A SIP Security Testing Framework

Hemanth Srinivasan and Kamil Sarac
Department of Computer Science, University of Texas at Dallas
800 W Campbell Rd. Richardson, TX 75080, USA
{hbs051000, ksarac}@utdallas.edu

Abstract—Session Initiation Protocol (SIP) has emerged as the
predominant protocol for setting up, maintaining, and termi-
nating Voice over Internet Protocol (VoIP) sessions. In spite of
the security mechanisms that it offers, several attacks are being
made on the SIP architecture. In this paper we take a proactive
approach and highlight the importance of testing SIP from a
security perspective. We first give a brief introduction to some of
the most common attacks on SIP. We then describe a framework
to effectively test several security aspects of a SIP network and
thereby help mitigate such attacks. We also present a genetic
algorithm that we developed and used to generate data in our fuzz
testing. Finally, we present the results of some tests performed
on popular SIP devices using our framework.

I. INTRODUCTION

With Voice over IP (VoIP), voice can now be transported
on a traditional IP data network, making use of the abundance
of the Internet and drastically reducing the cost of operation.
However over the past few years VoIP services have been
hampered by several security issues. With Internet being the
carrier, VoIP networks are exposed to threats that an IP data
network faces, e.g., eavesdropping, denial of service (DoS), IP
spoofing [1], etc.

Session Initiation Protocol (SIP) has become the de-facto
standard for VoIP services. It is described as "an application-
layer control protocol that can establish, modify, and terminate
multimedia sessions (conferences) such as Internet telephony
calls” [2]. It is an ASCII/text based request-response protocol
that works on a client-server model. The SIP standard [2]
specifies several security mechanisms that can be used with
native SIP. In spite of that, there have been several attacks on
the SIP architecture with popular ones being DoS attacks [3]
and malformed message attacks [4]. We believe that it is of
utmost importance that each device in the architecture should
be robust to potential attacks and this requires thorough testing
of SIP implementations before deployment.

A comprehensive security testing should consider all known
attack scenarios as much as possible. This requires a versatile
security testing system that would allow the simulation of
various attack scenarios during the testing phase. Our work
is motivated by these factors and in this paper, we present a
security testing framework that would allow one to test several
security aspects of a SIP architecture. Our framework provides
the ability to test SIP devices for vulnerabilities due to proto-
col non-conformance, performance limitations, DoS attacks,
penetration/fuzz attacks and several others. The framework
design considers flexibility and extensibility as a prime goal to
provide an ability to customize test scenarios and incorporate
new test techniques easily. By providing a common platform to

integrate several test strategies, the framework also allows one
to intelligently combine any of these techniques to generate
new and more powerful test methodologies. As a part of the
framework, we also present an algorithm to generate data to
be used in effective fuzz testing. Finally we demonstrate the
benefits of our framework by using it to test several VoIP
clients for security vulnerabilities.

The rest of the paper is structured as follows. The next
section is on the related work. Section III presents the com-
mon attacks on a SIP infrastructure. Section IV presents our
proposed SIP security testing framework. Section V presents
our Fuzz Data Generation Algorithm. Section VI presents our
preliminary evaluations and Section VII concludes the paper.

II. RELATED WORK

Several frameworks have been proposed to address specific
aspects of SIP security. The SIP Forum Test Framework [5]
is a conformance test suite that allows SIP device vendors to
test their devices for common protocol errors and thus improve
inter-operability. The SNOCER project [6], [4], [7] proposes
a generic framework to protect SIP from malformed message
attacks and describes a signature based detection mechanism
for SIP message tampering. The PROTOS [8], [9] framework
provides a fuzzing capability to assess the robustness of SIP
implementations. The PROTOS SIP test suite tests for parser
robustness mainly through syntax testing by crafting several
malformed messages. Currently the suite has about 4500+
malformed SIP-INVITE messages. In [10], the authors present
a stateful SIP/VoIP fuzz framework that incorporates protocol
state transitions to make fuzzing more efficient. They also
provide a grammar based approach to generate fuzz messages.
In [11], several SIP testing tools are listed to test different
components of a SIP infrastructure.

Most existing SIP security testing solutions target a specific
aspect of SIP security or focus on a specific entity within a SIP
architecture. The main difference between these solutions and
the framework presented in this paper is that our framework
aims at providing a comprehensive testing platform to integrate
any aspect of SIP security testing into a uniform and easy to
use platform.

III. ATTACKS ON SIP INFRASTRUCTURES

A SIP network architecture is typically composed of a SIP
service infrastructure, an Internet gateway, a SIP aware firewall
and a gateway to connect to other voice networks such as
Public Switched Telephone Networks (PSTN). The SIP service
infrastructure is composed of several entities including SIP

user agents (UA), a registrar, a proxy server, and a redirect
server. An UA is the end point of a SIP connection and is
either a SIP client or a SIP server. Every SIP client has to
register with a registrar before it could participate in a SIP call.
A proxy server is a call server that routes calls on behalf of a
caller towards the target. Proxies are also useful for enforcing
policy control (e.g., user authorization). A redirect server is
also a call server that redirects the client to contact an alternate
set of URISs. In the following, we summarize several important
attack types on the SIP architecture and refer our reader to [12]
for more details.

A. Message Flooding DoS Attacks

Message flooding DoS attacks are the most common attacks
on the SIP architecture. Here an attacker tries to deplete re-
sources on a server and hence deny service to legitimate users.
REGISTER floods are aimed at the SIP registrar, INVITE
floods target the SIP proxy/redirect server and authentication
DoS affects either or both. DoS attacks are easy to launch
requiring an attacker to simply craft a SIP message and send
it. This can be achieved by using one of the available SIP test
tools [11]. The popularity and relative ease of launching this
type of attacks emphasize the need for proactive testing of SIP
devices against them.

B. Message Flow DoS Attacks

Message flow based DoS attacks aim at causing a disruption
to an ongoing call by impersonating one of the call partici-
pants. The SIP protocol defines a specific sequence of message
exchanges for call setup and termination [2]. By sending a
message out of its expected sequence, an attacker can disrupt
the regular call flow.

C. Malformed Message Attacks

The text based nature of SIP makes it flexible in terms
of extensibility of the protocol. On the other hand, it makes
the implementations of the protocol vulnerable to malformed
message attacks. SIP message parsers that process incoming
messages have to be efficient to handle the degree of protocol
flexibility and also be robust against malformed message at-
tacks. Such attacks can be extremely dangerous as an incoming
message may contain embedded shellcodes or malicious SQL
statements that may cause significant damage (data loss or
node compromise) at the victim site.

Finally, SIP is an application layer protocol and its imple-
mentations are vulnerable to common attacks to protocols at
lower layers including IP and TCP/UDP. Other attacks on SIP
infrastructure include attacks on DNS servers and SPam over
Internet Telephony (SPIT) attacks.

IV. A SIP SECURITY TESTING FRAMEWORK

Testing the security strength of a SIP architecture is a
demanding process involving various test activities such as
Protocol Conformance Tests, Performance/Stress Tests, DoS
Tests, Penetration/Fuzz Tests and others. The process also
requires continual upgrade to incorporate new techniques to

' || ENTITY | EVALUATOR GENERATOR |
i i i | ‘
=il L e
INTEREACE [T1 CONTROL AGENT !
: 1 !]] 3
i EXT
! wobuLe UGN moduLe | |
! RAPPER
FRONT TIER MIDDLE TIER TARGET TIER

Fig. 1. SIP Security Test Framework

test new attack scenarios. In addition to fulfilling the above
requirements, a security testing framework must also be flexi-
ble, adaptable and conducive to the user’s changing needs. We
now present the architecture of our framework which aims to
achieve these.

A. Framework Architecture

In this section, we present an outline of our SIP Security
Testing Framework (SSTF). Our framework is presented in
Figure 1 and is inspired by the work presented in [13]. The
framework consists of three tiers as (1) a front tier that
serves as the user interface, (2) a middle tier that constitutes
the central control engine and other core components of the
framework, and (3) a target tier that interacts with the test
targets. Below are some details:

Front Tier

The front tier provides a uniform GUI to setup the test cases
involving the different test modules incorporated into the
middle tier. The GUI is dynamic in the sense that the user
can fine tune it using configuration files. The control agent
reads from the front tier and generates the test scenarios in an
XML like format. Advanced users can specify finer details by
directly manipulating the test scenario files.

Middle Tier

The middle tier forms the core of the framework. It consists of
a central control agent and other modules that provide specific
test functionalities as described below:

Control Agent. Control agent controls and orchestrates the
entire test activity. It acts as an interface for each of the
test modules and provides a uniform platform to integrate
them. It also acts as an interface between the middle tier and
the other tiers (front and target). The control agent loads the
configuration files and instructs the front tier to generate an
appropriate user interface. It also reads from the front tier and
generates the XML like test scenarios that dictate a particular
test flow. The control agent also instructs the test agents in the
target tier to carry out the specific aspects of a test activity. For
instance, if the test scenario involves testing multiple devices
at the same time, the control agent would spawn multiple test
agents and assign each test target to one of the test agents.
SIP Entity. SIP entity module is a full fledged SIP imple-
mentation conforming to SIP RFC [2] and capable of initiating
sessions and responding to other SIP entities (e.g., test targets).

Control agent consults with the SIP entity when deciding
on the result of a test case. Being the sanity controlling
component, the SIP entity usually forms a part of any kind
of test activity.

Performance Evaluator. This module provides various per-
formance parameters to incorporate into a test case. Some
common parameters include the number of calls in a test
case, the call duration, and other dynamic rate control metrics.
The control agent reads the supported metrics and presents
them to the user through the front tier and thus dictates
the test progress based on the user defined settings. The
performance evaluator is a crucial component when estimating
the performance benchmarks of a target device.

DoS Generator. The DoS generator provides support for
simulating DoS attacks during a test session. It has the ability
to spoof any given range of usernames and IP addresses.
One effective test using the DoS generator is a Distributed
DoS (DDoS) test where each call appears to come from a
different source. One can also simulate a network wide DoS
by varying the address of the test targets. The DoS generator
is a key requirement for simulating DoS attacks and testing
SIP-enabled firewalls and other security devices for intrusion
detection.

Penetration Test/Fuzzing Unit. This unit is capable of al-
tering a SIP message in malicious ways. The fuzzing unit
provides the user with an in-built set of data to be used to
construct a fuzzed message. It also allows to specify one’s
own fuzz data or auto-generate data using an underlying
algorithm (see Section V). The control agent provides hooks
to the fuzzing unit through configuration files where the user
specifies the desired fields to be fuzzed and type of data to be
used. Fuzzing unit also allows us to specify penetration test
data instead of random fuzz data. The penetration test data
could contain any vulnerability scanning information such as
buffer overflow exploit shellcodes. Thus this unit plays a vital
role in vulnerability scanning tests.

External Module Wrapper. This module serves as a wrapper
for external tools. It interfaces the external tool and the control
agent and allows for a mechanism to incorporate external tools
into the framework. Several SIP test tools are available [11]
that can be used to test various features of a SIP infrastructure.
A wrapper module helps in building stronger test cases by
making use of available stand alone SIP test tools.
Logging/Monitoring Module. This module monitors the test
progress and logs key information. It assists the control agent
to derive the test results and generate reports.

Target Tier

The test agents spawned by the control agent constitute the
target tier. They are the direct interface to the test targets.
Each test agent performs tasks based on the instructions from
the control agent and then provides feedback. The distributed
nature of the target tier has several advantages. A given test
case can be distributed among different test agents thereby
increasing the efficiency and effectiveness in terms of carry-
ing out several tests in parallel. It also provides a level of

redundancy; should a test agent fail/crash during a test, only
that test is affected, the control agent and other test agents
continue to function.

V. FUZZ DATA GENERATION

Fuzz testing or fuzzing is a software testing technique
used to find implementation defects using malformed or semi-
malformed input data. The outcome of a fuzz test, if suc-
cessful, is usually a program crash possibly due to boundary
check failure, buffer overflow, or some semantic error. For this
reason, fuzzing is considered a valuable method in assessing
the robustness and security vulnerabilities of software systems.
The fuzz input data set can be very large; one may use a brute
force data set, a random data set, or a known problematic
data set. In most cases, we have to make a tradeoff between
completeness and cost. One popular method is to use a
combination of random data and a known list of problem
causing data. Rather than using data directly from the above
sets, we have come up with an algorithm to derive new fuzz
data from these. We have categorized the data based on the SIP
message format, into certain fuzz data types such as SIP_int,
SIP_ip, SIP_string, etc. Each of these types can have data from
any/all of above three data sets. To generate new data, we use a
genetic algorithm [14] with a unique fitness function that ranks
data based on their potential ability to expose defects. Higher
the rank or fitness value of a data, higher is its probability of
being used for new data generation.

Fuzz Data Generation Algorithm

o Begin: Choose initial (parent) population from one of our
fuzz data types. We may choose each parent to be of the
same type or of different types.

o Fitness: Evaluate the fitness of each data value in the
population.

e New Population: Create a new population by repeating
the following steps until the new population is complete

— Selection Select one data value from each parent
according to their fitness (better the fitness, better
is the chance of being selected).

— Crossover: Cross over the parents to form a new
offspring. We use a single crossover point tech-
nique [14] with a random crossover point.

— Mutation: Mutate the offspring at a chosen position,
by altering a random number of bytes in each of
the newly generated data values. This is to prevent
the new population from being too similar and from
completely deviating from its original type.

o Acceptance: Place the new offspring in a new population.

o Improvisation: Use the newly generated population for a
further run of algorithm.

o Test: If the end condition is satisfied, stop and return the
best solution in current population.

e Repeat: Go to Fitness computation step.

Fitness Computation
We know that fitness values determine what data we choose as

our initial population. We now define a set of parameters that
contribute to the overall fitness value of a given data. All these
parameters need not always be used; a subset of them can be
used depending on the input population and the application
being fuzzed.

e Native Size: Higher the deviation of the data from its
original acceptable input size, higher is its contribution
to the overall fitness value.

o Native Type: Higher the deviation from its original type
(number, string etc), higher is the contribution.

o PFarents Fitness: Either the maximum, minimum or aver-
age of the parents fitness values can be used.

o Damage Co-efficient: More damage a particular data has
caused on previous occasions, higher is its damage co-
efficient and contribution to the fitness.

o Native Character Set: Higher the presence of non-native
(e.g., non-ASCII) characters, higher is the contribution.

e User Defined: User defined parameters depending on the
application/protocol being tested. In many applications,
format strings are very effective, so presence of such
characters should increase the fitness level of that fuzz
data. Similarly, Target/Attack specific data (e.g., SQL
data in an SQL injection attack [7]) can also be taken
into account.

Let N be the number of parameters chosen to contribute
to the fitness value. The overall fitness value is calculated as
follows:

1) Calculate the deviation factor DF = 1 / N. (We can also
calculate a weighted DF, if some parameters need to be
given more weight compared to others.)

2) Calculate the deviation contribution DC = A * DF, for
each parameter, where A is the deviation percentage.

3) Calculate total deviation contribution TDC = SUM(DC)
for all N.

4) Final Fitness Value F = Ceiling [TDC * 10].

VI. EVALUATIONS

In this section, we present the evaluations for a basic
instantiation of our framework. Here we used SIPp [15] as our
SIP entity module. The test topology consists of three entities
including our framework, an open source stateful SIP proxy
named Asterisk [16], and the device under the test (DUT).
As an initial stage of testing and due to limited availability
of resources in an academic setting, we use freely available
evaluation copies of several popular SIP soft phone clients
as the DUT. The softphones were installed on a PC running
Microsoft Windows XP Service Pack 2 and Asterisk was run
on an Intel P4, 2.6 GHz Processor, with 1GB of RAM. We
plan to include other commercial SIP entities and security
devices in our future tests. Since our testing activity is not
complete, we have not informed the vendors about our test
results. Hence, in this paper we do not disclose soft phone
client names.

Performance Tests. Table I shows the results of some simple
performance tests we conducted using our framework. Here

Call UA1 UA2 UA3
Rate | Time(ms) | Drop(%) | T(ms) | D(%) | T(ms) | D(%)
1/s 1.9 0 0.9 0 1.8 0
5/s 2.4 0 0.8 0 2402 4
10/s 2.1 0 63.1 1 1481 33
50/s 2.1 0 59.9 3 1011 17
TABLE I
PERFORMANCE TESTS
DoS Attacks - Response Times
12 T T T No kesﬁ[\;e«*’”’"No Response
1r -
g 08 1
E 06 | 15s Register DoS ~ + B
% ’ 95 Nemork bos
2 30s Network DoS
% 0.4 - -
4
02 + -
o P . + . . .

0 20 40 60 80 100 120
Attack Rates (messages per second)

Fig. 2. DoS Attacks

we made calls to the UAs at different rates and then measured
the response times and percentage of dropped calls if any.
The response time was calculated by taking the average of the
time taken for the first response message from the UA. We
observed the following behavior: 1) some UAs (UA1) were
not affected by the increased rates of calling; 2) at higher
rates, the response times of some UAs (UA2) was very high,
however the dropped call percentage was low; 3) in some UAs
(UA3), increased rates caused both increased response times
and dropped calls. These UAs usually hanged during the test
which caused a sharp jump in response times.

DoS Tests. Figure 2 shows the results a DoS test performed on
the Proxy. We considered two attack scenarios; 1) a Register
DoS where REGISTER requests were made at different rates;
2) a Network DoS where bogus/genuine calls were made to
the registered users at various rates. We measured the response
time of the proxy for different attack durations. The response
time for Register DoS was measured as the time taken to
receive a 200 OK message for a single test request and the
response time for Network DoS was measured as the time
taken to receive a 180 RINGING message for a single genuine
test call. From the results we observed that for Register DoS
lasting 15s, the response times only marginally increased.
However, for attacks lasting 30s or more, the response times
increased more rapidly and at attack rates of 100cps or more,
there was no response (i.e. message dropped). For Network
DoS we found that the response times were much higher even
for short duration attacks and calls were dropped at attack
rates of 75cps and above. Thus, devices were less tolerant to
Network DoS attacks.

Fuzz Data Generation Tests. Table II shows the results of
the tests we carried out to validate our fuzz data generation

[Parent 1 | Parent2 | Generation | Failures Found |
0 4
SIP.int | SIP_int ! 8
_in _in 5 10
3 8
0 4
SIP_strin, SIP_strin, ! 3
_S g S g 2 4
3 5
0 (colon) 1
SIP_colon | SIP_slash | ° (S]IaSh) ;
2 3
3 5
TABLE II

Fuzz GENERATION TESTS

algorithm. The test case consisted of making calls to the UAs
at lcps with fuzzed INVITE messages. We first carried out
the tests using only our parent fuzz data set (Generation 0);
we then carried out the same tests using offspring (Generation
1, 2, 3) data generated using our algorithm. The data used
in these generations was not optimal; our intention was not
to find a local/global optimal data set but to experiment
our fitness function and generate new populations (data) and
see if they were more, less or at least as effective as their
parent populations. From the results we observed that the
offsprings found many new failures that their parents did not
find. This is a possible indication that our fitness function and
parameters indeed ranked data based on their effectiveness. We
also observed that the number of failures found in successive
generations was never less than their original parent types.
This indicates that our genetic algorithm indeed generated
population that were an improved version of their parents.

Strezz Tests. Here, we consider mainly four types of tests: /)
a simple stress test on the DUTs where we send 50 INVITE
messages/sec; 2) a simple fuzz test where we send a single
INVITE message with one or more fields fuzzed; 3) a call fuzz
test where messages deeper in a call flow (e.g., ACK) were
fuzzed; 4) a Strezz (Stress+Fuzz) test where the test agent
sends 5 fuzzed INVITE messages/sec.

Table III presents the results of the above tests. The first row
shows that the tested DUTs handled 50 INVITE messages/sec
and the second row shows that all the DUTs handled fuzzed
INVITE messages without crashing. However, the third row
shows that two of the tested DUTs failed when fuzzed mes-
sages were used beyond the initial INVITE. Finally, the last
row shows that when fuzzing and performance testing were
used together, most DUTs failed by crashing. These results
are somehow surprising in that even though the DUTs pass
the performance test with 50 INVITE messages/sec and the
fuzz test with a simple fuzzed INVITE, most of them fail
the Strezz test that combines these two testing scenarios. This
sample test scenario thus demonstrates the importance of a
comprehensive test environment that combines different test
methods. We believe that many such effective test techniques
can be developed using our framework to expose hidden
vulnerabilities in a SIP service infrastructure.

| Test [UA1 [UA2 [UA3 [UA4 [UAS |
1 Pass Pass Pass Pass Pass
2 Pass Pass Pass Pass Pass
3 Pass Pass Pass Fail/crash | Fail/freeze
4 Pass | Fail/crash | Fail/crash | Fail/crash Fail/crash
TABLE IIT

STREZZ TESTS

VII. CONCLUSION

In this paper we have presented a framework for SIP
security testing that provides a uniform platform to integrate
several test methodologies and generate more effective test
scenarios. Our intelligent fuzzer is not only protocol aware but
also has an innovative algorithm to generate effective fuzz data
and rank them based on their potential to expose defects. To
the best of our knowledge, this is the first such framework for
SIP security testing. Our evaluations have shown that devices
that are resistant to individual stress and fuzz testing may still
be vulnerable to test scenarios that combine these two test
scenarios. These results demonstrate the importance of our
claim that combining different test strategies produces much
stronger test scenarios. Our evaluations of the fuzz data gen-
eration algorithm have shown that the ranking parameters and
the fitness function that we designed depict the effectiveness
of fuzz data to some extent.

REFERENCES

[11 S. Vuong and Y. Bai, “A survey of VoIP intrusions and intrusion
detection systems,” 6th Intl Conference on Advanced Communication
Technology, vol. 1, pp. 317-322, Sept 04.

[2] J. Rosenberg, H. Schulzrinne, and et al, “SIP: Session Initiation Proto-
col,” Jul 02.

[3] D. Sisalem, J. Kuthan, and et al, “DoS Attacks Targeting a SIP VoIP
Infrastructure: Attack Scenarios and Prevention Mechanisms,” [EEE
Network, vol. 20, no. 5, pp. 26-31, Oct 06.

[4] D. Geneiatakis, G. Kambourakis, and et al, “A Framework for Detecting
Malformed Messages in SIP Networks,” in Proc of 14th IEEE Workshop
on LANMAN, Chania-Crete, Greece, Sept 05.

[5] “SIP Forum Test Framework (SFTF),” http://www.sipfoundry.org/sip-
forum-test-framework/.

[6] “SNOCER: Low Cost Tools for Secure and Highly Available VoIP
Communication Services,” http://www.snocer.org/.

[7] D. Geneiatakis, D. Kambourakis, and et al, “SIP Message Tampering:
THE SQL code INJECTION attack,” in Proc of 13th Intl Conf on
Software, Telecoms and Comp Networks IEEE, Split, Croatia, Sept 05.

[8] “PROTOS: Security Testing of Protocol Implementations,”
http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/sip/.

[9] C. Wieser, M. Laakso, and et al, “Security testing
of SIP implementations,” Department of Computer
Science, Columbia University, NY,, Tech. Rep., 03,

http://compose.labri.fr/documentation/sip/Documentation/Papers/
Security/Papers/462.pdf.
[10] J. Humberto, R. State, and et al, “KiF: A stateful SIP Fuzzer,” in Proc
of IPTComm-Principles, Systems and Applications of IP Telecommuni-
cations, New York, USA, Jul 07.
“VOIP Security Alliance,” http://www.voipsa.org/.
D. Geneiatakis, T. Dagiouklas, and et al, “Survey of Security Vulner-
abilities in SIP,” IEEE Communications Tutorials and Surveys, vol. 8,
no. 3, pp. 68-81, Oct 06.
W.T.Tsai, L.Yu, and et al, “Scenario-Based Obj-Oriented Test Frmwrks
for Testing Distributed Sys,” in /I1th IEEE Intl Workshop on Future
Trends of Distributed Comp Sys, San Juan, Puerto Rico, May 03.
“Genetic Algorithms,” http://en.wikipedia.org/wiki/Genetic_algorithm.
“SIPp: Open Source test tool/traffic generator for the SIP protocol,”
http://sipp.sourceforge.net/.
“Asterisk: Open Source PBX,” http://www.asterisk.org/.

(11]
[12]

[13]

[14]

[15]

[16]

