
SIPPEER: A Session Initiation Protocol (SIP)-based Peer-to-Peer
Internet Telephony Client Adaptor∗

Kundan Singh and Henning Schulzrinne
Department of Computer Science, Columbia University

{kns10,hgs}@cs.columbia.edu

Abstract

Our architecture for peer-to-peer Internet telephony using the Session Initiation Protocol (SIP) supports basic user
registration and call setup as well as advanced services such as offline message delivery, voice/video mails and multi-party
conferencing. In this paper, we describe the design and implementation of our P2P-SIP client adaptor, SIPPEER, using
pseudo code and example messages. We also explain how to use existing SIP user agents such as X-lite and Cisco IP phone
with SIPPEERto participate in P2P network.

Contents

1 Introduction 3

2 Background 4
2.1 SIP-based telephony .. 4
2.2 Chord: a structured P2P algorithm. 4

3 Architecture 5
3.1 SIP-layer . .. 5
3.2 Data structures and classes 6
3.3 DHT module . 7

3.3.1 Initialization . 8
3.3.2 Peer discovery. 8
3.3.3 Joining the DHT . 9
3.3.4 Stabilization .. 10
3.3.5 Node shutdown (graceful termination) 13
3.3.6 Node failure and failover. 14

3.4 User registration. 16
3.4.1 Registration handling . .. 16
3.4.2 Node shutdown (graceful termination) 18
3.4.3 Node failure and failover. 18

3.5 Call setup and message proxy . .. 18
3.5.1 Message proxy. 19
3.5.2 Multimedia call setup and instant messages. 19

4 Experiments 20
4.1 Adaptor for existing SIP phones. 20

4.1.1 Columbia sipc . 21
4.1.2 Cisco IP phone. 21
4.1.3 X-lite . 22
4.1.4 Microsoft Windows Messenger .. 23

4.2 Interoperability issues .. 23
∗The work is supported by grant from SIPquest Inc., and the National Science Foundation under Grant No. 0202063.

1

5 Security 25
5.1 Threats 25
5.2 Identity protection 25
5.3 Misbehaving nodes . .. 26
5.4 Data privacy .. 26
5.5 Programmable call routing 26
5.6 User aliases .. 27

6 Advanced services 28
6.1 Presence and event notification .. 28
6.2 PSTN interworking . .. 29

6.2.1 Registering a telephone prefix . .. 30
6.2.2 Calling a telephone number 30
6.2.3 Incoming INVITE handling 31

6.3 Firewall and NAT traversal 31
6.3.1 Signaling 32
6.3.2 Media. 32
6.3.3 Integrating media and signaling .. 32

6.4 Inter-domain operation. 32
6.4.1 Registration . .. 33
6.4.2 Call setup 34
6.4.3 Cross-domain .. 34

7 Conclusions and future work 35

A Message flow 36

2

1 Introduction

Peer-to-peer (P2P) systems inherently have high scalability, robustness and fault tolerance because there is no central-
ized server and the network self-organizes itself [12]. This is achieved at the cost of higher latency for locating the resources
of interest in the P2P overlay network. We have proposed a Session Initiation Protocol (SIP [20,25])-based peer-to-peer In-
ternet telephony (P2P-SIP) architecture [26,27]. It uses distributed, robust and scalable key lookup of distributed hash table
(DHT)-based structured P2P algorithms such as Chord [29]. It uses SIP as the underlying protocol so that it interoperates
with existing infrastructure such as SIP-PSTN gateways.

We have implemented a P2P-SIP adaptor, SIPPEER, that allows existing or new SIP user agents to connect to the P2P-
SIP network without modifying the user agent. For example, SIPPEER can run on the same host as the PC-based SIP
user agent,sipc, and act as the outbound proxy forsipc. SIPPEERcan also act as a standalone SIP user agent, proxy or
registration server with command line user interface.

We describe the design and implementation of SIPPEERfor basic user registration and call setup using pseudo-code
and example messages. In particular, we answer the following questions: (1) how to implement a P2P-SIP node for basic
functionality? (2) how to use a P2P-SIP node for existing user agents? and (3) how to extend it for advanced features such
as NAT or firewall traversal and PSTN interworking.

This implementation report can be used to understand the SIPPEER implementation and to design similar P2P-SIP
systems. This document should be used in conjunction with [27]. Our modular design allows reusable and replaceable
components. For example, in future Chord may be replaced by another distributed hash table (DHT) without affecting the
rest of the implementation. The open architecture allows installing new services without affecting the existing design. For
example, a new voice mail module can be added to the existing node. Finally, we discuss the security aspects and advanced
services such as firewall and NAT traversal, and PSTN interworking in the context of SIPPEER.

Section 2 gives an overview of SIP and Chord. Section 3 describes the detailed design. Some experiments on using
SIPPEER with existing clients are in Section 4. Some security issues are discussed in Section 5. Section 6 provides
guidelines to extend SIPPEERfor advanced services.

3

2 Background

In this section, we review the Chord algorithm and SIP-based telephony concepts needed for understanding SIPPEER’s
design. Readers familiar with these can skip the section.

2.1 SIP-based telephony

Existing SIP-based telephony has client-server architecture. SIP [20] is a signaling protocol for Internet conferencing,
telephony, presence, event notification and instant messaging. As shown in Fig. 1, when a user, Bob, starts the SIP client on
his PC, IP-phone or hand-held device, the client registers with the SIP server (or registrar) indicating the IP address of the
device. The SIP server stores the mapping between the user identifierbob@home.com and the IP address or host name.
When another user, Alice, makes a call or sends instant message forbob@home.com to the server inhome.com domain,
the server proxies the request to the current device of Bob. Further details of the protocol can be found in [20,25].

alice@office.net

Alice’s phone

(2) INVITE (3) INVITE

(1) REGISTER
home.com

bob@home.com

Bob’s PC

sipd

 DB

Figure 1: SIP call flow using proxy servers

39

36
33

28

26

22

19

18

24

13

10

8

5
2

48

15

163

30

40

next=30

next=33

next = 26
Find(32):

distance start next node

32 42 44
16 26 26
8 18 18
4 14 15
2 12 13
1 11 13

61

59

58

56

51

50

46

44

 = peer node

Figure 2: Example Chord network

2.2 Chord: a structured P2P algorithm

Structured P2P algorithms such as Chord [29] focuses on optimizing the P2P overlay for lookup latency and join or leave
maintenance cost [10] instead of using inefficient blind search by flooding. We use Chord as the underlying distributed hash
table (DHT) in our architecture for lookup. Chord has a ring-based topology where each node stores at mostlog(N) entries
(or state) in itsfinger tableto point to other peers. Lookup is done inO(log(N)) time.

An example Chord network with six bits identifiers is shown in Fig. 2. The identifier range is [0-63]. Every node
maintains a finger table oflog(N) = 6 entries pointing to the next-hop node location at distance2i−1 (for i=1,2,..,6) from
this node identifier. Node 10’s finger table is shown in Fig. 2. When node 10 wants toFind key 32, it looks up the finger
table to find the closest match, and sends the query to node 26. Node 26 in turn sends it to node 30, which finally sends it
to node 33. Node 33 is the successor of identifier 32, hence responsible for storing information about key 32. At each step
the distance to destination is reduced by approximately half, resulting inO(log(N)) lookup latency, if there areN nodes in
the ring.

The iterativeandrecursivelookup styles in Chord [29] directly map to theredirectandproxybehavior, respectively, in
SIP. Research in DHT is complementary to our work, since our architecture can use new innovations or optimizations in the
underlying DHT.

4

3 Architecture

Socket interface

REG

Find
Join

Find buddies

detect NAT
peer found/ Multicast REG

MESSAGE

IM, Call

Media path
transfer

Leave

Sign out,

INVITE,

Sign in,

On Startup

REG,

On Reset

DHT (Chord)

User location

User interface (buddy list, etc.)

ICE SIP

Discover

RTP/RTCP

Codecs

Audio devices

Figure 3: Block diagram of a P2P-SIP node

Fig. 3 shows the block diagram of the different components in SIPPEER. When the node starts up and the user signs-in
with her identifier, and thediscover module is activated to initiate NAT and firewall detection, peer discovery and SIP
registration. Multicast SIP registration, cached peer addresses from last boot cycle and pre-configured bootstrap addresses
are used to discover initial set of nodes. Theuser interface module keeps track of user’s “friends list” and invokes theuser
location module to locate these friends. User location is obtained using theSIP module or, if this node is a super-node, the
DHT module.

The node architecture can be logically divided into two parts: the DHT maintenance and the user account maintenance.
The DHT module maintains the peer information (e.g., Chordfinger table) and performs DHT operations such asfind,
join andleave. It provides the underlying topology for communication. The user account maintenance module deals with
maintaining local user accounts as well as storing remote user registrations. It acts as a SIP registrar and proxy server.

3.1 SIP-layer

SIP is used as the underlying protocol for maintaining the DHT, locating another user, registering the user, call setup and
instant messaging. The SIPREGISTER message is used in two context by the node: query and update. If aContact header
is present in the message, then it is an update request indicating that the sender wants to update the bindings for the node
identifier in theTo header. Otherwise, it is a query request, where the sender is requesting to get theContact information of
the node identifier in theTo header. Initial discovery uses theREGISTER message for query. This behavior is semantically
same as that defined by SIP.

Once the user location is done, the call setup or instant messages can be sent directly to the user’s phone. SIPREGIS-
TER refresh andOPTIONS messages are used to detect node failure. When a super-node shuts down, the registrations are
transferred to other super-nodes in the DHT as appropriate. Other SIP functions such as third-party-call control and call-
transfer can be implemented in the similar way. The media path (audio device, codecs and transport) is largely independent
of the P2P-SIP operation.

5

Node and user identifiers are represented using SIP URI. For example, if a node is listening at transport address
128.59.15.32:8054 for SIP messages and the Chord’s hash function gives the node identifier as H(128.59.15.32) = 17, then
the node’s URI becomessip:17@128.59.15.32:8054. User Alice can register her identifier assip:alice@example.com.

We use our C++ SIP library,libsip++ [2], that provides classSIPEndpoint representing the end system andSIPDia-
log representing a SIP dialog between two end systems.SIPCall andSIPOutgoingRegister are derived fromSIPDialog
to implement the call control and registration refresh state machines.SIPSession extendsSIPCall to implement ad-
vanced features such as event notification and call transfer whereasSIPSessionEndpoint extendsSIPEndpoint to support
SIPSession.

3.2 Data structures and classes

is a

111

points to

is a

1

0..*

is a

is a

FingerTableEntry

1has a has a

has a vector of

has a list of

has a map of

1

0..*

0..*

SIPOutboundRegister

LocalUserAccount

SIPSessionEndpoint

Endpoint Node

UserAccount

ChordNode

SIPSession

UserInterface

Call

is a

Figure 4: Class diagram in SIPpeer

Fig. 4 shows the class diagram including the relationship among different classes. TheEndpoint class, derived from
libsip++’s SIPSessionEndpoint, represents the P2P-SIP node. It is associated with one DHT node implementation, repre-
sented by theNode class. It gets all events such as the join operation is complete, or the node information changed (such as
change in finger table or predecessor), or when this node is leaving the DHT.Endpoint also stores a list ofLocalUserAc-
count objects for outgoing registrations from the local node. These registrations represent the user accounts activated from
the local node. It also stores a map table of all the registeredUserAccount objects indexed by the remote user identifier.

A UserAccount object represents a user registration (typically of a remote user) derived fromSIPOutboundRegister
class. It invokes the associatedNode’s callback methods when a new registration is received or is refreshed. ALocalUser-
Account class represents a local user’s registration.

A Node object represents a single node (this node) in the DHT. TheChordNode class derived from theNode class, im-
plements the Chord algorithm. Various methods such asFind, Join, Leave are defined as virtual inNode, and implemented
in ChordNode. Node class implements the super-node and ordinary-node distinction.

A ChordNode internally maintains other Chord related data structures such as finger table, successor list, and prede-
cessor. TheFingerTableEntry represents a single entry in the finger table consisting of the start and end identifiers in the
ring, and the node location for the next hop node corresponding to this identifier range. The finger table is a map table of
FingerTableEntry with integer index. The successor list is a list of node locations.Predecessor is a single node location.

TheIdentifier class represents a node or user identifier. The implementation is internal, typically using as hash function.
The object stores the raw value such as10@sippeer.net or alice@yahoo.com as well as the hashed value such as 10 and
24. The current implementation assumesnumber@host as the node identifier whereas anything else as the user identifier.
The SIP requests (typicallyREGISTER) with To: header containing this node’s identifier is handled by theChordNode

6

module, where as those for the user identifier are handled byEndpoint, UserAccount or LocalUserAccount objects. A
NodeLocation class represents the node identifier as well as its contact location (a SIP URI).

TheCall object is similar to theSIPSession object except that it does lookup using both DNS (NAPTR and SRV [18])
as well as P2P overlay. TheUserInterface object represents the command line user interface, which can later be extended
to graphical UI.

Using various objects theEndpoint implements a SIP user agent, proxy as well as registrar. No external database is
used. All state including registrations are maintained in the internal memory.

3.3 DHT module

The Node class represents a single node in the DHT. The actual implementation is done in a sub-class. For example,
ChordNode implements the Chord algorithm. Alternatively, other DHT algorithms such as CAN can be implemented as a
sub-class ofNode. TheEndpoint object creates this sub-class (e.g.,ChordNode) object on startup.

The DHT module takes care of implementing three abstract methods:Join, Leave andFind. When the node starts up it
needs to discover at least one other node in the DHT. Then, it joins the DHT through that node. When the node is gracefully
shutting down, it leaves the DHT. Higher layer application such as user account maintenance module uses theFind method
to locate the next hop node to send user registration or proxy other SIP messages for call setup or instant messaging.

This Section describes the implementation ofChordNode. We illustrate with simple examples of 5 bit identifiers. We
represent the nodeN ’s identifier asNid, transport address (IP and port number) asNaddr, IP address asNip, predecessor
asNpred, successor asNsucc, finger table entry of this node for indexi asF i, and corresponding start, end and next hop
node URI asF i

start, F i
end andF i

node respectively. The successor list is represented asN list
succ, andith successor asN i

succ.
Note thatN0

succ is same asNsucc. Finger table entry for another nodeN is denoted asN :: F i. Note thatNsucc is same as
N :: F 1

node.

Procedure 3.1N .set-fingers (i:start index,node:node location)
/* Set the finger table entries starting ati */
/* Returns the index of the last finger entry that gets set. */
F i

node ⇐ node
while i ≤ m− 1 do

if F i+1
start ∈ [Nid, F

i
node] then

F i+1 ⇐ F i
node

else
return i

i⇐ i + 1
return i

Pseudo code to set the finger table entry and to query the closest preceding finger are described in procedures 3.1 and
3.2, respectively. IfF i

node is set tonode, then all subsequentF j
node are also set tonode as long asF j

start is beforenode in
the Chord ring. To find the closest preceding finger for a givenkey, the finger table is scanned in the reverse order and the
alive node with highest identifier preceding thekey is returned. Lookup is also done in the successor list,N list

succ.

Procedure 3.2N .closest-preceding-finger (key)
/* Find the closest preceding finger for thekey */
node⇐ Nid

for i← m down to1 do
if F i

node is alive and F i
node ∈ (Nid, key) then

node⇐ F i
node

break
for all s in N list

succ do
if s is aliveand s ∈ (Nid, node) then

node⇐ s
break

return node

7

3.3.1 Initialization

When the node starts up, it creates a newEndpoint object and associatedUserInterface and ChordNode objects. It
allocates any available port for receiving SIP messages on TCP and UDP. The SIPPEERapplication can accept-p command
line option to configure a fixed receiving port number, instead of using any available port. Typically there are three listening
threads, (1) for TCP on INADDRANY interface and some portp, (2) for UDP unicast on INADDRANY interface and
same portp, and (3) for UDP multicast on address 224.0.1.75 and port 5060. To allow receiving both multicast and unicast
packets on portsp and 5060, threads (2) and (3) bind to multicast as well as unicast addresses. Ifp=5060, then thread (3)
is not created. The UDPsockets are bound non-exclusively on port 5060, so that multiple instances of the node can run on
the same host.

If the node is started with a pre-configured user identifier, it also creates a newLocalUserAccount object for this user
identifier. For example, when the SIPPEERapplication is used as a SIP user agent, the user can specify her identifier, e.g.,
alice@example.com, on start up.

The ChordNode calculates its node Identifier using the IP address of the local interface of the Endpoint. For testing
purpose we use both IP and port, so that we can start nodes with different node identifiers on the same host. However, in
practice only the IP address should be used. This prevents a single IP address from disturbing random parts in the DHT on
frequent join and leave by restarting the application.TODO: Currently we use a simple hash function to generate up to
32 bit identifier. This needs to be changed to use SHA1 to generate 160 bit identifier as per the Chord specification.

3.3.2 Peer discovery

Figure 5: Example Chord network with 4 nodes Figure 6: After node 7 joins the network

Consider an example four nodes Chord network as shown in Fig. 5. The node identifiers are10, 22, 1 and15, and
the node transport addresses are128.59.15.55:, 128.59.15.31:, 128.59.15.60: and128.59.15.48:, respectively. When a
new node,7, (with transport address7addr=128.59.15.56:44452) starts up, it invokes itsDiscover method (procedure 3.3)
to discover possible peers.

TheDiscover method of node7 sends a SIPREGISTER message withrequest-URI assip:224.0.1.75 (SIPREGIS-
TER multicast IPv4 address) and theTo header as the local node identifier,7id. TheFrom header is always the local node
identifier,7id, if the request is generated by theChordNode module. (The mandatory SIP headers that are not needed for
understanding P2P-SIP are not shown, but MUST be sent as per SIP specification. See Appendix A for details.)

REGISTER sip:224.0.1.75 SIP/2.0
To: <sip:7@128.59.15.56>
From: <sip:7@128.59.15.56>

8

Procedure 3.3N .Discover
if discovery is allowedthen

sendREGISTER sip:224.0.1.75
To: Nid

else
for i := 1 to m do

F i
node ⇐ Nid

Npred ⇐ Nid

trigger join complete event

If the application is started with-N option to suppress node discovery, the node state is initialized to reflect a singleton
node in the DHT. In that case, all finger table entries and predecessor in the ChordNode point to this node’s location.

If some other node, say node22, receives the multicastREGISTER request, and is already part of the DHT, it responds
with its own unicast address,22addr=128.59.15.31, in the SIP302 redirection response.

SIP/2.0 302 Redirect to unicast
Contact: <sip:128.59.15.31>

If the node receives multiple final responses, it can choose which one to use. Our implementation uses the first received
response. If the node does not get any response within a timeout (we use about 30 seconds), it uses other means of discovery.
Following possibilities exist but are not yet implemented:

Service discovery: The node can have a service location protocol (SLP [7]) user agent (UA), that discovers other nodes
in the domain. Once the node joins the DHT it should register with the SLP directory agent so it other nodes can
discover this node. For the Internet, some wide-area service discovery protocol is more suitable.

Bootstrap nodes: The node can be pre-configured with a set of IP addresses or domain names to probe for possible peers.
For example, the node can query DNS forsippeer.net domain’s SIP servers and send the initialREGISTER message
to them. At least one of the the initial bootstrap P2P-SIP nodes is assumed to be active for this scheme to work. This
may introduce the centralized component, but is limited in scope only to the initial bootstrap process. Once the node
starts up it caches other peers addresses for subsequent reboots.

If the node can not discover any other peer, it assumes that it is the first node in the DHT and initializes its data structures
(Chord finger table and predecessor location) accordingly. It also re-schedules the discovery procedure for a later time, say
after five minutes.

3.3.3 Joining the DHT

Once other peer(s) are discovered, the node selects one and sends a SIPREGISTER message to its unicast address. For
example, node7 sends the following message to22addr=128.59.15.31.

REGISTER sip:128.59.15.31 SIP/2.0
To: <sip:7@128.59.15.56>
From: <sip:7@128.59.15.56>

When node22 receives theREGISTER on its unicast address, it extracts thedestination key, 7, from theTo header.
Depending on the destination key value,k, there are three cases for nodeN to process the request (procedure 3.4): (1)
if k ∈ (Npred, N], then nodeN is responsible for storingk, (2) if k ∈ (N,Nsucc], then nodeNsucc is responsible for
storingk, otherwise (3) some other node is responsible for storingk. For case (1), nodeN responds with a SIP200 success
response containing theContact header asNid and the predecessor parameter asNpred. If the key,k, is same asN (subset
of case (1)), but the addresses are different (e.g., two nodes happen to have the same hash value for the node identifier), then
a global failure (SIP600 response) is returned, with theContact header asNid. For case (2), it responds with a SIP200
success response containing theContact header asNsucc and the predecessor parameter asNid. For case (3), it proxies the
request to the next hop node based on the finger tableN :: F . Eventually the request reaches the node responsible fork,
which can respond back with the correctContact header.

In our example, key7 does not belong to node22 or successor1 (this is case (3)), so the finger table is used to
find the next hop node. Since the largesti for which N + 2i−1 ≤ k, whereN=22 andk=7, is i = 4, the next hop is
22 :: F 4

node=1addr, hence the request is proxied to1addr. Node1 decides that keyk belongs to the successor node10,
(case (2) because7 ∈ (1, 10]) and responds with the success response containingContact as10addr. Node22 forwards this
response back to node7.

9

Procedure 3.4N .OnRegister (R:registration object,M :request message)
if join is not completethen

ignoreM
else ifM is a query, i.e.,M .Contact is emptythen

to⇐M .To.user
if to 6= Nid and to /∈ (Nid, Nsucc] then

node⇐ closest-preceding-finger(k) /* procedure 3.2 */
else ifto equalsNsucc’s id, but has different addressthen

node⇐ Nsucc

else
node⇐ Nid

if node = Nid then
if to = N then

send response200 OK
Contact:Nid; predecessor=Npred

else
send response200 OK

Contact:Nsucc; predecessor=Nid

else
proxy M to node

SIP/2.0 200 OK
To: <sip:7@128.59.15.56>
Contact: <sip:10@128.59.15.55>; predecessor=sip:1@128.59.15.60

When the discovering node,7, receives the SIP200 response withTo header as7id, it updates its finger table with the
successor node locations and goes on to find remaining nodes in the finger table (procedure 3.5). For example if theTo
header in the response is this node identifier,7id, and the successor for this node7succ is empty, then the successor is set
to be theContact header in the response,7succ := 10. Now, 10 ≥ 7 + 2i−1 for i=1 and 2, so node7 updates its finger
tableF 1

node := F 2
node := 10id. The next unassigned finger entry for indexi=3 needs to be discovered. Node7 sends a SIP

REGISTER message forF 3
start=11. The domainsippeer.net is used as logical domain for node11id to indicate that the

IP address of this key11 is not known.

REGISTER sip:128.59.15.55 SIP/2.0
To: <sip:11@sippeer.net>
From: <sip:7@128.59.15.56>

Eventually node7 receives the response for this registration, indicating that node15 is responsible for key11:

SIP/2.0 200 OK
To: <sip:11@sippeer.net>
Contact: <sip:15@128.58.15.48>; predecessor=sip:10@128.59.15.55

When the node gets the SIP200 response for thisREGISTER, it realizes that theTo header corresponds toF 3
start,

and updates the finger table based on theContact header of the response,F 3
node := 15id. Since15 ≥ F 4

start, it updates
F 4

node := 15id. Finally, node7 sends another SIPREGISTER message to discover nodeF 5
start = 23, and updates the

finger table on response asF 5
node := 1id.

3.3.4 Stabilization

At this point, node7 realizes that all the finger table entries are filled, so it tries to stabilize the Chord DHT, if theJoin
procedure is not yet complete. To initiate the stabilization process, it sends a SIPREGISTER message toNsucc, sets theTo
header asNpred (or Nid, if the predecessor is not known or is empty) and theContact header pointing toNid. Assuming
the predecessor7pred is known as node1, then the node7 sends the following request:

REGISTER sip:128.59.15.60 SIP/2.0
To: <sip:1@128.59.15.60>
Contact: <sip:7@128.59.15.56>; predecessor=sip:1@128.59.15.60

10

Procedure 3.5N .OnRegisterSuccess (R:registration object,M :response message)
if R was a query, i.e.,R.Contact is absentthen

if M .To =Nid and Nsucc is emptythen
/* set the finger table. */
k ⇐ set-fingers(1,M .Contact) + 1/* procedure 3.1 */
if k ≤ m then

/* more empty entries in finger table. */
/* query for the next empty entry. */
id⇐ N + 2k−1

sendREGISTER M .Contact
To: sip:id@sippeer.net

trigger join complete event
else

/* stabilize here with predecessor. */
sendREGISTER M .Contact

To: Npred (or Nid if predecessor is empty)
Contact:Nid; predecessor=Npred

else
if ∃i, such thatF i

start = M .To then
if i ≤ m then

/* found a pending query for empty finger table entry. */
i⇐ set-fingers(i, M .Contact)/* procedure 3.1 */
if i < m then

/* more empty entries in finger table. */
/* query for next empty entry. */
id⇐ F i+1

start

sendREGISTER Nsucc

To: sip:id@sippeer.net
else ifi = m then

if join is not completethen
/* stabilize here. */
sendREGISTER Nsucc

To: Npred (or Nid if predecessor isempty)
Contact:Nid; predecessor=Npred

trigger join complete event

Procedure 3.6N .Stabilize
/* This is called periodically by the ChordNode thread. */
if join is completedthen

if Nsucc 6= Nid then
sendREGISTER Nsucc

To: Nsucc

Contact:Nid; predecessor=Npred

else ifNpred is not emptyand Npred 6= Nid then
/* this is a singleton node in the ring */
set-fingers(1,Npred) /* procedure 3.1 */

if Npred 6= Nsucc and Npred is not emptythen
sendREGISTER Npred

To: Npred

Contact:Nid; predecessor=Npred

When the node joins the DHT, it also starts its stabilization algorithm in the ChordNode thread’sRun method. The sta-
bilization algorithm is periodically invoked by the node to refresh finger table entries, successor and predecessor locations.
The stabilization algorithm just initiates the SIP Registration for the successor and predecessor nodes with the local contact
address in theContact header (procedure 3.6). It avoids sending duplicate messages if the successor and predecessor nodes

11

are same.

REGISTER sip:10@128.59.15.55 SIP/2.0
To: <sip:10@128.59.15.55>
Contact: <sip:7@128.59.15.56>; predecessor=sip:1@128.59.15.60

REGISTER sip:1@128.59.15.60 SIP/2.0
To: <sip:1@128.59.15.60>
Contact: <sip:7@128.59.15.56>; predecessor=sip:1@128.59.15.60

If the node,N , discovers that the predecessor node is not empty or not same as this node, and the successor is this node
(i.e., (Npred 6= φ|Npred 6= Nid)&Nsucc = Nid), then it concludes that there is only one node in the DHT. In that case it
sets the successor as the predecessor node and adjusts the finger table accordingly:Npred := Nid.

When the successor or predecessor of this node receives this SIPREGISTER message with the contact header, it
updates its state (procedure 3.7). In particular, if the sending node identifier is closer to the receiving node than the exist-
ing predecessor in the Chord ring, then predecessor is set as the sending node identifier. The200 response contains the
successor-list so that the original stabilizing node can update its state with the successor’s successor list. Thesuccessor-
list is sent using theContact headers with different preference values,q : 0 ≤ q ≤ 1. Suppose there arek successors, then
ith successor hasq := 1− i

k for i = 0, 1, .., k− 1. Chord specifiessuccessor-list to be of sizeO(log(N)). Node10 sends
the following response to node7, indicating node7’s successor list:{10, 15, 22, 1}.
SIP/2.0 200 OK
To: <sip:10@128.59.15.55>
From: <sip:7@128.59.15.56>
Contact: <sip:10@128.59.15.55>; q=1; predecessor=sip:7@128.59.15.56
Contact: <sip:15@128.59.15.48>; q=.8
Contact: <sip:22@128.59.15.31>; q=.6
Contact: <sip:1@128.59.15.60> ; q=.4

Procedure 3.7N .OnRegister (R:registration object,M :request message)
/* This is appended to procedure 3.4 */
if M .Contact is presentthen

if M is not unregister, i.e., expires6= 0 then
if Npred is emptyor M .From∈ (Npred, Nid) then

Npred ⇐M .From
if M .To =Nid then

send response200 OK
Contact:Nid; predecessor=Npred; q=1.0
Contact: successor-list[0]; q=.8
Contact: successor-list[1]; q=.6
. . .

else
send response200 OK

Contact:Nsucc; predecessor=Nid; q=1.0
Contact: successor-list[1]; q=.8
. . .

When the stabilizing node,7, receives the SIP200 success response from its successor,10, it updates its successor list
using theContact headers in the response (procedure 3.8). If node7 discovers that successor node10’s predecessor lies
between this node and the successor,(7, 10), then node7 sets its successor pointer to10’s predecessor.

At this point, node7 refreshes the remaining finger table entries beyond10. For example, it locates the next hop
for the next finger table entryF 3

start = 11 > 10, and sends a SIPREGISTER query for sip:11@sippeer.net to
sip:10@128.59.15.55 as shown below. If the next hop node for this key belongs to node7 itself, then the request is
sent to the successor,Nsucc.

REGISTER sip:128.59.15.55 SIP/2.0
To: <sip:11@sippeer.net>
From: <sip:7@128.59.15.56>

12

Procedure 3.8N .OnRegisterSuccess (R:registration object,M :response message)
/* This is appended to procedure 3.5 */
if R was not a querythen

if Nsucc = M .To then
pred⇐M .Contact.predecessor
if pred 6= Nid and pred ∈ (Nid, Nsucc) then

set-fingers(1,pred) /* procedure 3.1 */
if pred = Nid then

N list
succ ⇐M .Contacts in decreasing q

if join is completedthen
/* stabilize the next finger entry. */
i⇐ dlog Nsucce
if i < m then

id⇐ F i+1
start

if id ∈ (Nid, Nsucc] then
node⇐ Nid

else
node⇐ closest-preceding-finger(id) /* procedure 3.2 */

if node = Nid then
node⇐ Nsucc

sendREGISTER node
To: sip:id@sippeer.net

When node7 receives a response for this query for key11, it continues to refresh remaining finger table entries (proce-
dure 3.5) by sending moreREGISTER requests. Fig. 6 shows the stable Chord network after node7 has joined.

3.3.5 Node shutdown (graceful termination)

Suppose, node7 wants to gracefully leave the network. It unregisters with its successor10 and predecessor1 (procedure 3.9).
Once the node10 and1 know that node7 has left, other nodes will eventually know using the stabilization algorithm.

Procedure 3.9N .Leave
if Npred is valid and Npred 6= Nid then

sendREGISTER Npred

To: Nid

Contact:Nid ∪N list
succ

Expires: 0
if Nsucc is valid and Nsucc 6= Nid then

sendREGISTER Nsucc

To: Nid

Contact:Nid ∪N list
succ

Expires: 0

To unregister, node7 sends a SIPREGISTER request withExpires header with value 0 as follows. TheContact
headers are also present in the request indicating the successor list.

REGISTER sip:1@128.59.15.60 SIP/2.0
To: <sip:7@128.59.15.56>
From: <sip:7@128.59.15.56>
Expires: 0
Contact: <sip:7@128.59.15.56>; q=1.0; predecessor=sip:1@128.59.15.60
Contact: <sip:10@128.59.15.55>; q=.8
...

REGISTER sip:10@128.59.15.55 SIP/2.0
To: <sip:7@128.59.15.56>

13

From: <sip:7@128.59.15.56>
Expires: 0
Contact: <sip:7@128.59.15.56>; q=1.0; predecessor=sip:1@128.59.15.60

Procedure 3.10N .OnRegister (R:registration object,M :request message)
/* This is appended to procedure 3.7 */
if M .Contact is presentthen

to⇐M .To
if M is unregister, i.e., expires = 0then

if to = Npred then
Npred ⇐M .Contact.predecessor

if to = Nsucc then
N list

succ ⇐M .Contacts in decreasing q
set-node-as-inactive(to) /* procedure 3.11 */

else
/* See procedure 3.7 */

Procedure 3.11N .set-node-as-inactive (node)

/* Set the node as inactive inF andN list
succ */

for all n in F andN list
succ do

if node = n then
n.alive⇐ false

/* UpdateN list
succ to replace dead nodes */

previous⇐ Nid

for k ← m down to1 do
if F k

node is not alive then
F k

node ⇐ previous
else

previous⇐ F k
node

When node10 receives the unregistration from node7, it realizes that its predecessor is leaving, so it updates its
predecessor location using thepredecessor value,1, in the Contact header:10pred := 1 (procedure 3.10). Similarly,
when node1 receives the unregistration from node7, it realizes that its successor is leaving, so it updates its successor to be
the next active successor in1list

succ. When a node location is made invalid, it is removed from the1list
succ and1 :: F . Any dead

finger table node location is changed to the next alive entry in the finger table (procedure 3.11).
Node7 should wait for confirmation responses (until a reasonable timeout) from10 and1 before shutting down.

3.3.6 Node failure and failover

Node failure, unlike graceful shutdown, needs to be detected automatically by other nodes when the SIPREGISTER
message fails. If node7 fails due to some reason, the neighbors10 and1 detect the failue and update their states to reflect
it. The SIP librarylibsip++ generatesOnRegisterFailed event when the outgoingREGISTER message gets a failure SIP
response or times out. Registration failures can happen due to many reasons and at different stages (procedure 3.12):

Global failure or SIP 600 response may be received if duplicate node identifier is detected. For example, if the hash
function generates the same node identifier value for two nodes,H(A) = H(B), butA andB have different transport
addresses. IfA is already in the network, thenREGISTER from B will be rejected with a SIP600 global failure
response. The response containsNA, so nodeB can use this address,NA, as the outbound proxy instead of joining
the Chord network.

Discovery failure may happen if there is no other P2P-SIP node in the multicast domain. In this case, other means of
discovery should be used, e.g., service location for P2P-SIP server using SLP, or using the bootstrap nodes to join the
network. Alternatively, the node can assume singleton node in the Chord network, and adjust its states accordingly.
This is useful within a single LAN environment such as P2P VoIP within an organization.

14

Procedure 3.12N .OnRegisterFailed (R:registration object,M :response message)
to⇐M .To
uri⇐M .uri
if to = Nid and R is a 600-class global failurethen

/* Discovery failed. Probably duplicate node identifier. */
if M .Contact is presentthen

set-fingers(1,M .Contact)/* procedure 3.1 */
trigger join failed event

else ifuri is multicast discovery address, 224.0.1.75then
/* Discovery failed. Assuming singleton node in Chord. */
for i← 1tom do

F i
node ⇐ Nid

Npred ⇐ Nid

trigger join complete event
else

succ⇐ Nsucc

if to = uri or uri 6= Nsucc or R.Contact is emptythen
set-node-as-inactive(uri) /* procedure 3.11 */
if uri = succ then

successor failed⇐ true
else

set-node-as-inactive(to) /* procedure 3.11 */
if uri = Npred then

Npred ⇐ empty
node⇐ Nid

if successor failed is true then
/* select the next successor. */
if Nsucc is emptyor Nsucc = Nid then

/* Successor not found. Ignore. */
else ifNsucc ∈ (Nid, to] then

node⇐ Nsucc

else
/* Do not know where to send. */

else
node⇐ closest-preceding-finger(uri) /* procedure 3.2 */
if node = Nid then

/* No more addresses left for successor. */
/* Now resend only query messages if possible. */
if R.Contact is absentand node 6= Nid and node ∈ (Nid, to] then

R.uri⇐ node
re-register usingR

Besides duplicate node detection and discovery failure, we want to address the remote node failure so that the network
can failover automatically. When a remote node fails, this node deactivates that remote node location from its finger table
and successor list. There are following cases: (1) if the destinationkey (To header) and the next hop node (request-URI)
were same, that node location is deactivated, (2) if the request was not sent to the successor (uri 6= Nsucc), the next hop
node location is deactivated, but not the destinationkey, (3) if the request was a query (noContact header), the next hop
node location is deactivated, but not the destinationkey, otherwise (4) the node represented by the destinationkey (To
header) is deactivated. If the next hop node is the predecessor, then the predecessor variable is reset (Npred := φ).

The next step is to re-send the original query request to the new failover hop. If the successor node failed, then the
next successor is chosen and the request is sent again to the new successor, if one is found. Otherwise, the query is sent to
the next closest preceding finger to the destinationkey. Only theREGISTER query and not updates, are re-sent, because
updates are refreshed anyway in the next stabilization interval. If the new next hop is after the destination key in the Chord
ring, then the query is not re-sent, and is considered failed query.

15

Procedure 3.13N .OnRegisterSuccess (R:registration object,M :response message)
/* This is appended to procedure 3.5 and 3.8 */
if R was a query, i.e.,R.Contact is absentthen

to⇐M .To.user
succ⇐M .Contact
pred⇐M .Contact.predecessor
if to = N and succ equalsNid but has different addressthen

/* duplicate node identifier found */
set-fingers(1,succ) /* procedure 3.1 */
trigger join failed event

else ifM .To =Nid and Nsucc is emptythen
/* See procedure 3.5 */

else
/* See procedure 3.5 */

The node checks for duplicate identifiers, when the initial discovery returns a a duplicate successor node identifier
(procedure 3.13). For example, if nodesip:7@128.59.15.56 discovers the successor assip:7@128.59.15.45, it uses
128.59.15.45 as the IP address of the outbound proxy and does not join the Chord network directly.

3.4 User registration

The DHT module maintains the underlying P2P overlay network, whereas the user location module takes care of user profile
and registrations. Both the modules use the SIPREGISTER messages. We describe the user account maintenance in this
section.

Suppose the table ofUserAccount in the node is represented asA such thatA[k] is the user registration for user
identifierk. Suppose the list ofLocalUserAccount is represented asL such thatLi is theith local user registration.

Procedure 3.14RegisterUser (k:user account or identifier)

L.append(k)
node⇐ N.Find(kid) /* procedure 3.15 */
if node = Nid then

A[kid]⇐ k
else

sendREGISTER node
To: kid, From:kid, Contact:kcontact

Procedure 3.15N .Find (key:identifier to find)
/* Find the next hop node forkey */
if key ∈ (Nid, Nsucc] then

node⇐ Nid

else
node⇐ closest-preceding-finger(key) /* procedure 3.2 */

if node = Nid then
node⇐ Nsucc

return node

3.4.1 Registration handling

When a user registers her identifier, sayk=alice@example.com, a newLocalUserAccount object is created to represent
this user. The next step is to transfer this registration on to the P2P network to the responsible Chord node (procedure 3.14).
Suppose the user identifier key is H(k)=1, then this user registration will be stored in the DHT on the node which is
responsible for this key,1. The DHT’sFind method is invoked to get the next hop location and the request is forwarded
(see procedure 3.15). If the local node is responsible for this key, then the registration is stored locally. For example, when
user Alice registers from node7 (Fig. 6), the next hop is1id so the followingREGISTER request is sent:

16

REGISTER sip:128.59.15.60 SIP/2.0
To: <sip:alice@example.com>
From: <sip:alice@example.com>
Contact: <sip:alice@128.59.15.56>

The receiving node should authenticate any registrations (Section 5). The registration is replicated at all the nodes in the
successor-list of the responsible node,1list

succ.
When node1 receives the message, it recognizes that the destinationkey in To header belongs to a user rather than a

node. As show in procedure 3.16, there are following cases: (1) ifkey ∈ (Npred, Nid], then this node is the responsible
node, (2) ifNsucc = Nid, then there is only this node in the Chord ring, so obviously this node is the responsible node,
otherwise (3) find the closest preceding finger for this key and proxy the SIP request to that node location. In this example,
node1 uses itself as the responsible node and stores the registration foralice@example.com.

Procedure 3.16N .OnRegister (R:registration object,M :request message)
to⇐M .To
if to is not a node identifierthen

if to ∈ (Npred, Nid] or Nsucc = Nid then
/* Register the user locally. */
A(to)⇐M

else
if to /∈ (Nid, Nsucc] then

node⇐ closest-preceding-finger(to) /* procedure 3.2 */
else

node⇐ Nid

if node = Nid then
proxy M to Nsucc

else
proxy M to node

else
/* to is a node identifier. see procedure 3.10 */

Now, node1 replicates the registration to other nodes inN list
succ (procedure 3.17). For example, it sends the following

REGISTER message to node10addr, with To header containing the destinationkey alice@example.com, From header
containing1id andContact header containing original contact location of Alice.

REGISTER sip:128.59.15.55 SIP/2.0
To: <sip:alice@example.com>
From: <sip:1@128.59.15.60>
Contact: <sip:alice@128.59.15.56>

Procedure 3.17A[k]⇐M

A[k] := M
if M.To = M.From or M.Reason = “leaving′′ then

/* This node is responsible fork */
for all S in N list

succ do
sendREGISTER Saddr

To: kid, From:Nid, Contact:A[k]contact

The receiving node10 recognizes this to be a registration tranfer, since theTo header andFrom header are different. It
stores the registration without routing it further. It should authenticate the sending node1 before storing the registration. If
theFrom header is also a user identifier, then theREGISTER request is a third-party registration (e.g., secretary registering
on behalf of her boss), and should be routed using the P2P-SIP routing algorithm based on theTo header. Third-party and
transferred registrations should be authenticated at each proxy.

17

3.4.2 Node shutdown (graceful termination)

When a node gracefully leaves the network, it should transfer all stored registrations to the new responsible nodes, which is
its immediate successor (procedure 3.18). For example, when node1 leaves, it sends the followingREGISTER request to
1succ = 7addr.

REGISTER sip:128.59.15.56 SIP/2.0
To: <sip:alice@example.com>
From: <sip:1@128.59.15.60>
Reason: leaving
Contact: <sip:alice@128.59.15.56>

Procedure 3.18N .Leave
/* unregister this node using procedure 3.9 */
/* unregister local accounts inL */
for all u in L do

R⇐ N.Find(uid)
if R 6= Nid then

sendREGISTER Raddr

To: uid, From:uid, Expires: 0
/* transfer local registrations */
for all k in keys(A) do

sendREGISTER Nsucc

To: kid, From:Nid, Expires: 0, Reason: leaving

When node7 receives the registration transfer with theReason field asleaving, it can decide to assume the respon-
sibility for this registration. Alternatively, node7 can conclude that node1 is leaving from node unregistration message,
and assume responsibility for all the keys that were transfered from node1 before. The decision is local to node7 since
assuming responsibility for registration is an extra load. Alternatively, when Alice’s user agent refreshes the registration,
the appropriate responsible node (which may be7) will get the new registration. Suppose node7 decides to accept the
responsibility for this destinationkey, it replicates the registration to all the nodes in7list

succ. For example, it sends a SIP
REGISTER to its successor10addr as follows:

REGISTER sip:128.59.15.56 SIP/2.0
To: <sip:alice@example.com>
From: <sip:7@128.59.15.56>
Contact: <sip:alice@128.59.15.56>

Node10 had earlier received the replicated registration foralice@example.com from node1. When node10 receives the
the newREGISTER from node7, it concludes that the responsibility for keyalice@example.com has been transferred
from node1 to node7.

3.4.3 Node failure and failover

Node failure is similar to node shutdown, except that the failed node does not transfer registrations. The immediate successor
detects that its predecessor has failed and owns the responsibility for the keys from its immediate predecessor. For example,
if node7 fails, node10 detects the failure, and can decide to assume responsibility for the destinations keys sent by node7.
If node10 decides to not assume the responsibility, it will get the next registration refresh from Alice’s user agent, at that
time it can authenticate Alice and assume responsibility.

3.5 Call setup and message proxy

So far we have described only the registration request routing. A SIP request such asREGISTER or INVITE belongs
to either an user or a node, based on the destination being the user identifier or the node identifier, respectively. For
REGISTER request, the SIPTo header is used for computing the key for routing decision. For all other requests (e.g.,
INVITE, MESSAGE), therequest-URI is used to make the routing decision. However, this means that SIPPEERmust not
modify therequest-URI on proxy for non-REGISTER requests.

18

3.5.1 Message proxy

When an incoming non-REGISTER request is received, and therequest-URI is a user identifier (i.e., not a node identifier),
and the request does not belong to an existing dialog or local user on this node, then SIPPEERlooks up for the user key in
its registered user map,A, as shown in procedure 3.19. If no registration is found, then a404 response is returned if the
key belongs to this node, otherwise the request is proxied to the next hop node. If valid registrations are found, the request
is proxied to those registered contact locations.

Procedure 3.19N .OnReceiveRequest(T :transaction,M :message)
if M .method == REGISTERthen

/* user or node registration: procedure 3.16 */
else ifM .uri is some node identifierthen

/* this is for the DHT module */
else ifM belongs to existing dialogthen

/* let the dialog state-machine handle it */
else ifM .uri is in Li then

/* M is for local user on this node */
else ifM .uri is not in A[k] then

/* no registration found */
if M .uri ∈ (N.prev,N] or N .Find(M .uri) failed then

send response404 User not found on P2P/SIP
else

next := N .Find(M .uri)
proxy M to next without modifying uri

else
/* registration found */
contacts := A[M.uri].contacts
proxy M to contacts using parallel forking without modifying uri

3.5.2 Multimedia call setup and instant messages

SIPPEERallows initiating or terminating a SIP call using the command line interface. When the node initiates a request,
or acts as an outbound proxy for an existing SIP client, it tries both traditional DNS lookup for the user domain and P2P
lookup for next hop in Chord for the user identifier. When one branch gets a final response, the other branch is cancelled.
TODO: Do we handle request merging in libsip++.Alternatively, some P2P-SIP node can try DNS first and fallback to
P2P lookup on failure to get DNS NAPTR/SRV records.

If the node initiates a call or acts as an outbound proxy, it does both DNS and P2P lookup, otherwise it does only P2P
lookup. To detect that this node is acting as an outbound proxy for a third party SIP client, SIPPEER uses theReason
header field. All requests initiated or proxied by SIPPEERhas aReason header field indicating that the DNS lookup was
already done. When a SIPPEERnode receives a message with thisReason it does not invoke another DNS lookup, but
uses only P2P lookup.

Usually,BYE message is sent directly between the two endpoints to terminate the call, without involving P2P lookup.
Other messages such asMESSAGE for instant messaging follow similar lookup mechanism asINVITE. TheSUBSCRIBE
message handling for locating users in the “friends list” on startup is described in Section 6.

19

4 Experiments

This section describes the various experiments we have conducted with SIPPEER. TODO: Should I add a subsection
for Java GUI?
4.1 Adaptor for existing SIP phones

In this section we describe how to use SIPPEER as a P2P-SIP adaptor for existing SIP user agents such as Columbia
University’ssipc [30], Cisco IP phone 7960, Pingtel IP phone, Xten Networks’ X-Lite client v2.0 and Microsoft Windows
Messenger v5.0. Similar mechanism can be used for other clients. The idea is to use SIPPEERas an outbound proxy for
these clients.

Consider an example P2P-SIP network with five nodes with identifiers 1, 7, 10, 15 and 22 as shown in Fig. 7.

bob@yahoo.com = 11
Windows Messenger

X−Lite: alice@example.com = 20

10

1

cisco: kns10@cs.columbia.edu = 6

6

sipc: hgs@cs.columbia.edu = 9

9
20

11

22

15

7

Figure 7: Example P2P-SIP network with existing phones

20

4.1.1 Columbia sipc

Userhgs@cs.columbia.edu usessipc. He sets the outbound proxy as node22ip, which is vienna.clic.cs.columbia.edu
as shown in Fig. 8. This allowssipc to send all the outbound messages to node22. He add a new account to register
his SIP identifier as shown in Fig. 9. Note that the login information is not used unless the P2P-SIP network prompts
for authentication.Sipc sends SIPREGISTER for hgs@cs.columbia.edu to node22. Based on the hash value of the
identifier, H(hgs@cs.columbia.edu)=9, the request gets routed to node10 which stores the registration.

Figure 8: Sipc: preferences Figure 9: Sipc: new account

Sipclite is another user agent with simpler user interface thansipc but uses the same source code base and configuration
mechanism.

serverhost localhost
serverport
username Henning Schulzrinne
sip sip:hgs@cs.columbia.edu
proxycall 1
protocol UDP
monitor 0
auth_method Digest
stun stunc

Figure 10: Sipclite configuration

For software-based SIP phones, a wrapper script can invoke both the SIPPEERand the SIP phone, so that no explicit
configuration is needed. For example, we have written a shell script on Linux that modifies thesipclite configuration to
use SIPPEERas outbound proxy on localhost as shown in Fig. 10. Then, it invokes SIPPEER, waits for three seconds, and
startssipclite. From the user’s point of view, he just has to start one script to add P2P-SIP service to his SIP phone using
SIPPEER.

Since SIPPEER listens on UDP packets on default SIP port, 5060, as well as another randomly allocated port (for
Naddr), configuring the outbound proxy port as default works for the clients on UDP. For TCP, the client needs to set the
port correctly based onNaddr. A command line option,-p, in SIPPEERallows using a fixed port forNaddr.

4.1.2 Cisco IP phone

Userkns10@cs.columbia.edu uses Cisco IP phone. He sets the outbound proxy as node7ip, which is128.59.15.56. An
example configuration is shown in Fig. 11. When the phone starts up, it sends a SIPREGISTER message to the outbound
proxy for identifierkns10@cs.columbia.edu. The registration for destination key, H(kns10@cs.columbia.edu)=6, gets
stored on node7.

At this pointkns10 can callhgs, by dialing the URLhgs on the Cisco phone. Call is received byhgs on sipc who
accepts the calls. Whenkns10 hangs up, the Cisco phone sends the SIPBYE message forhgs@cs.columbia.edu to the

21

line1_name: "kns10"
line1_shortname: "kns10 on p2p"
line1_authname: "kns10@cs.columbia.edu"
line1_password: "something"
line1_displayname: "Kundan Singh"
outbound_proxy: "128.59.15.56" ; budapest.clic.cs.columbia.edu
outbound_proxy_port: 5060
proxy1_address: "cs.columbia.edu"
proxy1_port: 5060
proxy_registrer: 1

Figure 11: Example Cisco phone configuration

outbound proxy node10. This works but is not correct. A SIP [20] compliant user agent should sendBYE directly to
Contact address of the other endpoint, i.e.,sipc’s IP address, because SIPPEERnode10 does not dorecord-route.

When userhgs callskns10@cs.columbia.edu, the Cisco phone rings. Whenkns10 picks up the phone, call setup is
completed. Whenhgs terminates the call,sipc sends the SIPBYE message directly to the Cisco phone.

4.1.3 X-lite

Useralice@example.com uses the X-Lite client and sets the proxy as node15ip, which is dhaka.clic.cs.columbia.edu as
shown in Fig. 12. When the user agent starts up, it sends a SIPREGISTER request to node15, which eventually gets stored
on node22 based on the key, H(alice@example.com)=20.

Figure 12: SIP proxy settings

At this point Alice can create address book entry for another user, sayhgs@cs.columbia.edu as shown in Fig. 13. To
make an outbound call tohgs, she dials the speed dial number of 447. The user agent sends a SIPINVITE message to node
15, which eventually gets routed to userhgs. TheACK andBYE messages are sent directly from X-Lite to sipc. The call
flow is analogous in the reverse direction whenhgs callsalice@example.com.

A bug in X-Lite that ignored thebranch parameter after a space caused initial interoperability problem. We
modified our software to workaround this problem, however problem may appear with other clients trying to

22

Figure 13: Speed dial Figure 14: Making a call

interoperate with X-Lite with or without P2P-SIP network.

4.1.4 Microsoft Windows Messenger

User bob@yahoo.com uses Microsoft Windows Messenger and sets the SIP communication service proxy as node1,
warsaw.clic.cs.columbia.edu, as shown in Fig. 15. When user logs in, it sends a SIPREGISTER message to node1, which
eventually gets stored in node15 based on the key, H(bob@yahoo.com)=11.

To make an outgoing audio call, Bob selects that option and specifies the destination user identifier,hgs@cs.columbia.edu,
as shown in Fig. 17. TheACK andBYE messages are sent directly to the other end point. The reverse direction call setup
is similar.

4.2 Interoperability issues

This section describes some interoperability issues, certain design choices to work around these issues, and suggestions for
future enhancements for interoperability.

SIP phones that one wants to use with SIPPEER adaptor should be SIP compliant [20]. Using an adaptor shields
some of the interoperability issues, but does not solve all the problems. For example, if SIP phonesA andB are not
interoperable, but both can interoperate with SIPPEER, then the system may or may not work, depending on whether the non
conformance issue affects the proxy/registrar or the user agent, respectively. We try to workaround specific proxy/registrar
related interoperability problems without violating SIP. For user agent related problems, SIPPEERmay act as a back-to-back
user agent (B2BUA) to shield the non-conforming phones.

Some phones do not implement outbound proxy as per SIP specification [20], which says that the outbound proxy should
be treated as a pre-loaded route set. This means if the proxy does not insertRecord-route header in the initialINVITE
request, then subsequent request in the dialog such asBYE should not be sent to the proxy. Suppose a user,hgs, usingsipc
sends the initialINVITE via P2P-SIP network, tokns10 using non-conforming Cisco IP phone. Whenkns10 wants to hang
up, the Cisco phone sendsBYE to the outbound proxy SIPPEERnode. Since the destinationhgs may not be registered in
P2P-SIP, this does not work.

We have modified SIPPEER to work around this problem. SIPPEER proxies the request to the request-URI
instead of P2P-SIP next hop, if the request-URI does not belong to local host and contains a port number, hence
likely to be a contact location rather than an user identifier. This works in this scenario of Cisco phone, but will
not always work.

23

Figure 15: Windows Messenger configuration Figure 16: Select voice call

Figure 17: Specify remote address Figure 18: In a voice call

24

5 Security

P2P applications expose existing security threats such as virus and worms to larger networking community, even to
corporate networks behind firewalls. In the context of P2P-SIP, there are a number of different types of threats, some of
which exist in server-based SIP, whereas others in P2P. In this section we summarize various threats and try to provide
solutions to some aspects of these threats. We have not yet implemented these mechanisms in our SIPPEER.

Some of the security problems in P2P are hard to solve. There is a tradeoff between security risks and convenience of
server-less systems.

5.1 Threats

Malicious program: The application can allow various forms of attacks, break-in, spying or spread virus, spy-wares or
worms. Software developed by trusted entities or open source community can reduce this risk. Even software bugs
such as buffer overflow can be exploited by hackers. Running the application as a regular user instead of an adminis-
trator (on Windows) or super-user (on Unix) can reduce the risk to some extent.

Copyright violation: P2P-SIP architecture can be easily extended to support file transfer. For example, SIPINVITE can
initiate a ftp session using appropriate SDP message body. The problem is similar to other P2P file sharing appli-
cations. P2P-SIP does not have an efficient search method, i.e., search for files usingregex pattern matching. This
also reduces the threat, since not many people will use this for sharing music files if the files can not be efficiently
searched.

Stolen identity: The system should prevent a malicious user from stealing the identify of another user. In P2P-SIP, we
reduce the risk by requiring that the user identify must be a valid email address. The system generates a password
for the user identify and sends it to the email address. We describe this mechanism later in this section. The system
should be able to authenticate and securely determine whether the peer is who she claims to be.

Privacy: Certain user information needs to be conveyed to the other peers to allow call routing. The system should ensure
that no sensitive data is conveyed, which can be misused later. In particular all signaling and media communication
should be encrypted. Privacy and confidentiality in a pure P2P system is difficult. Some parts of the problem is
addresses in this section using public key mechanism.

Trust: Detection of misbehaving peers in Chord-based P2P network is yet an unsolved problem. There are guidelines that
can help reduce the risk. In particular, it is hard to detect a misbehaving node that routes some calls correctly, but
drops others. Secondly, the node may secretly log the call information for later misuse.

Besides the above threats there are more threats in P2P systems such as anonymity [12], free riding [3] and accounting.
Caller anonymity can be provided by having the proxies hide the identity of the caller. A reward or credit system is needed
to motivate peers to join the DHT, and reduce free riders. Call accounting is needed for PSTN calls, and can be provided by
the gateway. Accounting within P2P-SIP nodes is not required.

5.2 Identity protection

When a user signs up with the P2P-SIP network for the first time, we need to verify that the user identifier is valid and indeed
belongs to the user. In the absence of public key infrastructure (PKI), the system can generate a new password and send it
in an email to the user. This requires that the user identifier be same as her email address. For example, when Alice signs
up with identifieralice@example.com by sending a SIPREGISTER message, the responsible node generates a random
password for Alice and sends it in an email toalice@example.com. It then challenges Alice with digest authentication [5].
We use the domain part of the user identifier as the digestrealm for authentication. The responsible node maintains the
authentication information (user identifier, realm and MD5 hash of “user:realm:password”) on the DHT. The information is
indexed by the user key. This information is required and sufficient for future authentication of any user signing up with the
same identifier. A usable time-to-live, say one month, can be used. The information is refreshed when the user subsequently
signs up. So if the user identifier is unused for a month, subsequent sign-in generates new password sent to the user’s email

25

address.TODO: Some mechanism for the user to request a new password is useful, e.g., new header in REGISTER
message asSend-Password: yes , but can be misused as email spam

The email sent to Alice contains the user identifier, realm and password. It also contains the IP address (or other
identifying information) of the original sender so that Alice can report abuse if she was not the one trying to sign up with
P2P-SIP. When Alice receives the password, she signs up again with the appropriate credentials. Subsequent sign-up follow
the same procedure.

When registrar node (A) fails or shuts down, the registration is transferred to another DHT node (B). If node B trusts
node A, it just needs to authenticate A, otherwise it re-generates a new password and sends it to the user’s email address.
We believe that once we have a P2P reputation system, only the “more” trusted nodes will be present in the DHT.

The problem is still there if the registrar node is malicious, and can cause denial of service (DoS).

5.3 Misbehaving nodes

Certain guidelines can be followed to detect and avoid misbehaving nodes [28]. For example, the caller can prefer redirect
(iterate) mode of operation, so that it can monitor at each step whether the routing is as per DHT specification. There
should be no single point of decision. In the current system, the responsible node also does replication. So a misbehaving
responsible node can make the user unavailable. The P2P-SIP nodes can periodically verify the routing correctness, e.g., by
making calls to itself through some other node.

Generally speaking there are three models to prevent misbehaving nodes in P2P: (1) hide the security algorithms and
protocols, so that only the single vendor implementation will be running on the node (e.g., Skype), (2) form a social network
of peers in unstructured P2P system, or (3) keep only trusted nodes in the structured P2P network. What we want is to have
all kinds of nodes in Chord-based structured P2P, but nodes should be able to selectively trust other nodes in call routing
and registrations.

A number of reputation systems have been proposed for P2P [6,8,9,31]. However, they focus on file sharing systems (not
real-time), have centralized components, assume co-operating peers or have problems of collusion and multiple identities.
Further study is needed to detect the peers who are known to drop calls or do other malicious behavior so that they are not
used in the call routing path and not allowed to become part of the underlying DHT.

Malicious nodes cause two kinds of problems visible to the user: (1) DoS, i.e., the user identifier becomes unavailable,
and (2) intercept, i.e., call goes to the wrong person. The latter can be detected using end-to-end authentication assuming a
previous communication has happened. The former is difficult to eliminate without a P2P reputation system. “Node calling
itself” mechanism can be used for detection to some extent.

5.4 Data privacy

There are three types of information about a user that can be stored on another node.

public: Node should be able to see the information for message routing, authentication, or other processing. For example,
user’s encrypted password, contact locations (SIPContact header including q value, expiry and URI), programmable
script (CPL), voicemail options (such as timeout to go to voicemail, maximum message size, etc).

private: Only the user should be able to see and modify this information. Private data must be encrypted by the user before
storing on the node. For example, user’s address book, groups, calendar appointments, watcher and watchee list,
programmable scripts (e.g., LESS, CPL, SIP CGI or servlet) and other profile information.

protected: User should be able to see and modify the information, but some other user should be able to create the infor-
mation. The storing node should not be able to see or modify the information. For example, voice/video mail, and
offline messages. Protected data is encrypted by the sender, and decrypted by the recipient.

Public key mechanism can be used for these.

5.5 Programmable call routing

The responsible node can not trust the user except for storing her information and routing her calls. For example, un-trusted
programmable call routing scripts such as SIP-CGI and SIP Servlet will not be run by the responsible node on the user’s
behalf. On the other hand, trusted and secure CPL scripts can be run by the responsible node. However, this is purely a
local decision by the responsible node.

26

5.6 User aliases

Aliases or other names are treated as user identifiers and all profile information must be duplicated. Sharing the profile
information among the aliases causes complicated trust requirements. On the other hand, user will typically have provisions
in her user agent to register with multiple user identifiers or line presence, so that does not require support from P2P-SIP.

Alternatively, user can maintain a primary identifier such asalice@example.com and point all other identifiers such
asAlice.Wonderland@yahoo.com andaw76@columbia.edu by registering them with contact as the primary identifier.
This avoids duplicating the profile information for secondary identifiers, but increases the call setup latency when someone
wants to reach the user by her secondary identifier. To avoid going into search loop, responsible node for the secondary
identifier will typically redirect the call request to the primary identifier. The caller’s phone then retries search for the
primary identifier on the P2P-SIP network.TODO: Does proxy mode work? How to inform the node to use search on
P2P-SIP instead of DNS lookup for the contact location.

Aliases follow the same procedure for first time log-in, i.e., aliases must be a valid email address and the password is
sent to the email address represented by the alias identifier.

27

6 Advanced services

Many advanced services can be specified using SIP URI. For example,sip:staff-meet@conferencing.net can indicate
the pre-scheduled conferencing service by conferencing.net domain, orsip:dialog.voicexml@ivr.net can reach the generic
interactive voice response service. Such services can be built transparently in the basic implementation. For example, a
SIP conference server can register all the pre-scheduled conferences in the P2P network, an answering machine module can
register to receive incoming calls on behalf of all the registered users, and a VoiceXML browser can register the specific
voice dialog service such as voice mail access.

In this section we describe how to extend SIPPEERto support some advanced services such as presence, PSTN inter-
working, firewall and NAT traversal. The procedures described in this section are not yet implemented in SIPPEER.

6.1 Presence and event notification

SIPPEER has only the rudimentary support for event subscription and notification [13, 16]. Other SIP users agents that
support presence or other events can work in conjunction with SIPPEER. SIPPEERfacilitates subscription migration from
a P2P-SIP node to subscribee’s endpoint and vice versa.

Suppose a subscriber, Alice (alice@example.com), subscribes for the presence status of Bob by sending SIPSUB-
SCRIBE message tobob@yahoo.com. Note that the P2P-SIP node may not be able to authenticate the subscription since
the subscriber Alice may not be registered with P2P-SIP network at all.

SUBSCRIBE sip:bob@yahoo.com SIP/2.0
To: <sip:bob@yahoo.com>
From: <sip:alice@example.com>

If Bob does not have a valid registration in P2P-SIP network, the responsible node for Bob’s user identifier keeps the
subscription information. It responds with a SIP202 pending response, and a SIPNOTIFY message withSubscription-
State of pending (procedure 6.1). If SIPPEERunderstands the event-package (e.g., presence package may be implemented
in some P2P-SIP nodes), then it can put appropriate message body inNOTIFY to indicate off-line status.

SIP/2.0 200 Pending

NOTIFY <sip:alice@example.com> SIP/2.0
Subscription-State: pending

When Bob registers, the subscription is terminated with reason as “deactivated” so that Alice can subscribe again
(procedure 6.2).

NOTIFY <sip:alice@example.com> SIP/2.0
Subscription-State: terminated; reason=deactivated

If Bob has a valid registered contact, then SIPPEER proxies theSUBSCRIBE message to the contact. If there are
multiple registered locations, then the request is forked to all the locations. Once the request is proxied, the SIPPEERnode
steps out of the subscription path.

When Bob unregisters with P2P-SIP, he sendsNOTIFY message to Alice terminating the subscription with reason as
“deactivated”. Alice subscribes again, and the subscription gets migrated to the responsible P2P-SIP node.

When the responsible P2P-SIP node gracefully leaves the system, it also sendsNOTIFY to terminate all the subscriptions
for keys stored on that node. Alternatively, the node can send theSUBSCRIBE message to the new responsible node.
However, this approach requires additional logic for the node authenticating on behalf of the subscriber to the subscribee,
hence not recommended.

The subscription is stored inSubscription object. EachUserAccount, A, is associated with zero or more contact
locations,Ci, and zero of more subscriptions,Sj . The algorithm for handing incomingSUBSCRIBE by the responsible
node is shown in procedure 6.1, and incomingREGISTER for subscription migration in procedure 6.2.

One potential problem could be as follows. Suppose Bob registers with his user agent which does not support events.
So theSUBSCRIBE request will be rejected, e.g., by “501 not implemented” error code. This terminates the subscription
attempt by Alice, who may not retry subscribing. To work around this problem, SIPPEERmay use theOPTIONS message

28

Procedure 6.1N .OnSubscribe (S:subscription object,M :request message)
if noA such thatA.to = S.to then

/* No valid registrations found */
send response202 Pending
sendNOTIFY S.from

Subscription-State: pending
else ifS was activethen

/* Terminate existing subscription first */
sendNOTIFY S.from

Subscription-State: terminated; reason=deactivated
deleteS

else
for all C in A.contacts do

proxy M to C
if a valid 2xx, 401, or 407 response is receivedthen

deleteS
/* proxy the response upstream */

else
/* do not migrate. respond locally. */
send response202 Pending
sendNOTIFY S.from

Subscription-State: pending

Procedure 6.2N .OnRegister (R:registration object,M :request message)
/* This is appended to procedure 3.16 */
for all S such thatS.to = R.to do

if S.event isnot reg then
sendNOTIFY S.from

Subscription-State: terminated; reason=deactivated
deleteS

to Bob to find out if Bob’s user agent supportsSUBSCRIBE or not. It also intercepts theSUBSCRIBE response from
Bob. If Bob’s user agent fails without notifying Alice, there may be delay before Alice detects and retries.

SIPPEERimplements the registration event package [16] since it acts as registrar for some users. The subscription for
eventreg is handled locally by the SIPPEERnode that is responsible for storing user registrations. This subscription does
not get migrated when the user registers or unregisters. When the SIPPEER node storing the subscription is leaving the
network, it terminates the subscription so that the subscriber re-subscribes to the new responsible node for the user key.
TODO: How does authentication work for this? How does subscribee approve this subscription without migration?

6.2 PSTN interworking

The system does not allow registering a telephone number of the formsip:number@domain as an alias because that is
used as node identifier to form the Chord DHT in SIPPEER. Secondly, verifying that a user owns a particular telephone
number or extension is beyond the scope of P2P-SIP.TODO: How do we verify that the user owns the number if he
registers his number.

TRIP [17] is a policy-driven inter-administrative domain protocol for advertising the reachability of telephony destina-
tions between location servers. We do not use TRIP because (1) it adds another protocol requirement for P2P-SIP nodes,
and (2) it distributes telephony destinations to all the location servers, unlike lookup service of DHT. However, the hybrid
architecture of P2P-SIP can still use TRIP servers through the service provider’s SIP proxy servers, independent of P2P
operations.

In this section, we provide an alternate SIP-based method to map telephone number ranges to P2P-SIP nodes. One
problem with this approach is that every gateway node can reach potentially every phone number in the world – at very
different rates. For example, a gateway in New York could advertise calling India, but one would imagine that a gateway in
Delhi would have better rates. One way to restrict advertisements is by rates (cost). For example, a gateway in New York
that is also a P2P-SIP node, queries the existing rates for calling India (country code 91) using the SIPOPTIONS method.

29

If the rates are more than its offer, then it should advertise its own offer, otherwise not. Typically nodes will periodically
query for rates with period inversely proportional to the prefix match with its local coverage. For example, a gateway in New
York with phone number +1-212-939-7130 can query for rates of +91 prefix every week, +1 prefix everyday, and +1-212
prefix every three hours. Another issue is related to currency conversion. Comparing two different gateways offering rates
in different currency requires timely currency conversion factor, which is beyond the scope of P2P-SIP.

The gateway registers the various telephone prefixes it can reach in the DHT. The DHT node stores only a few best
offers, based of the offered rates. The prefix is queried during call setup. Given all the rate determination and currency
conversion problems, the method may not be useful for calls that incur cost, but is useful for detecting gateways to reach
free telephone destinations.

6.2.1 Registering a telephone prefix

SIP [20] does not allow use oftel URI [23] in the To header ofREGISTER message. This is because other schemes
such astel are supposed to be resolved externally, e.g., using ENUM [4]. If the resolution results insip or sips URI, it
can be registered with the SIP registrar. However, in P2P-SIP, we allow registering atel URI [23] or a telephone prefix. A
telephone prefix is similar to atel URI except that the digits are empty and thephone-context parameter specifies the prefix,
e.g., “tel:;phone-context=+1-212”.TODO: This is not comformant with RFC 3966 because of empty number portion.
Alternatively, “sip” URI can be used as “sip:+1212939xxxx@sippeer.net;user=phone” to make it RFC 3261 compliant, but
introduces an unusedsippeer.net domain.

For example, a PSTN gateway implementing P2P-SIP (or its SIPPEERadaptor) that can reach area code 212 in Man-
hattan, New York, can register with P2P-SIP as follows:

REGISTER sip:sippeer.net SIP/2.0
To: <tel:;phone-context=+1-212>
From: <gw@my_gateway.com>
Contact: <sip:my_gateway.com;lr>; cost=USD.05/60s

The lr parameter inContact indicates that the server should not alter the originalINVITE’s request-URI when prox-
ying to this gateway, and should use mechanism for loose-routing [20] to proxy the request. This preserves the original
callee destination in the request-URI. This does not apply for redirect responses. Thecost parameter provide basic billing
information for the gateway.

The completetel URI in theTo header including thephone-context parameter after removing any fillers such as “(,),
-”, is used as the key for lookup and routing in Chord-based P2P-SIP network. For example, the responsible P2P-SIP node
uses “tel:;phone-context=+1212” as the user key for the above registration.

When a responsible node receives an incomingREGISTER message for the prefix, it updates theContact list of the
destination and re-computes the preferenceq values for the variousContact headers. The node may choose to keep only
the top few contacts for the prefix based on the calculated preference. Local policy or cost metric can be used for calculating
theq values.

6.2.2 Calling a telephone number

When another user wants to reach a number, say “+1-212-939-7040”, the caller’s user agent sends the following SIPINVITE
request:

INVITE tel:+1-212-939-7040 SIP/2.0
To: <tel:+1-212-939-7040>
From: <sip:bob@example.com>
Request-Disposition: redirect

Caller preference [21] is used to indicate that the caller wants the request to be redirected, i.e., receive “302 Redirect”
responses from P2P-SIP nodes. This allows the caller to collect all the responses and select the best gateway to route the
call to.

The next hop node in P2P-SIP network is computed using the key as follows. The basic key,K0, is “tel:+12129397040”
derived fromTo header after removing any fillers. Other keys,Kn−i, is computed as “tel:;phone-context=+first i digits
prefix”, for i=1,2,..n-1, wheren is total number of digits. For example,K4 is “tel:;phone-context=+1212939” andK7 is
“tel:;phone-context=+1212”. TheINVITE request is sent to multiple next hop nodes based on keysKi. Either sequential or
parallel forking can be used. The caller may preferKi overKj for i < j but is not required to do so. Note that only the
first P2P-SIP node (which may the caller phone or the outbound proxy of an existing SIP phone), sends multipleINVITE

30

requests based on the keys. It also puts the key in therequest-URI of the INVITE request. Subsequent nodes proxy or
respond only a single request, without modifying therequest-URI.

The caller user agent should utilize any local configuration or policy information available to reduce the number
of INVITE requests sent. For example, in USA, a call made to “+1-212-555-1234” may be sent to nodes with keys
“tel:+12125551234”, “tel:;phone-context=+1212555”, “tel:;phone-context=+1212” and “tel:;phone-context=+1”, but other
keys can be skipped. This is because a gateway typically handles an area code, local switch or all of USA telephone
subscribers.

If the P2P-SIP node proxied the call to the gateway, then the caller receives200 success response and call setup is
complete. Otherwise, the caller receives302 redirection response with the address of the gateway. Different responses may
be received for different prefixes. Three example responses are shown below:

SIP/2.0 302 Moved temporarily
To: <tel:;phone-context=+1212939>
Contact: <sip:phone.cs.columbia.edu;lr>; cost=0; q=1.0

SIP/2.0 302 Moved temporarily
To: <tel:;phone-context=+1212>
Contact: <sip:phone.cs.columbia.edu;lr>; cost=USD.03/60s; q=1.0
Contact: <sip:manhattan.verizon.com;lr>; cost=USD.06/60s; q=.8

SIP/2.0 302 Moved temporarily
To: <tel:;phone-context=+1>
Contact: <sip:mci.com;lr>; cost=USD.10/120s; q=1.0
Contact: <sip:att.com;lr>; cost=USD.09/60s; q=.8

Redirect behavior is preferred since it allows the caller to select the best destination. When multiple responses are received
as shown above, the caller user agent collects all theContacts and selects the best destination. Theq parameter is assigned
by the registering P2P-SIP node for all the contacts within the same telephone prefix using some local policy or based on
cost metrics. Theq parameters are valid within the same response, and can not be used for comparison across different
responses.

In this case, the best options issip:phone.cs.columbia.edu;lr with zero cost for prefix +1-212-939. The caller sends
anotherINVITE with original request URI (and other headers) to this destination.TODO: What about authentication
for INVITE to telephone destinations?

6.2.3 Incoming INVITE handling

When a SIPPEERnode receives theINVITE request, it checks if the request is for a telephone destination: either “tel” URI
or “sip:number@sippeer.net;user=phone”. If yes, the canonical “tel” URI is formed to compute the DHT key by removing
fillers and converting “sip” URI to “tel” URI. For example, “sip:+1-212-939-xxxx@sippeer.net;user=phone” is converted
to “tel:;phone-context=+1212939”. This is used as the key to compute the next hop in routing.

If this SIPPEERis an outbound proxy for an existing SIP client, and the destination is the global “tel” URI without any
phone-context or a “sip” URI with global telephone number in the user part, then it also calculates multiple keys and sends
INVITE to those next hop nodes using forking, as described earlier.

If this SIPPEERnode is responsible for the key, then it collects all the contacts for this prefix, and responds with302
response. If the caller-preference requests “proxy” behavior, then the node proxies the call to the contact with the highestq
value.

6.3 Firewall and NAT traversal

We refer to firewall or NAT as amiddlebox, and the internal network behind the middlebox as aprivate network. If a
P2P-SIP node in a private network, it does not join the global DHT, but instead uses an existing global DHT node as an
outbound proxy. When an existing client (C) uses a P2P-SIP node (P) as an adaptor (outbound proxy), there are three cases:
(1) if both P and C are in public network, it does not involve any middlebox, (2) if P is public and C is private, then C needs
to implement various middlebox traversal mechanisms, and (3) if both P and C are in private network, then P does not join
the global DHT, but uses an existin DHT node as outbound proxy.

Both signaling and media traffic needs to be traversed through the middlebox. SIP signaling traversal through middle-
box is handled using symmetric response routing [19] and connection reuse [11]. Interactive connectivity establishment
(ICE [14]) is used in conjunction with STUN [22] and TURN [15] to enable media traversal.

31

6.3.1 Signaling

We describe SIP symmetric response routing and connection reuse in the context of P2P-SIP.
Suppose the P2P-SIP node is listening for SIP messages on IP interfaceLip and portLp. Default SIP port isLp=5060.

When the node sends or proxies a SIP request on UDP, it usesLip andLp as source IP and source port. It also puts the
“rport” parameter in the topVia header.

When the node receives an incoming SIP request on UDP from the remote client’s IPRip and portRp, the response is
sent using source IPLip, source portLp, and destination IPRip. If the “rport” parameter is present, then destination port is
Rp, else the port number inVia header is used. If the “rport” parameter is present, the response also contains the parameter,
and the value is set toRp.

For TCP, the node maintains a list of existing connections. The connectionC includes the source IP, source port,
destination IP and destination port; and also include an attribute indicating direction (send, receive or both). When the node
has to send or proxy a SIP request on TCP to destination IPRip and portRp, it searches for existing connection to same
destination and port, with direction assend or both. If found, the connection is used to send the message. If not found,
a new connection is created with direction assend, and the local interfaceLip and portL′

p for the TCP connection are
recorded. Note that the connection specific local portL′

p is different from default listening portLp. The node now listens
for incoming responses as well as requests on this new connection. The outgoing request has theVia header containingLip

andLp and the “alias” attribute, so that the response is sent to portL′
p.

When an incoming SIP request is received on TCP from remote IPRip, remote portRp, local IPLip and local port
Lp, and the connection is not found, a new connection is created with direction “receive”. If the request’s topVia contains
“alias” parameter, the direction is changed to “both” and remote port of the connection is changed to the port specified in
theVia header. If the new request is received on an existing connection, then the “alias” parameter is ignored.

The connection is terminated if there is no activity for a timeout, e.g., one hour. If new connection needs to be created,
but no more resources (e.g., socket or file descriptors) are available, the least recently used connection(s) for which no
response is pending are terminated to allow new connections.

TLS is required for connection reuse, to prevent connection hijacking.

6.3.2 Media

Since media and signaling are sent on separate ports, middlebox traversal for media also needs to be established.
SIPPEER implements ICE to establish media sessions. It also implements basic STUN and TURN client and server

functions. The node listens on default STUN port 3478, for both STUN and TURN requests.
Before sending a call setup request, the caller’s node gathers STUN and TURN derived addresses from its registrar

P2P-SIP node. It uses these addresses in SDP ofINVITE as described in ICE. Callee also gathers derived addresses from
it’s registrar, and uses these in the SDP in the 200 response.

TODO: Describe how media over TCP is handled.

6.3.3 Integrating media and signaling

An alternative is to use the same default SIP port (i.e., 5060) for media also, and do demultiplexing at the application layer
between SIP and RTP/RTCP packets. For example, the node can use this port in the SDP’s “m=” media line. Since RTCP
on UDP requires separate port, it may not work. Both SIP and RTP on the same TCP connection requires packetization
layer for RTP/RTCP above TCP as used in RTSP [24] (sec 10.12). Moreover, all media must traverse the same path as
signaling, thereby turning the SIP proxies into back-to-back user agents, which is not scalable. Integrating signaling and
media works reasonably well for residential-to-gateway calls, where the gateway is outside the firewall/NAT, similar to the
IAX model [1]. Comparison of this model with STUN or TURN model is for further study. In particular, whether single
TCP connection has advantage over having multiple TCP and UDP connections to the same box.

We explain how to interwork between P2P-SIP of a private network with the global P2P-SIP in the next section.

6.4 Inter-domain operation

In real deployment, it is useful to allow multiple P2P-SIP networks (DHTs) to be interconnected. For example, individual
large organizations can have internal P2P-SIP network which is connected to the global P2P-SIP network. In this section,
we propose a two level network: the global (public) DHT represented bysippeer.net and local organization wide DHT,
which may be behind firewall and NAT. The local domain-specific DHT has representative server nodes, that are reachable
in the global DHT also via thedomain key. Any node in domain-specific DHT can reach the global DHT also, and any
node in global DHT can reach the domain-specific DHT via the representative server nodes in the domain. The global DHT

32

computes the index based on user identifier of the formuser@domain, and if not found thendomain. Local one computes
the index based onuser for intra-domain calls.

6.4.1 Registration

Consider the architecture shown in Fig. 19 with one global DHT (nodes P, Q, R, S) and two domain specific DHTs. Domain
private.com’s DHT has nodes A, B, C, D andexample.com has nodes X, Y, Z, where nodes C, D and X are representative
server nodes.

global
(sippeer.net) example.com

P

NAT

Alice

Bob

example.com => X
private.com => C,D

domain=private.com
next−level=sippeer.net

domain=example.com
next−level=sippeer.ne

domain={}
next−level={}

DHT:

config:

Paul

Ron

paul@columbia.edu => P
ron@columbia.edu => R

Zhou

bob@yahoo.com => B

zhou => Z
bob =>B

Alice

alice =>A, Q

private.com

A

Y

Z

X

S R

Q

D

C

B

Figure 19: Inter-domain P2P-SIP

Every DHT has some bootstrap nodes identified in DNS of the domain. For example, bootstrap nodes for global DHT are
identified by DNS record ofsippeer.net, and those for local DHTs ofprivate.com andexample.com by their respective
DNS records. When a node starts up, it uses its configured domain name and it does DNS lookup for NAPTR/SRV for
SIP service of its domain, and resolves the addresses to IP addresses. If no domain name is configured, it assumes global
sippeer.net domain. If any IP address matches any of the the local interface, the node assumes it is one of the bootstrap
nodes for the domain.TODO: Does the dependency on DNS cause P2P-SIP to become server-based system?For
example,private.com resolves to IP addresses of nodes C and D, where asexample.com to node X.

There are two configuration properties for each node:domain andnext-level. The former indicates the domain for
the node, wheresippeer.net indicates global DHT, whereas the latter indicates the next level DHT’s domain. Bootstrap
nodes in global DHT are configured withdomain andnext-level as empty. When the node starts up it does DNS query and
detects that it should be a bootstrap node for global DHT. Representative server nodes, C and D in theprivate.com domain
are started withdomain asprivate.com andnext-level assippeer.net. When node C starts up, it detects that it is bootstrap
node for its domain. Since C is a bootstrap node and thenext-level is not empty, it registers its domainprivate.com in the
next-level DHT via the bootstrap nodes insippeer.net domain. The registration gets stored at appropriate global P2P node
based on the keyprivate.com. Similarly, nodes D and X register their domains in the next-level global DHT.

REGISTER sip:sippeer.net SIP/2.0
To: <sip:private.com>
From: <sip:C@private.com>
Contact: <sip:C_ip_address>

The global DHT stores the mapping thatprivate.com is found at node C and D, whereasexample.com is at node X.
When a domain-specific node, A, starts up, it discovers node C, e.g., using multicast discovery. Node A gets to know

its domain andnext-level parameters in theREGISTER response from node C in new headers. It then joins the domain-
specific DHT inprivate.com domain. It also knows that it is not the bootstrap node, so it doesn’t register its domain to the
next level DHT. Existing clients such as X-lite do not need to understanddomain andnext-level parameters, because they
will typically be connected to a P2P-SIP node (outbound proxy), and do not take part in DHT directly. Internal DHT nodes
maintain theirnext-level anddomain properties, and send to other new joining nodes in that DHT.

The domain-specific bootstrap nodes use the P2P-SIP nodes of next-level DHT as outbound proxy. If a domain-specific
bootstrap node is in public network, it can directly join the global DHT, in addition to the domain-specific DHT.

Domain administrators may install multiple domain-specific bootstrap nodes to share load. The next-level may be
configured as empty so that the domain specific bootstrap nodes do not connect to the global DHT. This allows restricting
P2P-SIP calls to within a domain. Nodes may still use DNS [18] to reach outside networks directly without going through

33

the global DHT. Alternatively, administrators may install only bootstrap nodes in the domain as a replacement for SIP
proxy and registrar of the domain. In this case, the internal SIP phones use server-based SIP architecture but the domain is
connected to global DHT via P2P-SIP.

6.4.2 Call setup

When a useralice@private.com in a domain using node A, wants to call another userbob@private.com, it discovers that
the domain portion of the destination is same as thedomain property, so it callsFind(bob) in the domain-specific DHT.
The domain-specific P2P-SIP nodes identify the domain, and build the lookup key using only the user part.

Whenalice@private.com wants to callpaul@columbia.edu, the domains do not match, so it proxies theINVITE
request to the domain’s bootstrap node (C or D) resolved via DNS. Nodes C and D act as proxy to the global DHT, and
perform lookup on the global DHT.

When a userpaul@columbia.edu using node P in global DHT, wants to callron@columbia.edu, the domains
do not match. This is because node P is configured withdomain as empty. In this case it looks up for both keys
ron@columbia.edu and columbia.edu. Suppose,ron@columbia.edu is registered from node R in the global DHT,
then the call is proxied to node R.

Using similar procedure, supposepaul@columbia.edu wants to callalice@private.com, then it first looks up for
both alice@private.com andprivate.com keys in global DHT. The latter is found to be registered as nodes C and D,
so the request gets proxied to C or D or both, which further proxies the request to internal node A which registered as
alice@private.com. If such user identifier is not registered, the domain-specific DHT node sends back appropriate failure
response, 480 or 404, to the caller.

Supposealice@private.com on node A, wants to callzhou@example.com. The INVITE request is proxied to C,
which in turn proxies to X, which then proxies to internal node Z which registered as this user.

6.4.3 Cross-domain

The system allows a user inprivate.com domain to register with user identifier containing another domain. For example,
if user on node B registers asbob@yahoo.com, the registration should be propagated to global DHT. Similarly, a user
visiting another network should be allowed to register with her home domain’s DHT. We assume such cross registrations
are limited in volume and are supported with appropriate authentication.

When a user on node B in domainprivate.com registers as identifierbob@yahoo.com, it compares the domain part,
similar to call setup procedure. Since the domain does not match, theREGISTER message is proxied to the domain-specific
bootstrap nodes C or D, which in turn proxies it to the global DHT.

When a user on node P in global DHT, registers as identifieralice@private.com, theREGISTER message is first sent
with key as the domainprivate.com. If this fails, then the user keyalice@private.com is used for routing. Alternatively,
both can be tried in parallel, but will result in duplicate registrations. Since only a few users are expected to cross register,
this is not bad.

TheOPTIONS request tosip:private.com can be used before sendingREGISTER for alice@private.com to detect
if the domain-specific servers exist forprivate.com or not.

When user on node Q callsalice@private.com, it needs to send twoINVITE requests, one tosip:alice@private.com
and other tosip:private.com. The latter URI is not right since the nodes C or D can not tell where to proxy the re-
quest. There are two alternatives: use URI assip:user@private.com?p2p-key=private.com or useOPTIONS method to
sip:private.com to discover nodes C and D, and then sendINVITE to one of those nodes with URI assip:alice@private.com.
Usingp2p-key parameter reduces the call setup round-trips but looks like a hack. The problem with Q sending INVITE
directly to C or D is that C or D may be behind NAT or firewall and reachable only via P or S, respectively.

TODO: Provide pseudo-code for inter-domain REGISTER and INVITE processing, both inbound and outbound,
for regular nodes and bootstrap nodes.

34

7 Conclusions and future work

This paper gives an implementation report of the P2P-SIP architecture described in [26,27]. We have implemented the
basic registration and call setup modules in SIPPEER. We are working on NAT and firewall traversal, security, interworking
with PSTN, and offline message storage and delivery.

35

A Message flow

This section details the example SIP message flow with all mandatory headers, when a new node joins the DHT. The
message trace is captured using our implementation and is configured with 5-bits identifiers. In real world applications, the
identifiers will be 32 bits or 160 bits.

Node 7 multicasts discovery REGISTER message:
REGISTER sip:224.0.1.75 SIP/2.0
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAA
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:7@128.59.15.56:44452>
CSeq: 1 REGISTER
Call-ID: 978717896@128.59.15.56
Content-Length: 0

Node 22 responds:

SIP/2.0 302 Redirecting
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAA
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:7@128.59.15.56:44452>; tag=2644643801
Call-ID: 978717896@128.59.15.56
Cseq: 1 REGISTER
Date: Wed, 03 Nov 2004 19:44:53 GMT
Server: P2P-SIP-Columbia-University/1.24
Contact: <sip:128.59.15.31:41253>
Content-Length: 0

Node 7 sends unicast REGISTER to node 22:

REGISTER sip:128.59.15.31:41253 SIP/2.0
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAB
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:7@128.59.15.56:44452>
CSeq: 1 REGISTER
Call-ID: 591891853@128.59.15.56
Content-Length: 0

Node 22 => node 1.

REGISTER sip:128.59.15.60:35778 SIP/2.0
Via: SIP/2.0/UDP 128.59.15.31:41253;branch=z9hG4bK9DSJQdByDQAi
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAB
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:7@128.59.15.56:44452>
CSeq: 1 REGISTER
Call-ID: 591891853@128.59.15.56
Content-Length: 0

Node 1 => node 22:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 128.59.15.31:41253;branch=z9hG4bK9DSJQdByDQAi
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAB
From: <sip:7@128.59.15.56:44452>; tag=3047841036

36

To: <sip:7@128.59.15.56:44452>; tag=1664201056
Call-ID: 591891853@128.59.15.56
Cseq: 1 REGISTER
Date: Wed, 03 Nov 2004 19:44:53 GMT
Server: P2P-SIP-Columbia-University/1.24
Contact: <sip:10@128.59.15.55:36550>; predecessor=sip:1@128.59.15.60:35778
Content-Length: 0

Node 22 => node 7:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAB
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:7@128.59.15.56:44452>; tag=1664201056
Call-ID: 591891853@128.59.15.56
Cseq: 1 REGISTER
Date: Wed, 03 Nov 2004 19:44:53 GMT
Server: P2P-SIP-Columbia-University/1.24
Contact: <sip:10@128.59.15.55:36550>; predecessor=sip:1@128.59.15.60:35778
Content-Length: 0

Node 7 => Node 10:

REGISTER sip:128.59.15.55:36550 SIP/2.0
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAC
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:11@sippeer.net>
CSeq: 1 REGISTER
Call-ID: 368501868@128.59.15.56
Content-Length: 0

Node 10 => Node 7:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAC
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:11@sippeer.net>; tag=1829672944
Call-ID: 368501868@128.59.15.56
Cseq: 1 REGISTER
Date: Wed, 03 Nov 2004 19:44:53 GMT
Server: P2P-SIP-Columbia-University/1.24
Contact: <sip:15@128.59.15.48:34391>; predecessor=sip:10@128.59.15.55:36550
Content-Length: 0

Node 7 => Node 10:

REGISTER sip:128.59.15.55:36550 SIP/2.0
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAD
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:23@sippeer.net>
CSeq: 1 REGISTER
Call-ID: 3390599958@128.59.15.56
Content-Length: 0

Node 10 => Node 7:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAD
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:23@sippeer.net>; tag=2644643801

37

Call-ID: 3390599958@128.59.15.56
Cseq: 1 REGISTER
Date: Wed, 03 Nov 2004 19:44:53 GMT
Server: P2P-SIP-Columbia-University/1.24
Contact: <sip:1@128.59.15.60:35778>; predecessor=sip:22@128.59.15.31:41253
Content-Length: 0

The JOIN is complete now. This node 7 has become a super-node.
Now, node 7 updates its predecessor and successor as part of stabilization process.
Node 7 => Node 10:

REGISTER sip:128.59.15.55:36550 SIP/2.0
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAF
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:7@128.59.15.56:44452>
CSeq: 1 REGISTER
Call-ID: 4170442560@128.59.15.56
Expires: 3600
Contact: <sip:7@128.59.15.56:44452>; predecessor=
Content-Length: 0

Node 10 => Node 7:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAF
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:7@128.59.15.56:44452>; tag=1829672944
Call-ID: 4170442560@128.59.15.56
Cseq: 1 REGISTER
Date: Wed, 03 Nov 2004 19:44:53 GMT
Server: P2P-SIP-Columbia-University/1.24
Contact: <sip:15@128.59.15.48:34391>; q=1; predecessor=sip:10@128.59.15.55:36550
Contact: <sip:22@128.59.15.31:41253>; q=0.6
Contact: <sip:1@128.59.15.60:35778>; q=0.4
Content-Length: 0

Node 7 => Node 10:

REGISTER sip:128.59.15.55:36550 SIP/2.0
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAH
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:10@128.59.15.55:36550>
CSeq: 1 REGISTER
Call-ID: 1037968559@128.59.15.56
Expires: 3600
Contact: <sip:7@128.59.15.56:44452>; predecessor=sip:10@128.59.15.55:36550
Content-Length: 0

Node 10 => Node 7:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAH
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:10@128.59.15.55:36550>; tag=1829672944
Call-ID: 1037968559@128.59.15.56
Cseq: 1 REGISTER
Date: Wed, 03 Nov 2004 19:44:58 GMT
Server: P2P-SIP-Columbia-University/1.24
Contact: <sip:10@128.59.15.55:36550>; q=1; predecessor=sip:7@128.59.15.56:44452
Contact: <sip:15@128.59.15.48:34391>; q=0.8

38

Contact: <sip:22@128.59.15.31:41253>; q=0.6
Contact: <sip:1@128.59.15.60:35778>; q=0.4
Content-Length: 0

Now, it refreshes the finger table entries.
Node 7 => Node 10:

REGISTER sip:128.59.15.55:36550 SIP/2.0
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAI
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:11@sippeer.net>
CSeq: 1 REGISTER
Call-ID: 3698689758@128.59.15.56
Content-Length: 0

Node 10 => Node 7:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAI
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:11@sippeer.net>; tag=1829672944
Call-ID: 3698689758@128.59.15.56
Cseq: 1 REGISTER
Date: Wed, 03 Nov 2004 19:44:58 GMT
Server: P2P-SIP-Columbia-University/1.24
Contact: <sip:15@128.59.15.48:34391>; predecessor=sip:10@128.59.15.55:36550
Content-Length: 0

Node 7 => Node 10:

REGISTER sip:128.59.15.55:36550 SIP/2.0
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAJ
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:23@sippeer.net>
CSeq: 1 REGISTER
Call-ID: 661685467@128.59.15.56
Content-Length: 0

Node 10 => Node 7:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 128.59.15.56:44452;branch=z9hG4bKMzWJQTgLAwAJ
From: <sip:7@128.59.15.56:44452>; tag=3047841036
To: <sip:23@sippeer.net>; tag=2644643801
Call-ID: 661685467@128.59.15.56
Cseq: 1 REGISTER
Date: Wed, 03 Nov 2004 19:44:58 GMT
Server: P2P-SIP-Columbia-University/1.24
Contact: <sip:1@128.59.15.60:35778>; predecessor=sip:22@128.59.15.31:41253
Content-Length: 0

39

References

[1] Inter-asterisk exchange (iax) voice over ip protocol. http://www.asterisk.org.

[2] SIP library api in C++. http://www.cs.columbia.edu/˜ kns10/software/siplib.

[3] E. Adar and B. A. Huberman. Free riding on gnutella.First Monday, 5(10), Oct. 2000.

[4] P. Faltstrom. E.164 number and DNS. RFC 2916, Internet Engineering Task Force, Sept. 2000.

[5] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. J. Leach, A. Luotonen, and L. Stewart. HTTP authentication:
Basic and digest access authentication. RFC 2617, Internet Engineering Task Force, June 1999.

[6] M. Gupta, P. Q. Judge, and M. Ammar. A reputation system for peer-to-peer networks. InACM NOSSDAV 2003, June
2003.

[7] E. Guttman, C. E. Perkins, J. Veizades, and M. Day. Service location protocol, version 2. RFC 2608, Internet
Engineering Task Force, June 1999.

[8] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for reputation management in P2P networks.
In International World Wide Web Conference (WWW), Budapest, Hungary, May 2003. International World Wide Web
Conference Committee.

[9] S. Lee, R. Sherwood, and S. Bhattacharjee. Cooperative peer groups in NICE. InProceedings of the Conference on
Computer Communications (IEEE Infocom), Mar. 2003.

[10] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the evolution of peer-to-peer systems. InACM Conf.
on Principles of Distributed Computing (PODC), Monterey, CA, USA, July 2002. ACM.

[11] R. Mahy. Connection reuse in the session initiation protocol (SIP). Internet Draft draft-ietf-sip-connect-reuse-00,
Internet Engineering Task Force, Aug. 2003. Work in progress.

[12] D. Milojicic, V. Kalogeraki, R. M. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins, and Z. Xu. Peer-to-peer
computing. technical report HPL-2002-57 20020315, Technical Publications Department, HP Labs Research Library,
Mar. 2002. http://www.hpl.hp.com/techreports/2002/HPL-2002-57.html.

[13] A. B. Roach. Session initiation protocol (sip)-specific event notification. RFC 3265, Internet Engineering Task Force,
June 2002.

[14] J. Rosenberg. Interactive connectivity establishment (ICE): a methodology for network address translator (NAT)
traversal for the session initiation protocol (SIP). Internet Draft draft-ietf-mmusic-ice-00, Internet Engineering Task
Force, Oct. 2003. Work in progress.

[15] J. Rosenberg. Traversal using relay NAT (TURN). Internet Draft draft-rosenberg-midcom-turn-03, Internet Engineer-
ing Task Force, Oct. 2003. Work in progress.

[16] J. Rosenberg. A session initiation protocol (sip) event package for registrations. RFC 3680, Internet Engineering Task
Force, Mar. 2004.

[17] J. Rosenberg, H. F. Salama, and M. Squire. Telephony routing over IP (TRIP). RFC 3219, Internet Engineering Task
Force, Jan. 2002.

[18] J. Rosenberg and H. Schulzrinne. Session initiation protocol (SIP): locating SIP servers. RFC 3263, Internet Engi-
neering Task Force, June 2002.

[19] J. Rosenberg and H. Schulzrinne. An extension to the session initiation protocol (SIP) for symmetric response routing.
RFC 3581, Internet Engineering Task Force, Aug. 2003.

[20] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP:
session initiation protocol. RFC 3261, Internet Engineering Task Force, June 2002.

[21] J. Rosenberg, H. Schulzrinne, and P. Kyzivat. Caller preferences for the session initiation protocol (sip). RFC 3841,
Internet Engineering Task Force, Aug. 2004.

40

[22] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN - simple traversal of user datagram protocol (UDP)
through network address translators (nats). RFC 3489, Internet Engineering Task Force, Mar. 2003.

[23] H. Schulzrinne. The tel uri for telephone numbers. RFC 3966, Internet Engineering Task Force, Dec. 2004.

[24] H. Schulzrinne, A. Rao, and R. Lanphier. Real time streaming protocol (RTSP). RFC 2326, Internet Engineering Task
Force, Apr. 1998.

[25] H. Schulzrinne and J. Rosenberg. Internet telephony: Architecture and protocols – an IETF perspective.Computer
Networks and ISDN Systems, 31(3):237–255, Feb. 1999.

[26] K. Singh and H. Schulzrinne. Peer-to-peer internet telephony using SIP. InNew York Metro Area Networking Work-
shop, New York, NY, Sep 2004.

[27] K. Singh and H. Schulzrinne. Peer-to-peer Internet telephony using SIP. Technical Report CUCS-044-04, Department
of Computer Science, Columbia University, New York, NY, Oct. 2004.

[28] E. Sit and R. Morris. Security considerations for peer-to-peer distributed hash tables. InElectronic Proceedings for
the 1st International Workshop on Peer-to-Peer Systems (IPTPS ’02), Cambridge, MA, USA, Mar 2002. IEEE.

[29] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. InSIGCOMM, San Diego, CA, USA, Aug 2001.

[30] X. Wu and H. Schulzrinne. sipc, a multi-function SIP user agent. In7th IFIP/IEEE International Conference, Man-
agement of Multimedia Networks and Services (MMNS), pages 269–281. IFIP/IEEE, Springer, Oct. 2004.

[31] L. Xiong and L. Liu. Peertrust: Supporting reputation-based trust for peer-to-peer electronic communities.IEEE
Transactions on Knowledge and Data Engineering, 16(7):843–857, July 2004.

41

