was resolved to several choices,
each with its own specific location, and the user (or UA)
can select a preferred communication end point and
redirect its request to that location. This status response is
appropriate if the callee can be reached at several different
locations and the server cannot, or prefers not, to proxy the
request
Note: 301 and 302 responses can also contain multiple
Contact address. The difference is that they convey a more
specific reason for the redirection.

301 Moved Permanently The user can no longer be found at the address specified in
the Request-URI (the destination address in the request),
and the requesting client should retry at the new address
given by the Contact header field.

302 Moved Temporarily The user is temporarily available at a different address(es).
The duration of validity of these addresses may be
expressed in the Contact header.

305 Use Proxy The requested destination address must be accessed
through the proxy specified in the Contact field.

380 Alternative Service The call was not successful, but alternative services are
possible. The alternative services are described in the
message body of the response. The use of this response
code is still not defined in SIP and is for future use.

6 RADVISION SIP Server Technical Overview

Proxy Server

Figure 1-2 Request Redirection

The scenario in Figure 1-2 illustrates a redirection scenario. Note that the second
INVITE request is generated with the same dialog identifiers, Call-ID, and To
and From headers as the first INVITE request, but with a different CSeq value.
Redirection allows servers to push back routing information for a request in a
response to the client, thereby aiding in locating the target of the request, while
taking themselves out of the loop of further messaging for this transaction.
Redirect servers typically are not aware of the state of dialogs (calls,
subscriptions), only of the state of the individual transactions they are handling,
making them transaction-stateful elements. Redirection is designed as a simple
and quick procedure, allowing for redirect servers to be highly scalable and to
yield high-performance. Redirect servers are sometimes used as a load
balancing devices.
Redirect servers may request user authentication with the use of the 401
response (Proxy Authentication Required) as explained below.

PROXY SERVER The SIP standard defines SIP proxies as “elements that route SIP requests to
User Agent Servers (UAS) and SIP responses to User Agent Clients (UAC). A
request may traverse several proxies on its way to a UAS. Each will make

UA A UA BRedirect Server

INVITE X

302
Contact: B

ACK

INVITE B

200

ACK

SIP Server Technical Overview 7

Proxy Server

routing decisions, modifying the request before forwarding it to the next
element. Responses will route through the same set of proxies traversed by the
request in the reverse order.”
It is useful to view Proxy Servers as SIP-level routers that forward SIP requests
and responses. However SIP proxies employ routing logic that is typically more
sophisticated than just automatically forwarding messages based on a routing
table. The SIP standard allows proxies to perform actions such as validate
requests, authenticate users, fork requests, resolve addresses, cancel pending
calls, Record-Route and Loose-Route, and detect and handle loops. The
versatility of SIP proxies allows the operator/system administrator to use the
proxies for different purposes and in different locations in the network (such as
edge proxy, core proxy and enterprise proxy). This versatility also allows for the
creation of a variety of proxy policies, such as routing calls only for
authenticated users that have no standing debt to the network service provider
operating the proxy. Proxies can be placed at the network of the service provider
or at the enterprise or SOHO premises. The 3GPP IMS architecture, for
example, uses proxies known as Call State Control Functions (CSCF in 3GPP
terminology) of different kinds for various purposes—as the first hop server that
communicates with the handset; as the element that accesses location
repositories and application servers and triggers services; and as the edge
element that communicates with proxies in foreign networks.
A proxy server is designed to be mostly transparent to UAs. Proxy servers are
allowed to change messages only in specific and limited ways. For example, a
proxy is not allowed to modify the SDP body of an INVITE. Apart from a few
exceptions, proxies cannot generate requests at their own initiative. Therefore a
proxy cannot terminate an existing call by generating a BYE request.

STATEFUL AND
STATELESS PROXIES

The SIP specification defines two types of SIP proxies:
���� Stateful proxy
���� Stateless proxy

STATELESS PROXY

A stateless proxy is a “simple message forwarder”, as described in the SIP
standard. When receiving a request, the stateless proxy processes the request
much like a stateful proxy, however the stateless proxy forwards the message in
a stateless fashion—without saving any transaction context. This means that
once the message is forwarded the proxy “forgets” ever handling this message.
Stateless forwarding allows for improved performance and scalability, but has
some consequences:

8 RADVISION SIP Server Technical Overview

Proxy Server

���� A stateless proxy cannot associate responses with forwarded
requests because it retains no knowledge of the requests it has
forwarded. Therefore, the proxy application cannot know if a
transaction was successful or not.

���� A stateless proxy cannot associate retransmissions of requests
and responses with the previous instance of these messages. It
processes retransmissions exactly as if this is the first copy of
the message it received.

Note Stateless proxies need to use a routing algorithm that always
routes copies of the same message to the same destination. If this
rule is not enforced, a retransmission of an ACK message, for
example, may be routed to a different UA than the one that returned
the 200 response.

���� If the message is lost, the proxy will not retransmit it.
Retransmission is the responsibility of stateful UAs or proxies

Because of their high-throughput capabilities, stateless proxies are often used at
the core of carrier and service provider networks assisting in forwarding SIP
messages on the network. Stateless proxies may also be used as load balancers.
Note that once a proxy decides to return a non-2xx response, the proxy cannot
do this statelessly and has to retain a transaction state.

STATEFUL PROXY

When stateful, the proxy processes transactions rather than individual messages.
The proxy manages two types of transactions—server transactions to receive
requests and return responses, and client transactions to send requests and
receive responses. An incoming request is processed by a server transaction and
then forwarded downstream by one or more client transactions (there may be
more than one in the case of parallel forking, for example). An incoming
response is received by the matching client transaction and forwarded back to
the server transaction. Associating between client and server transactions and
managing the overall state of this request is the responsibility of the Proxy Core
Object (ProxyCoreObj). The ProxyCoreObj chooses the destination address(es)

SIP Server Technical Overview 9

Proxy Server

and instantiates one or more client transaction objects accordingly. The
ProxyCoreObj also collects the responses from the different client transactions
and chooses the response(s) that will be sent upstream via the server transaction.

Figure 1-3 Stateful Proxy Model

A stateful proxy is aware of the state of transactions and message history, and
can therefore perform better-informed processing on incoming messages. For
example, a stateful proxy can identify a retransmission of an incoming message
and forward the message only in situations that require retransmission
forwarding, whereas a stateless proxy cannot identify retransmissions and has to
forward every message it encounters. A stateful proxy can also generate
retransmissions in cases of message loss. In addition, a stateful proxy can locally
process incoming CANCEL requests and generate CANCEL requests as
needed. Forking is also more natural for a stateful proxy (especially sequential
forking).
Statefulness, however, has the following drawbacks:

���� Memory consumption
The stateful proxy retains more memory per processed message
than a stateless proxy, and for a longer duration. This has a
negative impact on the maximal capacity of the proxy and limits
the number of concurrent calls/transactions it can handle.
Certain code optimizations which are SIP-specific can
compensate for this and bring memory consumption to the level
required by high-capacity proxies.

Server
Transaction

Client
Transaction

Client
Transaction

Client
Transaction

Proxy Core Object

INV X

INV Y

INV Z

INV A

response

response

response

"best"
response

10 RADVISION SIP Server Technical Overview

Proxy Server

���� Throughput
A stateful proxy has to spend more CPU cycles on message
processing—mapping messages to transactions, managing
transaction state machines, processing transaction timers and
associating client and server transactions. This extra processing
reduces proxy capacity in terms of performance (maximal
number of processed requests per second). For these reasons,
developing a high-performance stateful proxy has proved to be
non-trivial, and requires special optimizations in the design of
the proxy. The ability to customize and to fine tune the proxy
through flexible configuration is also crucial for achieving high
performance.

���� Implementation complexity
A stateful proxy does more than just forward requests. Certain
logic needs to be employed in order to deal with actions such as
parallel forking (for example, choosing the best response),
CANCEL, recursion on 3xx responses, and handling ACK for
2xx responses. The evolution of the SIP standard introduced
numerous “hard-to-deal-with” special cases for proxies that
require the use of a number of special techniques, such as
storing hashed context information in certain request message
fields and later retrieving the information from responses. All of
these factors make the implementation of the proxy non-trivial
and add special cases that have to be tested.

���� Underlying SIP Stack complexity
A proxy requires certain flexibilities from the underlying SIP
Stack that a UA does not. This is especially true for the
Transport and Transaction layers. This requires the SIP Stack to
be more modular and export more layers of API than a UA-
oriented stack.

REQUEST VALIDATION Before routing a request, a SIP Server (proxy or redirect) needs to validate the
request to make sure it can actually proceed with processing this message. The
message has to pass the following validity checks:

���� Reasonable syntax check
The request must be well-formed enough to be handled by the
server. However, this applies only to specific fields in the
message which the server must process. All other parts should
not be checked or fixed by the proxy.

SIP Server Technical Overview 11

Proxy Server

���� URI scheme check
The URI scheme (for example, “ftp” in ftp:radvision.com) must
be URI scheme the proxy understands and knows how to route.
If not, the proxy must return a 416 (Unsupported URI Scheme)
response.

���� Max-Forwards check
Max-Forwards is a message field that indicates how many more
hops the message is allowed to traverse. Each proxy that
handles the message decrements this number by one (similar to
the TTL field in certain protocols). If the message contains a
Max-Forwards value of zero, the proxy must return a 483 (Too
many hops) response. This mechanism allows preventing a
message from going into an endless loop between a set of
proxies.

���� Loop Detection (Optional)
A proxy may check for loops by executing a loop detection
algorithm on the Via list contained in the message. The proxy
checks that it did not previously handle this message. If it did
previously handle the message, it verifies that the message
contains different values in the fields that influence routing
decisions (such as Request-URI, From and To). If the proxy
identifies a loop condition, it rejects the message with a 482
response code (Loop Detected). This check is now optional
because the Max-Forwards field has become mandatory.

���� Proxy-Require
The client may indicate certain SIP extensions in the Proxy-
Require fields that the proxy must support in order to
successfully handle this request. The proxy must inspect this
field and verify that it supports all the extensions listed in the
field.

���� Authentication
If the SIP Server determines it has to authenticate the originator
of the message, it has to make sure the message contains
credentials that authenticate the user. If the message does not
contain credentials or the credentials failed to authenticate the
user, the proxy may return a 407 response containing a
challenge. The authentication procedure is explained in more
detail in the Authentication chapter.

12 RADVISION SIP Server Technical Overview

Proxy Server

ADDRESS RESOLUTION Once a proxy has validated an incoming request and decided to forward it, it
must determine the destination(s) to which the message is to be forwarded
before sending the messages. The proxy does two types of address resolution:

���� Determining the target-set—the proxy resolves the request SIP
destination address (Request URI) to a set of SIP addresses that
are mapped to it in some way.

���� DNS resolution—the proxy resolves each of the SIP destination
addresses to a transport address of the form:
{transport_protcol, IP address, port}

Note A SIP request may be forwarded to more than one destination address. An
example of such a case is a user that is simultaneously registered at several
locations. In this case, the proxy may decide to fork the request either sequentially
or in parallel.

DETERMINING THE
TARGET-SET

The first process in address resolution, known as obtaining a target-set in the
SIP specification, results in producing a set of SIP addresses. Essentially this
stage maps from SIP address to SIP addresses. (Some addresses in the target-set
may express explicit transport addresses by using the format
sip:user@ip_address;transport=xyz.)
A target-set is obtained in one of two ways:

���� Predefined target-set
This is the simpler case, where the destination address of the
request (Request-URI) is such that the proxy must
automatically forward to the destination address without trying
to resolve to other addresses. One such case is where the
request-URI is in a domain for which the SIP Server is not
responsible. For example, a proxy sip:proxy1.acme.com which
is responsible for the domain acme.com receiving a request for
sip:bob@example.com must proxy the request to
sip:bob@example.com.

���� Target-set determined by proxy
If the target-set is not dictated by the message, the proxy may
employ whatever mechanism it may wish to determine the
target-set. Some options are:
���� Accessing a location service updated by a SIP registrar
���� Reading from a database

SIP Server Technical Overview 13

Proxy Server

���� Consulting a presence server
���� Using other protocols
���� Performing algorithmic substitutions on the

destination address
While the Request-URI is an important factor in determining the target set, the
proxy may also choose to route based on other message fields, or on external
parameters, such as time of day, network and server load.

DNS RESOLUTION Before forwarding a message, the proxy must resolve the message to concrete
transport addresses which it can use in sending the message. Proxies, as other
SIP entities, use the DNS mechanism described in RFC 3263 (SIP: Locating SIP
Servers). Essentially, this is an algorithm that selectively uses SRV, NAPTR, A
and AAAA DNS queries to map a given SIP address to a prioritized set of
transport addresses of the form:
{transport_protocol, IP_address, port}
Using this advanced DNS scheme is recommended, since it allows building
highly available, load-balanced SIP networks with the possibility of dynamic
adjustment through DNS tables.

STATEFUL MESSAGE
FORWARDING

The message flows below illustrate the way a stateful SIP proxy forwards
different types of messages. The term “downstream” means in the direction of
the server (request direction); “upstream” means in the direction of the client
(response direction). For the sake of simplicity, the scenarios show only non-
forking proxies that Record-Route.

14 RADVISION SIP Server Technical Overview

Proxy Server

NON-INVITE REQUEST The scenario in Figure 1-4 shows Non-INVITE Request-Response message
flow through multiple proxies.

Figure 1-4 Non-INVITE Request-Response Message Flow

In the case of non-INVITE requests, such as BYE and REGISTER, proxy
functionality is to forward requests and responses as they arrive. The proxy
processes all final responses (2xx-6xx) the same way. Retransmitted requests are
not forwarded by the proxy, but the proxy may retransmit requests based on its
own retransmission timers. Retransmitted responses are forwarded by the proxy.

INVITE-ACK When processing an INVITE request, a proxy typically responds with a 100
(Trying) response to stop INVITE retransmissions at the previous hop. All
received 1xx (provisional) responses except 100 are forwarded to the previous
hop. If the proxy does not receive a 100, it may retransmit the INVITE request
as necessary.
The scenario in Figure 1-5 shows INVITE-non-2xx-ACK message flow through
multiple proxies.

UA A P1 P2

REQUEST

UA B

REQUEST
REQUEST

2xx/3xx/4xx/5xx/6xx
2xx/3xx/4xx/5xx/6xx

2xx/3xx/4xx/5xx/6xx

SIP Server Technical Overview 15

Proxy Server

Figure 1-5 INVITE-non-2xx-ACK Message Flow

If a non-2xx response is received, the proxy generates the ACK request and
forwards the response upstream. Upon reception of a retransmission of the
response, the proxy will retransmit the ACK request.

INVITE-200-ACK The scenario in Figure 1-6 shows INVITE-200-ACK message flow through
multiple proxies.

Figure 1-6 INVITE-200-ACK Message flow

UA A P1 P2

INVITE

UA B

INVITE

INVITE

3xx/4xx/5xx/6xx

3xx/4xx/5xx/6xx

3xx/4xx/5xx/6xx

ACK

ACK

ACK

100

100

UA A P1 P2

INVITE

UA B

INVITE

INVITE

 200 OK200 OK200 OK

ACK
ACK

ACK

100

100

180 ringing180 ringing180 ringing

16 RADVISION SIP Server Technical Overview

Proxy Server

A 2xx response to an INVITE request presents a special case. For purposes of
call-setup robustness, it was decided that reliability (retransmissions) of 200 and
ACK messages is to be handled end-to-end, rather than hop-by-hop. This means
that upon receiving a 2xx response for an INVITE, the proxy forwards the
message (and possibly any retransmission that follows) in a stateless fashion. It
does not change state in any of its transactions and it does not generate an ACK
request. Only the calling User Agent (UA A in the figure above) is allowed to
ACK a 2xx response. The proxies forward the ACK (and possible
retransmission) also in a stateless fashion. If either the 2xx or the ACK
messages are lost along the way, it is the responsibility of the callee (UA B in
the drawing) to retransmit the 2xx until it receives an ACK. This procedure
assures that a call is established (and media can start flowing) only when both
UAs have completed the handshake.

CANCEL The scenario in Figure 1-7 shows CANCEL processing.

Figure 1-7 CANCEL Processing

UA A UA BP

INVITE B
100

INVITE B

CANCEL

200
(for CANCEL)

CANCEL

200
(for CANCEL)

487

ACK

487

ACK

100

SIP Server Technical Overview 17

Proxy Server

A stateful proxy may choose to generate a CANCEL request for any pending
INVITE request it has previously forwarded (subject to the rules of CANCEL as
defined by the SIP standard). This capability is put to use in parallel forking as
explained later in Parallel Forking on page 21.
A proxy receiving a CANCEL request must try and match it to an existing
INVITE context (ProxyCoreObj) and cancel any pending client transactions
associated with this INVITE, as illustrated in Figure 1-7 above. If an INVITE
context is not found, the proxy must statelessly forward the CANCEL request (it
may have statelessly forwarded the associated INVITE previously).

RECORD-ROUTING The scenario in Figure 1-8 shows message proxying without Record-Routing.

Figure 1-8 Message Proxying without Record-Routing

Record-Routing is a SIP mechanism that allows SIP proxies to request being in
the signaling path of all future requests that belong to this dialog. A proxy
Record-Routes by entering the Record-Route header into the initial dialog-
establishing request (currently, INVITE and SUBSCRIBE). The UAS and UAC
build route-lists based on the Record-Route headers they find in the request and
send each subsequent request with the route list as a set of Route headers.

P did not
Record-Route and
therefore all future

requests will not go
through it.

INVITE

UA A UA BP

INVITE
100

200

200

200

ACK

BYE

18 RADVISION SIP Server Technical Overview

Proxy Server

A proxy that does not Record-Route an INVITE message should not expect to
receive any of the following requests sent as part of the Stack Call-leg, including
the ACK request (as shown in Figure 1-8). Similarly, a proxy that does not
Record-Route a SUBSCRIBE request should not expect to see any of the
NOTIFY requests sent in the context of the subscription. Exceptions to these
rules may arise from the use of outbound proxy or from loose-routing. For more
information, see Loose-Routing on page 19 and Outbound Proxy on page 25.
Proxies should normally Record-Route only requests that set up a dialog
(currently INVITE and SUBSCRIBE). However, a proxy may add a Record-
Route header to any SIP request if it so wishes. SIP UAs do not change their
route-lists based on Record-Route headers in requests other than the initial
INVITE or SUBSCRIBE. It is recommended that proxies avoid adding Record-
Route headers to every request for reasons of processing time and message size.
Selective Record-Routing is highly important because it allows proxies to keep
track of some dialogs for their entire duration, while assisting others only in
their initial setup phase and then removing themselves from loop. This helps
proxies avoid spending resources on routing requests for dialogs that are of no
interest to them.
The Record-Routing mechanism was enhanced and fine-tuned numerous times
during the evolution of SIP in order to cope with various difficult cases. Today a
Record-Routing proxy is required to implement the following functionality:

���� Route information pre-processing
���� Route information post-processing
���� Rewriting Record-Route headers in responses (For example,

the case of a proxy that is routing between different domain
names.)

���� Symmetric Record-Route
���� Loose-Routing

SYMMETRIC RECORD-
ROUTE

In some cases, a request is received in the Proxy on network interface X and
needs to be sent on network interface Y. In such cases, it is recommended that
the proxy adds two Record-Route headers, one for each interface. As result of
such behavior of the Proxy, each of the UAs builds the same Route-List (in the
opposite order), and each of the UAs will send further requests of the session to
the corresponding interface of the Proxy. This also means that the Proxy does
not need to analyze the Record-Route in the response.

SIP Server Technical Overview 19

Proxy Server

LOOSE-ROUTING A Loose-Routing proxy (also known as Loose-Router) is one that follows the
procedures defined for Record-Routing in RFC 2543bis-08 and later. These
procedures allow a proxy to introduce more hops into the route-list regardless of
the final destination of the message. This enables a proxy to route a message
through a pre-defined set of other proxies before reaching its final destination.
Loose-Routing was added to the SIP specification due to requirements set by
wireless 3G standard bodies, such as the 3GPP, in order to allow for “intelligent”
routing of messages between visited and home networks.

RECURSION ON 3XX
RESPONSES

The scenario in Figure 1-9 shows recursion on 3xx Response

Figure 1-9 Recursion on 3xx Response

A proxy, upon receiving a 3xx (Redirection) response, may choose to add the
contact address(es) provided in the 3xx response to the target set and possibly
generate a new copy of the request to this address(es), as illustrated in Figure 1-
9. This process is called recursion on 3xx responses. A proxy may do recursion
on 3xx responses only if the Request-URI of the original request indicates an
address for which the proxy is responsible.

INVITE X

UA A UA BP

INVITE X
100

100

Redirect Server

302
Contact: B

200

ACK

200

INVITE B

ACK

ACK

20 RADVISION SIP Server Technical Overview

Proxy Server

FORKING After processing an incoming request and building a target-set for it, the proxy
may choose to forward the request to multiple addresses. This process is called
forking and a proxy that supports it is called a forking proxy. Forking allows the
implementation of features such as simultaneously searching (ringing) for a user
in multiple UA devices (desktop phone and cellular phone, for example),
finding the first available agent in a call-center, and Forward-on-Busy.
A proxy may choose to fork in several ways:

���� Parallel forking—the proxy forwards copies of the request to
multiple destinations simultaneously.

���� Sequential forking—the proxy forwards the request to one
target address at a time, waiting for a final response (failure)
before moving on to the next address.

���� Mixed forking—the proxy may choose to forward requests to
some target addresses in parallel while doing sequential
forwarding for others.

SIP Server Technical Overview 21

Proxy Server

PARALLEL FORKING The scenario in Figure 1-10 (below) shows parallel forking.

Figure 1-10 Parallel Forking

Parallel forking, as illustrated in Figure 1-10, is a more time-effective way to
search for a user. This is because parallel forking attempts to reach the user in
multiple locations simultaneously. However, parallel forking introduces
additional complexity into the work of the proxy. A parallel forking proxy has to
handle multiple concurrent client transactions and possibly collect multiple final
responses from them. The proxy has to choose the “best” final response and
forward it upstream. Picking the best response is done according to an algorithm
provided in the SIP standard. Some responses have higher preference then
others, and some responses should never be forwarded upstream. For example, a
200 (OK) response is “better” than a 404 (Not Found) response. Upon receiving
a 2xx (Success) or 6xx (Global Failure) response at one of the client
transactions, the proxy has to cancel the remainder of the pending requests
(using CANCEL) and forward the final response upstream.

INVITE X

UA A UA CP1

INVITE B
100

UA B

ACK

200

INVITE C

ACK

The Proxy looks-up X
and obtains two SIP
addresses: B and C.

200

CANCEL

200
(for CANCEL)

487 Request Terminated

ACK

180

22 RADVISION SIP Server Technical Overview

Proxy Server

When parallel forking, a proxy also may have to do aggregation of challenges if
it receives multiple 401 (Unauthorized) or 407 (Proxy Authentication Required)
responses. In this case, the proxy must collect the challenges from all responses
and forward them upstream.
A parallel forking proxy may have to do redirection response aggregation if
multiple 3xx responses are received.

SEQUENTIAL FORKING The scenario in Figure 1-11 shows sequential forking.

Figure 1-11 Sequential Forking

INVITE X

UA A UA CP

INVITE B

100

404 Not Found

UA B

200

ACK

200

INVITE C

ACK

ACK

The proxy looks up X
and obtains two SIP
addresses: B and C.

SIP Server Technical Overview 23

Proxy Server

AUTHENTICATION The scenario in Figure 1-12 shows authentication.

Figure 1-12 Authentication

When a UAC sends a request to a proxy server, the proxy server may decide to
authenticate the originator before the request is processed. The proxy can
challenge the originator to by returning a 407 response (Proxy Authentication
Required) with a Proxy-Authenticate header containing the challenge. The client
can re-send the request with a Proxy-Authorization header which provides the
credentials that match the challenge. A client may provide the credentials also
before being challenged in order to avoid the delay and extra processing of the
407 response (the credentials may be built according to cached challenges).
Both challenge and credentials are built using a cryptographic hash so that
certain values, such as password, are not sent in the clear.
Authentication by proxy is useful for the following:

���� Verifying that the originator of the request is indeed an
authorized user entitled to receive services (avoiding service
theft)

UA A UA BP

100

INVITE B

407
+ challenge

ACK

INVITE B
+ credentials

INVITE B

200
200

ACK
ACK

24 RADVISION SIP Server Technical Overview

Proxy Server

���� Asserting that certain message fields were not altered by a third
party

SIP authentication also allows for multi-level authentication by different proxies
along the signaling path.

LOOP DETECTION AND
MAX FORWARDS

Figure 1-13 shows an example of an illegal loop.

Figure 1-13 Illegal Loop

A loop is a situation where a request that arrives at a proxy is forwarded, and
later arrives back at the same proxy. An illegal loop occurs if the second time it
arrives, the message has the same values in fields that affect the routing decision
(Request-URI and any other fields the proxy may take into account). In this case
the proxy will forward the request the same way it did the first time and every
other proxy along the loop path may do the same. This causes an error condition
where the message is looped through a set of proxies for an undefined number of
times, consuming network and proxy resources, but never reaching its final
destination.
The SIP specification handles loops in two ways:

���� Max Forwards (mandatory)
���� Loop detection (optional)

MAX FORWARDS The Max-Forwards header field serves to limit the number of hops a request can
transit on the way to its destination. It consists of an integer that is decremented
by one at each hop. If the Max-Forwards value reaches 0 before the request
reaches its destination, it will be rejected with a 483 (Too Many Hops) error
response. The default initial value for Max-Forwards is 70.

P1 P2

INVITE bob@P2INVITE bob@P1

INVITE bob@P1

Illegal Loop

SIP Server Technical Overview 25

Proxy Server

This solution requires minimal processing by proxies and UACs, but has the
disadvantage of stopping the loop only after the message has been forwarded
enough times to exhaust the Max-Forwards value (70 hops by default).

LOOP DETECTION A proxy can optionally check for loops by employing a special loop detection
algorithm. The algorithm affects the way the proxy builds the Via-branch field
and mandates the proxy to do certain validations of the Via list in incoming
requests. Loop detection requires some extra processing per message, but
guarantees immediate detection of the loop as the proxy receives the message
for the second time.

MESSAGE SPIRALING Figure 1-14 shows an example of message spiraling (Legal Loops).

Figure 1-14 Spiral Example

A spiral is a SIP request that is routed to a proxy, forwarded onwards, and
arrives once again at that proxy, but with a different set of values in the fields
that affect the routing decision. The proxy will route the spiraled request to
different target addresses the first and second time it processes it, therefore an
endless loop is not created. A spiral is not an error condition, unlike a loop.
Identifying spirals and telling them apart from loops presents a challenge for
loop-detecting proxies and requires the use of special techniques.

OUTBOUND PROXY Outbound proxy is a proxy that receives requests from a client regardless of the
destination of the messages (Request-URI) the client is sending. Simple clients
may choose to send every outbound message via an outbound proxy. Typically,
a UA is manually configured with an outbound proxy, or can learn about one
through auto-configuration protocols.

P1 P2

INVITE bob@P2INVITE bob@P1

INVITE robert@P1

26 RADVISION SIP Server Technical Overview

Proxy Server

Outbound proxies are important because they allow the creation of simple UAs
that do not have to be concerned with making routing decisions and DNS
queries. This is especially important in wireless devices which typically have
limited capabilities and resources but may roam to foreign networks.
A proxy that is suitable for use as an outbound proxy is one that is willing to
accept requests even though they are not intended for its domain and that do not
belong to a dialog that it has Record-Routed.

POLICY As explained above, SIP Servers have a wide array of possible ways to handle
incoming messages. A SIP Server has the freedom to make the following
decisions:

���� Where to route the request and based on which location
information source (location service/database/presence info/
other)

���� Proxy/Redirect/Reject
���� Stateful/Stateless forwarding
���� Record-routing
���� Forking—parallel/sequential/none
���� Authentication
���� Loop detection

These decisions can be made based on many factors, such as:
���� Message destination address (Request-URI)
���� Domain(s) managed by this server
���� Type of request (method)
���� Other message fields: From, To, Date, Priority …
���� External parameters, such as time of day

In this document, the collective set of rules that govern proxy routing decision
making is called Server Policy. Server Policies are typically set by the service
providers or administrators that install and configure the SIP Servers.
Because of the large number of input variables and output decisions that are
available for Server Policies, SIP Servers are highly versatile and flexible
elements. This is of key importance for deployment of SIP-based networks.
Server Policy can be as complex or as simple as required by network topology,
user profiles, traffic load, security risk levels, and other factors specific to the
environment in which the server operates.
Below are examples of some simple policies that may be employed by proxies:

SIP Server Technical Overview 27

B2BUA

���� Forward all requests targeted to domain acme.com based on
location service records. Redirect all other requests to
sip:routing_proxy.sp.com

���� Authenticate all incoming INVITE messages except those
intended for 911 emergency services

���� Statefully forward (and fork if necessary) requests with
destination address sip:bob_smith@acme.com, unless they are
from sip:alice_smith@worldcom.com, in which case forward to
sip:bob_smith@voicemail.acme.com.

���� Switch from stateful to stateless forwarding modes when
system resources are low.

B2BUA In addition to Proxy, Registrar and Redirect servers, the SIP specification also
defines a fourth type of server—Back-2-Back UA (B2BUA). A B2BUA is a
logical entity that receives a request, processes it as a User Agent server (UAS)
and, in order to determine how the request should be answered, acts as a User
Agent client (UAC) and generates requests. A B2BUA must maintain call state
and actively participate in sending requests and responses for dialogs in which it
is involved. The B2BUA is similar in many ways to a Proxy server, but has
tighter control over the dialog and does not have the limitations of the SIP
standard on the Proxy (for example, a Proxy cannot disconnect a call or alter the
messages). While handling request and response messages, the B2BUA
forwards requests and responses at a dialog level from side to side. In some
respects, a B2BUA is similar to an H.323 gatekeeper in routed mode.
RFC 3261 does not define special functionality for B2BUA, but rather defines it
as a concatenation of a UAC and UAS.
Figure 1-15 illustrates a common dialog creation scenario.

28 RADVISION SIP Server Technical Overview

B2BUA

Figure 1-15 Dialog Creation

Since a B2BUA acts as a UAS to one side and a UAC to the other side, it has
tight control over the call. A B2BUA hides the identity of the initiator of the call
from the destination and enables header modification and SDP manipulation
(codecs, media IP+Port, an so on). In addition, it is preferable that B2BUA
implementation allows the application to initiate actions, such as disconnecting
one side of the dialog and even initiating a dialog to one side. Such B2BUA
capabilities allow it to act as a Third Party Call Control (3PCC), as defined in
draft-ietf-sipping-3pcc-06.txt.
Figure 1-16 illustrates a B2BUA that acts as a 3PCC according to Scenario 4 of
this draft. This scenario is recommended for cases in which it is not clear that
UA A will immediately answer the call, as would happen if this UA is an
automatic machine. If UA A is not such a machine, UA B may timeout waiting
for the ACK with SDP 2’. The B2BUA cannot send this ACK to UA B before
UA A answered with the 200 OK including SDP 2.
This scenario also has some drawbacks, as specified in the draft.

UA A UA BB2BUA

INVITE B

100 Trying

ACK

180 Ringing

INVITE B

100 Trying

180 Ringing

200 OK

200 OK

ACK

Media

SIP Server Technical Overview 29

B2BUA

Figure 1-16 3PCC

A B2BUA is beneficial to environments with one or more of the following
requirements:

���� Having the network initiate dialogs or modifying a dialog state.
���� Having the network disconnect calls (for example if the caller

runs out of pre-paid minutes) or modify calls (for example
changing codecs in a call setup process or during a call session).

���� Having Third Party Call Control (3PCC) for connecting a call
between two UAs by a controller.

���� Giving the network tight control over Class 5 features (PBX
functionality).

���� Having the network change messages in some way that is
forbidden in a SIP Proxy (modify/add/remove headers or body,
encrypt/decrypt the message or parts of it, compression, and so
on).

���� Hiding the users or network that is “behind” the SIP Server.

UA A UA BB2BUA

INVITE (no media lines in SDP)

200 OK (no media lines in SDP)

ACK

INVITE (SDP 1')

INVITE (no SDP)

200 OK (SDP 1)

ACK (SDP 2')
200 OK (SDP 2)

Media

ACK

30 RADVISION SIP Server Technical Overview

Events Server

���� Keeping close track of a dialog state (for example, for billing
purposes).

���� systems.
Some of the applications that require B2BUA functionality are:

���� 3G Call State Control Functions (CSCF)—the 3GPP has
defined 3 types of CSCF proxies that act as a B2BUA in some
functions

���� Implementation of IP PBX services in the network
���� Call Center applications
���� Service Creation Platforms
���� FW/NAT Application Level GW (ALG) or FW/NAT traversal

system in DMZ
Providing such tight control requires call-stateful implementation as in PSTN
switches. The consequences are:

���� Retains more state (memory per call) therefore has lower
capacity and scalability compared to a Proxy server.

���� Call establishment/tear down processing is more complex,
therefore the maximal performance (CPS) is lower.

���� Breaks SIP End-to-End architecture and therefore S/MIME will
not work.

���� Unlike a Proxy, a B2BUA is a single point of failure, therefore
it is highly recommended to add high-availability to such
B2BUA is a natural addition to a SIP Server, since it completes
the set of standard server functionalities and provides
functionality that is much needed by many types of server
applications.

EVENTS SERVER An Events Server is a general implementation of specific event notification, as
discussed in RFC 3265, and provides a complete implementation of a Notifier.
This RFC defines a general, SIP-extensible framework that allows an entity to
subscribe for notifications on the state change of other entities. The Notifier in
this architecture is responsible for receiving the SIP SUBSCRIBE request,
validating it, and creating a subscription object that also includes the Event
package name and the event header ID parameter if one is present. Additionally,
the Notifier is responsible for collecting the resource state and sending NOTIFY
messages to the Subscribers. The Notifier may involve other entities (some not

SIP Server Technical Overview 31

Events Server

in the scope of SIP) to collect resource state information. Validation of a
SUBSCRIBE request should be an automatic function that does not require user
input, since non-INVITE transactions are limited by Timer F with a duration of
64*T1 (default T1 is 500ms according to RFC 3261). The validation of a
SUSCRIBE request may include the following:

EVENT PACKAGE
NAME

The Notifier may return a 489 (bad event) response if it does not understand the
event package that was specified in the Event header value, or is not capable of
processing this event package. The Notifier may also create a subscription and
return 200 (OK) or 202 (accepted) according to its policy if it cannot
immediately determine its ability to process the event package. (For example,
when user input is required or other entities need to be involved in such
processing).

SUBSCRIBE DURATION The Notifier may check that the Expires header value is not too short. If it is too
short, it may return a 423 (interval too small) response according to the rules
specified in RFC 3265. This response will contain a Min-Expires header to
notify the subscriber about the minimum expected duration of the subscription.

AUTHENTICATION The Notifier may also choose to perform authentication and authorization
according to the application policy. This is an action usually recommended,
given the information that is provided in the NOTIFY body.
After the subscription was validated and a subscription object was created, the
Notifier must send a NOTIFY message. The message may contain a body
expressing the current state of the resources, according to the event package that
was processed and according to the application policy. SIP uses this mechanism
for the implementation of various functionalities and defines various event
packages in related drafts and RFCs. Examples of such event packages are:

���� Presence—provides information about the willingness and
ability of a user to communicate with other users on the
network.

���� Winfo—the set of users subscribed to a particular resource for
a specific event package, and the state of their subscriptions is
called Watcher information (Winfo). A user can subscribe to be
notified about the subscription state of such users. This package

32 RADVISION SIP Server Technical Overview

Presence Server

is a template package and can be implemented with any event
package of the foo.winfo template (where “foo” can be any SIP
event package) including presence.winfo, or winfo.winfo.
For example, a Presentity that subscribes to its Presence
Watcher information will receive notifications about Watchers
subscribing to their Presence status and when their subscription
status changes.

Using this general framework of an Events Server, servers can be built to handle
specific event packages, such as a Presence Server.

PRESENCE SERVER Presence is a service that allows a party to know the ability and willingness of
the other party to participate in a call even before the call attempt is made. A
user interested in receiving presence information (a Watcher) for another user
(Presentity) can subscribe to his/her presence status and receive Presence status
notifications from the Presence system.
The IETF SIPMPLE WG is developing a set of specifications for the
implementation of a Presence system using SIP. They are working within a
general IETF requirements framework for Presence and IM, which is called
Common Presence and Instant Messaging (CPIM).
According to SIMPLE, the Presence system is composed of these components:

���� One or more Presence User Agents (PUA)—these are the client
devices/software the Presentity uses and that collects Presence
data (for example, phone, cell-phone, PDA, soft PC client, and
geo-location system).

���� One or more Presence Agents (PA)—this is a new type of SIP
entity. The PA is responsible for:
���� Receiving and handling Presence subscriptions from

Watchers.
���� Receiving and aggregating Presence data from the

PUAs (either through SIP or via other means).
���� Composing the Presence status from the fragments of

presence data.
���� Notifying all subscribed Watchers when the Presence

status of a Presentity in which they are interested
changes.

���� SIP Proxies—forward Subscription requests and notifications
between the Watcher and Presence Agent (basically regular
proxies that are not aware of Presence).

SIP Server Technical Overview 33

Presence Server

���� Presence Server—a physical entity that processes SUBSCRIBE
requests either as a presence agent (and handles them locally) or
as a proxy (and forwards them to other entities)

SIMPLE defines a general type of server called Presence Server (PS) which can
act either as a PA or a Proxy, as needed. Essentially this is a Proxy which also
has PA capability.
Figure 1-17 illustrates a common Presence implementation, Presence entities
and the relation between them in the network.

Figure 1-17 Presence Topography

WatcherPresentity

Presence
UAs

agger-
gation

Subscription

Presence Status
Notificatios

Presence
Agent

Presence
Data

34 RADVISION SIP Server Technical Overview

Presence Server

Figure 1-18 illustrates a common scenario between Watchers, Presentities and
the Presence Agent.

Figure 1-18 Watchers, Presentities and Presence Agent

Multiple Watchers can subscribe to receive updates of the status of the
Presentity. Each subscription will result in a NOTIFY message generated by the
Presence Agent to report an active subscription. The Presence Agent will
generate the status information of the Presentity from different sources
(REGISTER messages sent by the Presentity, PUBLISH message, or any other
source of information not necessarily in the scope of SIP). A change in the status
of the Presentity will result in the generation of a NOTIFY message by the
Presence Agent to all Watchers according to application policy.
Both a Subscriber (Watcher) and Presence Agent can terminate
(un-SUBSCRIBE) a subscription. A Subscriber can send a SUBSCRIBE within
the dialog with an Expires header of zero. (An Expires header indicates the
duration of the subscription). This causes an immediate termination of the
subscription. The Presence Agent then generates a NOTIFY request with the

SUBSCRIBE

200 OK

NOTIFY

200 OK

Update Presence status

200 OK

NOTIFY

Update Presence status

NOTIFY

200 OK

un-SUBSCRIBE

200 OK

Status Update
of Presentity

un-Subscribe

Subscribe
Active

UA (Watcher) Presence Agent Presentity

SIP Server Technical Overview 35

Presence Server

most recent state. This, in fact, is a way of retrieving Presentity status without
actually subscribing to the Presence Agent, and is referred to in the Standard as
a Fetcher or Poller.
The Presence Agent can terminate the subscription by sending a NOTIFY
request with a Subscription-State header, indicating that the subscription has
been terminated.

36 RADVISION SIP Server Technical Overview

Presence Server

RADVISION SIP Server Platform 37

2
RADVISION SIP SERVER PLATFORM

SIP SERVER
DEVELOPMENT
CHALLENGES

With the world-wide adoption of SIP, numerous vendors, research organizations
and academic institutions are choosing to develop their own SIP servers. While
no two SIP server projects are exactly alike, the set of requirements put forward
by customers are often the same. RADVISION has identified the following as
key technical requirements for a SIP server project:

���� Standards compliance
���� Interoperability
���� Robustness
���� Extensibility
���� Flexibility and customization
���� High performance and capacity
���� Maintainability
���� Portability

Often SIP servers replace or supplement telephony switches and private branch
exchange (PBX) systems so customer requirements are especially strict. Failing
to fulfill some or all of these requirements presents a major risk to the
commercial success of the product. For example, shipping a non-standard or
non-interoperable SIP server may result in lost accounts or in having to do an
overall recall or upgrade.
Naturally the regular project constraints also apply when developing SIP
servers, namely:

���� Minimizing development time
���� Minimizing cost of development

38 RADVISION SIP Server Technical Overview

RADVISION SIP Server Platform

MINIMIZING
DEVELOPMENT TIME
AND COST

The need for a fast and effective development process is clear. Often
development time has a direct affect on time-to-market and the ability to meet
customer deadlines. Development of a SIP Server application typically involves
implementation of these layers:

���� SIP Stack layer—has to have extra flexibility and
customizability in the way transactions are processed because
of the special needs of the proxy and the SIP Server in general.

���� SIP Server layer—implements the standard SIP Server
functionality.

���� Application layer—implements all other aspects of the
application (for example, service engine, billing module and
database access).

Developing all three layers from scratch requires multiple man-years even for a
basic type of SIP Server. Using an existing SIP Stack may save some time, but
only if the SIP Stack was already enhanced to support proxy implementation.
Testing and verifying standards compliance and interoperability are also
resource consuming activities and often require purchasing third-party
equipment for lab testing.
The RADVISION SIP Server Platform was proven to radically shorten
development time and cost. The SIP Server Platform provides the following
functionality with a minimal amount of extra coding:

���� Out-of-the-box complete proxy, redirect and registrar servers
���� B2BUA
���� Events Server (for the implementation of Presence and other

SIP events)
For example, developing a full-featured proxy/registrar/redirect server using the
SIP Server Platform requires as few as two man-months to complete. The SIP
Server Platform allows developers to focus on the differentiating features of the
application they are developing and thus reduce both the time and cost of
development and improve the quality of the product.

RADVISION SIP
SERVER PLATFORM

The RADVISION SIP Server Platform is a comprehensive framework for the
development of any type of SIP Server application. The SIP Server Platform
includes an implementation of fully-standard server functionality that is
controllable through multi-level APIs. SIP Server developers can easily and
seamlessly integrate the SIP Server Platform into their application and
customize it according to project needs, thus adding SIP Server capabilities to
their implementation quickly and effectively.

RADVISION SIP Server Platform 39

RADVISION SIP Server Platform

The SIP Server Platform was designed to specifically address the requirements
listed above. This section explains how.

STANDARDS
COMPLIANCE

Standards compliance is a key requirement for any communication element.
Without it the chances of interoperating with other vendors’ equipment are
small. Assuring compliance with the SIP standards is complex for the following
reasons:

���� Extensive standardization activity
The SIP related working groups (SIP, SIPPING, SIMPLE,
XCON and so on) within the IETF are extremely active. Each
year they discuss many proposed changes and enhancements to
the baseline standard and to its extensions. Researching and
keeping up-to-date with this activity is time consuming and
requires extra resources.

���� SIP still on the move
The SIP standard has evolved and changed numerous times in
the last few years and is still not fully stable. A SIP server that
complies with the standard today is likely to require updates
when future changes in the standard occur. There are two main
reasons for this continuous change:
���� SIP is being adapted to new environments such as 3rd-

Generation (3G) wireless and cable TV networks
���� “Broken” protocol behavior is being fixed.

Changes to fulfill these requirements are not always
backwards compatible.

���� Complexity
The functionally defined in the SIP standard for proxy server,
registrar server, and redirect server is extensive in scope and not
trivial in implementation. A standard SIP server is anything but
simple. Some of this functionality is optional, but the bulk of it
is not. Building a SIP Server from scratch (even with a SIP
Stack in place) is a task that requires careful design and many
man-years in implementation.

RADVISION is a leading VoIP technology vendor and is very active in
researching and shaping the protocols. The SIP Server Platform, as all other
technology products, is kept closely in-tune with the standard, and product
updates are regularly shipped with SIP standard updates.

40 RADVISION SIP Server Technical Overview

RADVISION SIP Server Platform

INTEROPERABILITY Interoperability is a top requirement, especially interoperability with market
leaders equipment. However being standards-compliant alone does not
guarantee interoperability, since different vendors may interpret the standard
differently. Interoperability is mostly achieved through:

���� Implementation philosophy—leniency when processing
incoming messages and strictness when encoding outgoing
messages.

���� Extensive interoperability testing—the most important SIP
interoperabilty venue is the SIP Interoperability Testing (SIPit)
and SIMPLEt events that take place a number of times each
year. In-lab interoperabilty testing is also crucial.

The RADVISION SIP Server Platform is tested on a regular basis in SIPit and
SIMPLEt events where interoperability is verified against dozens of vendors at a
time, including market leaders. In addition the SIP Server is tested for
interoperability in the RADVISION QA lab with equipment bought from select
endpoint and server vendors.

ROBUSTNESS SIP servers are often required to display the same high-level of robustness and
fault tolerance required from high-end telecom and datacom equipment. SIP
servers are expected to run continuously for long periods of time with no restart.
They are expected not to crash even under extreme loads or error conditions.
Robustness is typically achieved through correct design and exhaustive testing.
A SIP server typically needs to undergo different cycles of testing such as load,
stress, and error-condition testing in order to minimize the chances of crashes or
faults at the customer site.
The RADVISION SIP Server Platform is a robust standard implementation. The
robustness of the SIP Server Platform is verified in the following ways:

���� Extensive testing and QA—Each new version of the SIP
Server Platform undergoes extensive testing and QA before
being released to the market.

���� Based on the RADVISION SIP Stack—the SIP Server
Platform is built using the award winning and widely used
RADVISION SIP Stack. The SIP Stack is sold separately as
part of the RADVISION SIP Toolkit package, where it
undergoes independent testing. This dual testing (at Stack level
and at SIP Server level) helps further assure robustness in the
SIP Server Platform.

RADVISION SIP Server Platform 41

RADVISION SIP Server Platform

���� Interoperability testing—when testing interoperability the
robustness of the product is also tested since many crashes
occur due to erroneous protocol implementation by other
vendors. Also, in the SIPit and SIMPLEt events, the SIP Server
Platform typically takes part in advanced server testing which
further aids in detecting and fixing bugs.

���� Used by multiple implementors world wide—the SIP Server
Platform is sold to developers world wide, who typically do
their own system testing in various environments. This helps to
further assure that the SIP Server Platform is fully robust and
stable in any condition.

EXTENSIBILITY SIP is designed for extensibility—the protocol can be extended in many
different ways. The IETF already defined multiple extensions to the baseline
protocol and others are sure to come. The implications on SIP applications are
that any type of SIP element, endpoint or server, needs to be designed with
extensibility in mind. The direct implications on proxy and redirect servers are:

���� The servers must be able to process unknown types of messages
even without understanding the request type (method), response
code, certain headers in the message, or the body of the
message.

���� The servers must be able to process and respond to the Proxy-
Require header.

���� Server design and implementation should allow for future
extensions without requiring major code re-writes. This
typically requires a modular multi-layer design and
implementation.

The SIP Server Platform was conceived and implemented as a development tool
for any type of SIP server. As a result, it can be extended in many ways
including message processing, message structure, state changes, policy and
authentication. Nearly every aspect of the behavior of the server is overridable
and customizable by the application to allow for maximum extensibility.

FLEXIBILITY AND
CUSTOMIZATION

SIP servers may be deployed in different environments which have varying
constraints. The ability to write a server that can be tailored and configured to
match the constraints of a network without code changes is a key advantage. In
many cases network administrators will want to do some of the customization
and fine-tuning on their own at the customer site.

42 RADVISION SIP Server Technical Overview

RADVISION SIP Server Platform

The SIP Server Platform accommodates this requirement through its extensive
multi-level API, its rich set of configuration parameters, and its open and
modular design. Many aspects of server behavior are customizable, such as
domain names, DNS usage, location database access, memory consumption, and
automatic behavior when processing messages. The SIP Server Platform enables
the application to decide on any aspect of message processing, such as routing
decisions, forking, and stateless/stateful authentication. The SIP Server Platform
features multiple levels of APIs and callbacks that enable the application
developer to have fine control even over the most low-level behavior, such as
the order of headers in an outgoing message.

PERFORMANCE AND
CAPACITY

High performance and capacity are prime requirements for carrier-class and
large enterprise types of equipment.
SIP server performance is typically measured in calls per second (CPS),
transactions per second (TPS) or messages per second (MPS). Capacity is
typically measured in maximum number of concurrent transactions (sometimes
called “logical ports”).
The SIP Server Platform is optimized for both types of requirements. It yields
extremely high CPS, TPS and MPS rates (benchmarking documents are
available). This is due to the high performance capabilities of the underlying
Stack as well as to the use of highly efficient ANSI C code in the message and
transaction processing engines inside the SIP Server Platform.
The SIP Server Platform achieves high capacity through tight control over
resource usage, especially memory consumption. The memory consumed by a
transaction in progress is minimal, thus the number of concurrent transactions
that a machine can sustain is high and can be further up scaled by installing
more memory.

MAINTAINABILITY Maintenance is an important (and often costly) phase in the life cycle of any SIP
server application. This is typically due to:

���� Standard changes, which frequently still occur in SIP.
���� Customer requirement changes—most SIP networks today are

still “1st generation” and therefore the customers often do not
have full advanced knowledge of their requirements.

���� Defects and interoperability issues detected in the product.
Using the SIP Server Platform can improve the overall maintainability of the
project and can reduce the time and resources spent on maintenance for the
following reasons:

RADVISION SIP Server Platform 43

SIP Server Platform Capabilities

���� RADVISION does its own maintenance of the SIP Server
Platform including alignment with the latest standards and bug
fixes. These versions are made available to customers under the
maintenance agreement and free them from the need to update
their code with SIP standard changes.

���� The SIP Server Platform is provided entirely in source code for
enhanced readability and has extensive and customizable
logging capabilities for error tracking and debugging. This
makes detecting and fixing bugs related to use of the SIP Server
Platform easier and faster.

���� The SIP Server Platform introduces a layered and object
oriented design that improves modularity and maintainability.

PORTABILITY In some cases, the platform on which the SIP server application runs may
change over time. Being able to port your code to a new operating system or
platform in a fast and straight-forward way is an advantage.
The RADVISION SIP Server Platform is built in a cross-platform way so that
all its code is entirely operating system-agnostic except for an internal operating
system abstraction layer. The SIP Server Platform was already ported to
multiple operating systems (including embedded/RTOS) and is expected to be
ported to others in the future. The API that the SIP Server Platform exposes to
the application is the same regardless of the underlying operating system.
Therefore, migrating to a new operating system does not necessitate any code
changes.

SIP SERVER
PLATFORM
CAPABILITIES

The following sections present the capabilities of the RADVISION SIP Server
Platform.

STANDARDS
COMPLIANCE

The SIP Server Platform complies with the following IETF specifications:
���� RFC 3261—SIP: Session Initiation Protocol (baseline SIP

spec)
���� RFC 3263—locating SIP Servers
���� Draft-ietf-simple-presence-10
���� Draft-ietf-simple-winfo-package-05
���� Draft-ietf-simple-winfo-format-04
���� Draft-ietf-impp-cpim-pidf-05
���� Other specifications—to be announced

44 RADVISION SIP Server Technical Overview

SIP Server Platform Capabilities

GENERAL
CAPABILITIES

The general capabilities of the SIP Server Platform are as follows:
���� TLS—a security protocol that is typically layered on top of

connection-oriented transports, such as TCP. TLS allows client/
server applications to communicate over TCP in a way that is
designed to prevent eavesdropping, tampering, or message
forgery.

���� Persistent Connection—in many cases, a SIP Server can handle
multiple messages, transactions, and dialogs with a single SIP
Server or Gateway and therefore, a single TCP connection can
be reused avoiding TCP handshake overhead (and even more so
in TLS connections).

���� Multi-homed Host—the SIP Server Platform can be configured
to listen to multiple IP addresses and to send a message via a
specific socket. This feature can be used to enable the support
of heterogeneous networks, such as combinations of IPv4 and
IPv6 and different network segments.

���� Symmetric Record-Route—In some cases, a request is received
in the Proxy on network interface X and needs to be sent on
network interface Y. In such cases, it is recommended that the
proxy adds two Record-Route headers, one for each interface.
As result of such behavior of the Proxy, each of the UAs builds
the same Route-List (in the opposite order), and each of the UAs
will send further requests of the session to the corresponding
interface of the Proxy. This also means that the Proxy does not
need to analyze the Record-Route in the response.

���� Internal Multithreading (Configurable)
���� DNS—The SIP Server Platform supports both basic (A records)

and advanced (SRV and NAPTR records) DNS queries as
defined in RFC 3263 (Locating SIP Servers).

���� IPv6 support—the SIP Server Platform can listen on IPv6
sockets, accept TCP connections, and send and receive IPv6
packets (UDP and TCP).1

1. This capability is not recommended for operating systems that do not have native
support for IPv6. Also in some cases, using IPv6 may prohibit full use of advanced
DNS.

RADVISION SIP Server Platform 45

SIP Server Platform Capabilities

���� Authentication—the SIP Server Platform support digest-MD5
(HTTP) authentication as specified in the standard. This can be
extended to support other kinds of authentication.

���� Address resolution—the SIP Server Platform supports the full
procedure for address resolution including:
���� Determining a target-set, both:

���� Predefined
���� Defined by proxy based on location service or

any other means
���� DNS resolution

PROXY CAPABILITIES The SIP Server Platform proxy features complete SIP proxy functionality with
the following capabilities:

���� Stateful forwarding
���� Stateless forwarding
���� Forking—parallel/sequential/mixed
���� Record-Routing
���� Loose-Routing
���� CANCEL processing and forwarding
���� Recursion on 3xx responses
���� Loop detection
���� Max Forwards check
���� Working as outbound proxy
���� Message validation
���� Authentication

REGISTRAR
CAPABILITIES

The SIP Server Platform supports all standard registrar functionality:
���� Accept and Validate REGISTER messages
���� Read location mappings from location service
���� Apply registration logic
���� Update location service
���� Remove location mappings that have expired from the location

service
���� Authentication

46 RADVISION SIP Server Technical Overview

SIP Server Platform Capabilities

REDIRECT
CAPABILITIES

The SIP Server Platform provides full redirect server functionality:
���� Receiving and processing incoming responses
���� Address resolution
���� Returning 3xx response with one or more Contact addresses
���� Authentication

BACK-TO-BACK USER
AGENT

The Back-to-Back User Agent (B2BUA) is an optional add-on module that is
sold separately. The B2BUA has tighter control over the dialog. The module can
function as one of the following:

���� Transparent B2BUA for implementation of FW/NAT traversal
and anonymous applications

���� Third Party Call Control (3PCC) for development of PBX and
Class 5 switch applications, including a complete state machine
implementation allowing easy development of 3PCC and
transfer functionalities

The transparent B2BUA provides seamless functionality for:
���� Connecting and disconnecting dialogs
���� Handling CANCEL requests
���� Handling BYE requests
���� Handling re-INVITE requests
���� Handling general requests (REFER, SUBSCRIBE, PRACK,

and so on)
���� DNS functionality
���� Store/Restore of B2B Transparent objects for high availability

Additional functionality is provided when the B2BUA functions also as a 3PCC.
The 3PCC enables more control of the application over dialog creation and
provides means of dialog state modification. This flexibility enables the
implementation of Class 5 features, such as transfer, forward, hold, call park and
pick-up for the development of PBX applications. The application can initiate
dialogs out of the scope of a specific B2B Transparent object, and after a dialog
has been connected, the application can add it into a B2B Transparent object.
The following are examples of possible functionality that the application can
implement:

���� Create and connect dialogs and add them to a B2B Transparent
object

���� Remove connected dialogs from a B2B Transparent object

RADVISION SIP Server Platform 47

SIP Server Platform Capabilities

���� Disconnect one side of a dialog
���� Initiate a request/response on a given B2B Transparent object

EVENTS SERVER The Events Server is an optional add-on module that is sold separately. The
Events Server is a general implementation of specific event notification, as
discussed in RFC 3265, and provides a complete implementation of a Notifier.
This module provides a general SIP-extensible framework exposing APIs to the
application that allow handling of any type of SIP event package (including
user-defined packages) and building of a general purpose SIP Events Server. In
addition to this general purpose framework, the add-on module provides the
specific implementation of two SIP event packages, Presence Server and Winfo.

PRESENCE SERVER The Presence Server module allows a party to know the ability and willingness
of other parties to participate in a call even before an attempt has been made.
The Presence Server is responsible for handling Presence SUBSCRIBE requests
with event package “presence” from Watchers, and enables the application to
notify them about the Presence status of the Presentities. The Presence Server
works in coordination with the Presence Agent, to receive updated Presentity
status according to REGISTER requests monitored by the Presence Agent, and
may work similarly with other user applications which can update the Presence
Server of Presentity status through its API functions. Such presence status
information can be collected from SIP PUBLISH requests or other means out of
the scope of SIP. The Presence Server API also enables sending Presence
Notification messages with Presence documents for active Presence
subscriptions. The Presence documents are sent as the body of the Notification
message, and include Presence information about the requested Presentity.

WINFO MODULE The Winfo module handles subscriptions of the winfo template. The Winfo
module can handle an incoming Subscribe request with the winfo template and
any event package. For example, the presence.winfo and foo.winfo Event
headers are both with the winfo template, and can be handled by the Winfo
module (presence and foo are the event packages). The Winfo module offers the
application a high-level interface for handling incoming Winfo SUBSCRIBE
requests and for initiating Notify messages with Winfo documents, by
implementing draft-ietf-simple-winfo-package-05. The Winfo module uses the
XML Encoder library for creating Winfo documents according to
draft-ietf-simple-Winfo-format-04. For more information, see the XML Encoder
chapter located in the SIP Events Server Programmer and Reference Guide.

48 RADVISION SIP Server Technical Overview

Application Layout

The Winfo module is implemented above the Events layer. The Winfo API
allows the application to decide how to handle a specific Winfo SUBSCRIBE
request according to its policy, to control Notify requests sent to the Winfo
subscribers, and to create Winfo documents.

NON-SIP CAPABILITIES The SIP Server Platform includes some non-SIP functionality in the form of
Server Components. For more information, see Server Components on page 49.
Currently the following functionality is supported:

���� Location service (database)
���� User/password database
���� Cryptographic algorithms needed for security
���� Presence Agent—part of the optional Presence Server add-on

module
���� Others—to be announced later

In addition, XML Encoder library is included in the SIP Server Platform. For
more information, see the XML Encoder on page 50.

APPLICATION
LAYOUT

Figure 2-1 illustrates the layout of the a SIP Server application using the SIP
Server Platform.

Figure 2-1 SIP Server Application Layout

SIP Server Platform

OS/Network

Server Components

Application
Application-Specific
SIP Server Behavior

Non-SIP Server
Functionality

Standard and
Advanced SIP Server

Functionality

RADVISION SIP Server Platform 49

Application Layout

The SIP Server Platform development model breaks the SIP Server application
into four parts:

Operating system (OS) and networking layer

This layer is typically provided by a third party.

SIP Server Platform

The SIP Server Platform implements standard SIP Server functionality as
defined in the SIP standard.

Server Components

Server components implement functionality that is not SIP-specific, but is
required to complete the SIP Server.
Server components are replaceable plug-in modules. They have well-defined
interfaces with the SIP Server Platform and with the application. Anyone can
develop new implementations to server components as long as these implement
the appropriate interfaces.
The SIP Server Platform comes complete with default implementations for
server components. These are provided as reference implementations only.
Application developers are encouraged to replace or enhance them as they see
fit.
Currently the following server components are included:

���� Location database—implements the interface to the location
service (the storage place of SIP location mappings).
The SIP server uses this interface to read and to write location
mappings as part of the address resolution process (proxy and
redirect servers) and the registration process (registrar).
Implementations may vary according to the type of location
database used. Possible implementations include LDAP client,
SQL client, and memory-based local database. The default
implementation provided with the SIP Server Platform is of a
memory-based, highly efficient database.

���� Security—the Security component implements all non-SIP
aspects of security, such as cryptographic algorithms and user/
password databases.
The default implementation provided with the SIP Server
Platform implements MD5-hash and memory-based user/
password database.

50 RADVISION SIP Server Technical Overview

Application Layout

���� Presence Agent—the Presence Agent monitors REGISTER
requests received by the SIP Server, concludes Presentity
status, and initiates NOTIFY requests to the relevant Watchers
using the Presence Server API. A user can update this default
implementation and add other sources from which to conclude
Presentity status.

���� Other server components will be defined in the future as more
capabilities are added to the SIP Server Platform.

XML Encoder

The XML Encoder is a library that can be used for creating XML documents.
Many drafts defined by the SIMPLE workgroup are based on XML. This library
enables the application to create any XML document that can be set as the body
of Notify messages. The Presence Agent and the Winfo modules use this library
for creating the relevant documents according to the drafts.

Note The Presence Agent and XML Encoder is part of the optional Events
Server add-on module.

Application

The application layer implements all the application-specific behavior. This is
where innovative services, value-added functionality and differentiated features
are implemented while utilizing the powerful and versatile SIP capabilities of
the underlying layers.
The SIP Server Platform together with its default Server Components provide
extensive out-of-the-box SIP server functionality. Implementing any of the
following servers can be done with minimal coding:

���� All-in-one SIP proxy, registrar and redirect server with simple
routing policy and co-located location service

���� Stateless load-balancer (proxy)
���� Stand-alone registrar with local location database
���� Redirect Server
���� Back-to-Back UA
���� Events Server

���� Presence Server
���� Winfo module

RADVISION SIP Server Platform 51

SIP Server Platform Architecture

���� General SIP Events interface

SIP SERVER
PLATFORM
ARCHITECTURE

Figure 2-2 illustrates the SIP Server Platform architecture.

Figure 2-2 Platform Architecture

The SIP Server Platform has multiple internal layers. This allows for enhanced
modularity and flexibility. Each layer exposes its API functions. Application
developers can mix and match the level of API they choose to use according to
application needs.
The following API layers are exposed:

���� Component API—server components also expose a limited
API that enables the application to use them. This is a non-SIP
API.

SIP Server High Level

SIP Stack

Presence
Agent

Location
DB Security

Proxy
Core

SIP Server
Low-Level

SIP
Server

Manager
B2BUA*

*Optional

Component
API

High Level API

Core API

Low Level
API

Events
 Server*

G
eneral

Events A
PI

P
resence

W
info

Application

SIP Server Platform

52 RADVISION SIP Server Technical Overview

SIP Server Platform Package

���� High Level API—the High Level API provides higher
abstraction on top of the low level modules. This level contains
such objects as Registration and allows configuring, initializing
and shutting-down the entire SIP Server Platform.

���� Core API—the Core API exposes the ProxyCoreObj (PCO),
which is the low level processing object that matches server and
client transactions and executes forwarding. The Core API is
also used for working with state machines.

���� Low level API—this API partially exposes the underlying
Stack. This is mostly for purposes of working with messages
(the messaging layer is located in the underlying Stack).

Note The underlying Stack cannot be used by the application for purposes other
than SIP Server development and only as specified in product documentation.

SIP SERVER
PLATFORM CODING

The coding guidelines used by the SIP Server Platform are as follows:
���� The SIP Server Platform is provided entirely in source code.
���� The SIP Server Platform was designed and coded based on

object-oriented (OO) methodology.
���� For improved readability and maintainability, the SIP Server

Platform was written using strict coding conventions covering
naming, internal comments, code structure and project layout.
The code is carefully documented.

���� The SIP Server Platform is implemented in ANSI C.

SIP SERVER
PLATFORM
PACKAGE

The SIP Server Platform package includes the following:
���� SIP Server Platform libraries in source code
���� Server components in source code
���� SIP Server add-on modules’ libraries and source code

(optional)
���� Documentation in PDF, HTML and CHM format (For a list of

all the SIP Server Platform documentation, see the chapter,
About this Manual.)

���� Fully functional Test Application with graphical user interface
given in source code

RADVISION SIP Server Platform 53

RADVISION Family of SIP Development Solutions

���� Sample code—short, internally-documented, simple and
compliable programs that demonstrate the usage of the APIs in
source code

OPERATING SYSTEM
SUPPORT

Currently the following operating systems are supported:
���� Solaris
���� Windows NT, 2000, XP
���� Linux Redhat
���� VxWorks

The SIP Server Platform will be ported by RADVISION to additional operating
systems in the future.

RADVISION
FAMILY OF SIP
DEVELOPMENT
SOLUTIONS

The RADVISION SIP Server Platform is part of a complete family of SIP
technology products RADVISION provides for SIP developers.
The other products include:

���� RADVISION SIP Toolkit—RADVISION’s award winning
development tool including SIP, SDP, RTP/RTCP Stacks.

���� RADVISION ProLabTM SIP Test Manager—a complete SIP
lab testing solution.

���� RADVISION Media Device Framework—a framework for the
development of IP phones and residential gateways.

54 RADVISION SIP Server Technical Overview

RADVISION Family of SIP Development Solutions

	Contents
	SIP Server Technical Overview
	Introduction
	What is a SIP Server?
	Registrar Server
	Redirect Server
	Proxy Server
	Stateful and Stateless Proxies
	Request Validation
	Address Resolution
	Determining the Target-set
	DNS Resolution
	Stateful Message Forwarding
	Symmetric Record- Route
	Loose-Routing
	Forking
	Authentication
	Loop detection and Max Forwards
	Message Spiraling
	Outbound Proxy
	Policy

	B2BUA
	Events Server
	Event Package Name
	Subscribe Duration
	Authentication

	Presence Server

	RADVISION SIP Server Platform
	SIP Server Development Challenges
	Minimizing Development Time and Cost

	RADVISION SIP Server Platform
	Standards Compliance
	Interoperability
	Robustness
	Extensibility
	Flexibility and Customization
	Performance and Capacity
	Maintainability
	Portability

	SIP Server Platform Capabilities
	Standards compliance
	General Capabilities
	Proxy Capabilities
	Registrar Capabilities
	Redirect Capabilities
	Back-to-Back User Agent
	Events Server
	Non-SIP capabilities

	Application Layout
	SIP Server Platform Architecture
	SIP Server Platform Coding

	SIP Server Platform Package
	Operating System Support

	RADVISION Family of SIP Development Solutions

