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Abstract– Design patterns capture software solutions to 
specific problems that have evolved over time and reflect 
many iterations of work.  Documenting such patterns 
promotes proven design and software reuse. There has 
been a growing amount of work documenting design 
patterns for security, however, little work specific to VoIP 
security. In 2005 NIST released a report on 
recommendations and best practices for securing VoIP, 
however it lacks the structure, terminology, and ease-of-
understanding needed for both technical and non-technical 
audiences that is an inherent feature of design patterns. 

   In this paper we document three design patterns for 
VoIP implementations related to specific security 
problems: (1) secure traversal of firewalls and NATs; (2) 
detecting and mitigating DDoS attacks; and (3) securing 
against eavesdropping.  With many VoIP vendors rushing 
products to market with overlapping functionality and 
requirements for interoperability, documenting design 
patterns is poised to become an important part of secure 
programming processes for VoIP. 
 
Index Terms– security design patterns, VoIP security, 
threat modeling, secure traversal of firewalls and NATs, 
Internet telephony 
 

I. INTRODUCTION 
 

The continuous number of high-profile Internet 
security breeches reported in the mass media show that 
despite an emphasis on security processes that there is 
still a gap between theory and practice.  Not only is 
there a need to develop better software engineering 
processes but also theoretical security improvements 
need to find their way into real systems. 

Software design patterns are defined as 
“descriptions of communicating objects and classes that 
are customized to solve a general design problem in a 
particular context” [5]. As software design patterns 
have proven their value in the development of 
production software1, they are a promising new 
approach to help in both the theoretical development 
                                                 
1 Java APIs, OpenStep libraries, and the Microsoft Foundation Classes 
all use catalogued design patterns. 

and practical implementation of better security 
processes [3,12,15,16]. First, many/most software 
developers have only a limited knowledge of security 
processes and patterns are a proven way to improve 
their understanding.  Second, patterns work against 
“reinventing-the-wheel” to promote learning best 
practices from the larger community to save time, effort, 
and money with easily accessible and validated 
examples.  Third, code can be reused since the same 
security patterns arise in many different contexts.   
Fourth, AntiPatterns or common security failures are 
valuable examples of what not to do [18]. 

A growing number of security design patterns have 
already been documented including patterns for services 
(firewalls, mailers) and common security functions 
(authenticators, key management) [16].  In this paper we 
focus on Voice over IP (VoIP) security where security 
design patterns may prove exceedingly useful. Internet 
telephony or VoIP has grown in importance and has 
now passed the tipping point – in 2005 U.S. companies 
bought more VoIP phones than ordered new POTS lines 
[20]. However, with the powerful convergence of 
software-based VoIP to enable new functionality to 
store, copy, combine with other data, and distribute over 
the Internet also comes security problems that need to 
be solved in standard ways in order to ensure 
interoperability.  This is further complicated by the fact 
that various vendors competing for market share 
currently drive VoIP security. 

Given the importance of VoIP security, we are only 
aware of only two other efforts for VoIP security design 
patterns, a chapter within [15] and an unpublished M.S. 
thesis supervised by Eduardo Fernandez of Florida 
Atlantic University.  

The remainder of this paper is organized as follows: 
Section II summarizes previous work by reviewing a 
recent NIST report on VoIP security. Section III briefly 
presents three design patterns for VoIP security. We end 
with a summary and conclusions in Section IV. 



 
                                                             Figure 1.  VoIP Infrastructure Vulnerabilities 

 
II. REVIEW OF NIST VOIP REPORT 

 

NIST released a report on VoIP security in January 
2005 [10].  This report elaborates on various aspects of 
securing VoIP and the impact of such measures on call 
performance. The report argues that VoIP performance 
and security are not seamlessly compatible; in certain 
areas they are orthogonal.  We briefly review this report 
and group VoIP infrastructure threats into three 
categories as depicted in Figure 1: (1) protocol, (2) 
implementation, and (3) management. 
 

A. Quality of Service (QoS) Issues 
The description given in the NIST report about QoS 

issues is primarily based on the work by Goode [6], 
Barbieri [1], and Chuah [4]. A VoIP call is susceptible 
to latency, jitter, and packet loss. ITU-T 
recommendation G.114 [7] has established 150 ms as 
the upper limit on one-way latency for domestic calls. If 
Goode's latency budget is considered, very little time (< 
29 ms) is left for encryption/decryption of voice traffic. 
QoS-unaware network elements such as routers, 
firewalls, and Network Address Translators (NAT) all 
contribute to jitter (no uniform packet delays). Use of 
IPsec both contributes to jitter and reduces the effective 
bandwidth. VoIP is sensitive to packet loss with 
tolerable loss rates of 1-3%; however, forward error 
correction schemes can reduce loss rates. 
 

B. Signaling and Media Protocol Security 
SIP (Session Initiation Protocol) (RFC 3261) and 

H.323 [8] are the two competing protocols for VoIP 
signaling. H.323  is an ITU-T umbrella of protocols that 
supports secure RTP (SRTP) (RFC 3711) for securing 
media traffic, and Multimedia Internet Keying 
(MIKEY) (RFC 3830) for key exchange.  SIP supports 
TLS and S/MIME for signaling message confidentiality 
and SRTP for media confidentiality.   

 

C. Firewalls and NATs 
RTP is assigned a dynamic port number that 

presents a problem for firewall port management. A 
firewall has to be made aware of the ports on which the 
media will flow. Thus a stateful and application-aware 
firewall is necessary. However, if a client is behind a 

NAT, call establishment signaling messages transmit the 
IP address and RTP port number that is not globally 
reachable. NAT traversal protocols like STUN (RFC 
3489), TURN (RFC 2026), and ICE (14) are necessary 
to establish a globally routable address for media traffic.  
For protocols that send call setup messages via UDP, 
the intermediate signaling entity must send to the same 
address and port from which the request arrived. 
 

C. Encryption and IPsec 
IPsec is preferred for VoIP tunneling across the 

Internet, however, it is not without substantial overhead. 
When IPsec is used in tunnel mode, the VoIP payload to 
packet size ratio for a payload of 40 bytes and 
RTP/UDP headers drops to ~30%. The NIST solution to 
avoid queuing bottlenecks at routers due to encryption is 
to perform encryption/decryption solely at endpoints. 
SRTP and MIKEY are specified for encrypting media 
traffic and establishing session keys respectively. 
 

D. Categorizing VoIP Threats 
The threats faced by a VoIP are similar to other 

applications including: unwanted communication 
(spam), privacy violations (unlawful intercept), 
impersonation (masquerading), theft-of-service, and 
denial-of-service.  Table 1 groups these threats into 
protocol, implementation, and management categories. 
  
 

                  Table 1. Categorizing VoIP Threats 
 
 

Protocol 
Signaling,  
Media Confidentiality, 
Integrity 

end-to-end protection as well as hop-by-
hop (Proxies might be malicious) 

Configuration, 
Confidentiality,  
Integrity 

most VoIP devices are managed remotely 

Identity Assertion Users concerned about whether they are 
talking to the real entity as opposed to a 
'phished' entity 

Reputation Management 
Implementation 
Buffer Overflow, Insecure Bootstrapping. 
Management 
Access Control protection against unauthorized access to 

VoIP servers and gateways 
Power Failures 
 



D. Is the NIST Report Complete? 
In four key areas we find the NIST report incomplete.  

First, the NIST report cites results that the SHA1 hash 
algorithm throughput is less than the throughput of 
DES/3DES for a VoIP packet stream. This result is 
counter-intuitive since encryption/decryption algorithms 
are generally believed to require more processing than 
hashing algorithms.  

Second, the Mean Opinion Score (MOS) is a 
standardized quantitative measure of human speech 
quality at the destination end of a voice circuit. MOS 
uses subjective tests that are averaged to calculate an 
indicator of system performance. The NIST Report does 
not use MOS which is a useful metric for balancing 
security versus performance tradeoffs.   

Third, greater payload compression means that the 
codec employs temporal relationships between the voice 
blocks. It is this temporal relationship that is sensitive to 
packet loss. However, this is not clear from the NIST 
report when it says "greater payload compression rates 
resulted into higher sensitivity to packet loss" [10].  

Fourth, the NIST report does not anticipate the use of 
VoIP as a SPAM DoS tool. While Email spam relies on 
SMTP servers for transmission, VoIP RTP packets have 
no such constraint. Qovia [11], a company that sells 
tools for VoIP monitoring and management, recently 
applied for two patents on technology to both broadcast 
and block messages using VoIP. 

While VoIP has threats, in comparison traditional 
phone service has dealt with many threats over many 
years. For example, tapping a landline at a wirebox and 
eavesdropping by tuning in a cordless phone frequency 
is currently easier than spoofing VoIP packets.  VoIP 
companies such as Vonage and AT&T have taken only 
preliminary precautions at this  point (firewalls). The 
VoIP Security Alliance (VOIPSA) [19] has been 
organized to improve security awareness and form 
consensus on “Best Practices”.  
. 

III. VOIP SECURITY DESIGN PATTERNS 
 

While the NIST report missed some points, it does 
provide a general summary of VoIP security problems. 
However, the NIST report does not describe specific 
solutions used to overcome the problems identified.  In 
this section we describe software design patterns that 
have emerged as implemented solutions to specific 
VoIP security problems.  In the first pattern we describe 
the ad hoc but effective techniques used by most VoIP 
vendors to traverse firewalls and NATs.2 In the second 
pattern we describe how to keep “Man-in-the-Middle” 

                                                 
2 Skype, the world's most popular VoIP service provider with 38 

million software downloads representing about 5 percent of all Internet 
users implements the techniques described in pattern one [17]. 
 

attacks from disrupting VoIP connections.  In the third 
pattern we describe how to protect VoIP against 
eavesdropping.   

Software design patterns typically have a presentation 
format that includes: (1) UML diagrams of the structure 
and dynamic interactions of the objects that constitute 
the patterns, (2) examples of the patterns in use, (3) 
pointers to related patterns, and (4) sample code 
implementing the pattern.  We adapt this format due to 
space limitation to focus on the four essential elements 
of a pattern: (1) pattern name, (2) problem, (3) solution, 
and (4) consequences [5].  We begin each design pattern 
with a name and example scenario with accompanying 
assumptions.  Given the example context, we present 
problem(s) matched with corresponding solution(s), and 
consequences – all of which distilled from the VoIP 
community.  
 

A.  VoIP Security Design Pattern One 
Secure Traversal of Firewalls or NATs for VoIP: allows 
clients using private IP addresses hidden behind 
firewalls/NATs to be able to make VoIP calls to other 
clients without the need to modify intermediate firewalls 
or NATs or making assumptions about device types. 

Example: Alice works at a large organization 
scheduling meetings between teams distributed at 
offices around the world using the telephone.  Her 
manager decides that she should use a new VoIP phone 
for cost savings. Alice is not concerned about voice 
quality in her short conversations.  

As shown in Figure 2, the organization uses firewalls 
with strict policies. Alice’s new VoIP phone uses SIP 
but it is giving her problems. She is trying to call Bob at 
another office behind a firewall. Alice had been warned 
that firewalls are a common problem with VoIP phones. 
When the called party picks up the phone the two 
people often cannot hear each other. In Alice’s case, 
Bob’s phone does not even ring when she calls. 

 
 
 

 
                 

             Figure 2. VoIP Between Firewalled Networks 
    



Alice tries to switch to phones that use other protocols 
(e.g. H.323) but the same problem occurs. She contacts 
her organizational support staff to request opening 
certain firewall ports but is turned down. After hours of 
debugging, Alice and the technical support staff of the 
VoIP provider deduce that the NAT device her 
organization uses is the most stringent type (i.e. a 
symmetric NAT that changes its IP/port configuration 
based on both caller and callee identities).  

Problem: Setting up a VoIP call has two major parts. 
First, a signaling protocol is used to set up a call and 
play Dial and Ring tones. Subsequently if the called 
party goes off-hook then this protocol negotiates 
address/port and then the data protocol takes over to 
exchange voice until the call is torn down.  

Firewalls and Network Address Translators (NATs) 
are located at the edge of most all enterprise networks. 
Often software-based firewalls and NATs are bundled 
in residential DSL packages as well, so this problem 
affects both business users and residential users.  The 
problem starts with how to locate a client that is behind 
a firewall? How to determine if they are even online? 

Signaling between clients contains details of the 
private IP addresses and ports that the clients want to 
use for the media flows. When the clients attempt to use 
these private addresses to send/receive media, the 
connection fails because they are not routable. Some 
solutions such as TURN and STUN have been proposed 
to help solve this problem. However, they are 
incomplete because they are designed to work with data 
only (assuming signaling is working) and do not work 
with every type of NAT.  

The TURN protocol requires TURN capability in the 
actual client and a trust relationship based on shared 
credentials [13].  A VoIP phone or software package 
may include a STUN client, which will send a request to 
a STUN server. The server then reports back to the 
STUN client what the public IP address of the NAT 
router is and what port was opened by the NAT to allow 
incoming traffic back in to the network. The response 
allows the STUN client to determine what type of NAT 
is in use, as different types of NATs handle incoming 
UDP packets differently.  This will work with a full 
cone NAT (address binding remain constant for all 
outgoing connections), but requires some special 
treatment with restricted cone NATs that only allow 
connections initiated by firewalled machines. STUN 
will not work with symmetric NATs (which create new 
bindings based on each source and destination pair). 
Unfortunately, symmetric NATs are found in many 
enterprise networks.   

Solution:  A Global Directory Index (GDI) maintains 
a list of all online clients. Certain clients are selected 
that are accessible from the public network to act as 
relays. When a client comes online it registers with the 

GDI which does not save the contact information 
provided in the Register message but rather saves the 
real address. Subsequently, the GDI and client exchange 
keep-alive packets with the GDI below the NAT 
binding expiration time threshold. When a permanent 
link is open between a client and the GDI, a VoIP 
signaling session can then be negotiated at any time.  

When two clients wish to communicate, the caller 
tries to contact the called party directly. However, if the 
called party is protected by a NAT, then the called 
party’s computer is asked by the GDI to connect in the 
reverse direction back to the caller’s computer. If either 
of these connections succeeds then the call is 
established using the direct connection that provides the 
lowest-latency connection possible.  

If both parties to the call are behind restrictive 
firewalls, then neither party will be able to reach the 
other directly. The GDI then chooses a third party 
(relay) who is reachable by both parties. In this case, 
both the caller’s and the called party’s computers 
establish a direct link to the relay that will forward data 
packets between the two parties.  When calls are relayed 
by third parties, the entire contents of the call (including 
any voice conversations, text messages, or file transfers) 
are encrypted between the caller and the called party.  

Structure: The signaling sequence diagram in Figure 
3 shows the interaction between different entities in the 
system. During startup, each VoIP client registers with 
the GDI. The GDI records the client’s actual public IP 
address and port. Subsequently it exchanges keep-alive 
messages with the client to ensure that the bindings 
remain open. If the callee happens to be behind a 
restricted-cone NAT (where the private IP may only 
participate in a connection that it initiates) then it asks 
the callee to call back the caller. In the case where RTP 
media cannot flow directly between parties the GDI 
chooses a public relay that tunnels the media for them. 
With the most global view, the GDI is in the best 
position to select relays for shortest path routing, low 
latency routing, and load balancing.   
 

         

         Figure 3. VoIP Signaling Sequence Diagram 



 

Implementation:  There are two parts to maintaining 
a VoIP connection - signaling and media. VoIP will 
normally open separate ports for each part. If the client 
is behind a restrictive firewall, the client will have to 
maintain bindings for the two separately.  

VoIP signaling protocols can be roughly divided into 
two main categories, client-server and point-to-point.  
SIP and H.323 are two popular examples of point-to-
point protocols. SIP which is relatively lightweight and 
flexible For example, the HTTP text-based protocol 
uses an “INVITE” message to request a session with a 
successful response being “200 OK”. These simple 
messages can be used to establish communication 
between a SIP client and a GDI. In the event that the 
caller cannot access the callee directly, the GDI can ask 
the callee to send a “RE-INVITE” message to the caller. 

For client-server based VoIP protocols, the 
controlling entity is known as a “Call Agent” which 
manages all the signaling between the media streaming 
devices known as Gateways (e.g. MGCP and H.248). In 
such a scenario the role of the GDI can be played by the 
Call Agent resulting in minimal change to the protocol.  

The Session Description Protocol (SDP) is used by all 
VoIP signaling protocols to exchange parameters 
particular to the session (RFC 2327). Parameters include 
but are not limited to: IP address, port number, frame 
rate, compression type, and encoding. The NAT 
bindings should be exchanged via the SDP protocol. 
The example in Figure 4 shows a SIP message 
encapsulating a SDP descriptor (Lines 13 to 20). The 
highlighted values indicate the IP address and port that 
need to be changed in either the public address provided 
by the NAT binding or the address of the relay. 

 

        

          Figure 4.  Session Description Protocol (SDP)  
 

Once the signaling determines that the parties are 
ready to talk, a new channel is opened for media 
binding. Since the GDI can only be used to maintain the 
NAT binding for the signaling this binding has to be 

maintained in some other way.3 RTP is normally used to 
transfer the media payload between the clients. The 
receiving address and port number have to be 
determined by the client itself using a signaling protocol 
such as SIP, H.323, MGCP, H.248 etc. The frequency 
of media packets is a typically much higher than that of 
the signaling and the binding is maintained 
automatically. This way there is no need to modify the 
RTP protocol except to use the same port for incoming 
and outgoing media. The only way the binding can be 
broken is if there are long silent pauses in between 
conversations and the media packets are suppressed to 
preserve bandwidth. It is desired that silence 
suppression not be used as a feature when using this 
pattern, however, silence suppression is extremely 
popular with VoIP vendors because conversations 
typically consist of ~50% silence. Disabling silence 
suppression will ensure the UDP bindings at the NAT 
are maintained. 

Known Uses:  Skype uses  peer-to-peer networking 
with super nodes as relays to overcome the NAT 
traversal problem [2].  eNat software runs on the client 
device and allows the popular MSN Messenger to allow 
voice chat behind firewalls [9]. It basically acts as a 
proxy diverting all signaling and media through itself 
and through special ports it asks the user to open in the 
firewall. This will not work in an enterprise setting 
where a user does not have control of the firewall. 

Consequences: This pattern has these advantages: 
1) End users do not need to be aware of NAT and 

firewall configurations 
2) Provides increased security over opening ports 

or tunneling through firewalls 
3) The overlay nature of this pattern distributes 

relay load over multiple clients 
4) Works for groups of users, however, the 

conference size is limited by relay bandwidth 
This design pattern has the following disadvantages: 

1) Relays increase bandwidth consumption 
2) The GDI is a single point of failure 
3) Added complexity 

 

B.  VoIP Security Design Pattern Two 
Detecting and Mitigating DDoS Attacks Targeting 
VoIP: allows key components in a VoIP infrastructure 
to detect and mitigate Distributed-Denial-of-Service 
(DDoS) attacks meant to overwhelm either client and/or 
server resources and disrupt VoIP operations. 

Example: Alice tries to call Bob on her VoIP 
telephone with an important message as depicted in 
Figure 5. An attacker anticipates Alice’s call attempt 
                                                 
3 media never goes through the GDI but rather directly between the 
parties and the relay 



and sends a specially crafted messages to Alice’s ISP 
server causing it to over allocate resources such that 
Alice receives a “service not available” (busy tone) 
message. 

 

 

 
     

     Figure 5. VoIP Environment to Consider DoS Attacks 
 

Alice switches to her backup line that uses the SIP  
protocol that does not signal through a central server. 
Her phone makes a direct connection to Bob but before 
Alice can convey her message an attacker sends a 
special ‘BYE’ message to Bob’s VoIP phone pretending 
to be Alice which prematurely ends the connection. 

Alice is persistent and dials Bob again. This time the 
attacker intermittently sends garbage voice packets to 
Bob’s phone in between those of Alice’s voice packets. 
Bob’s phone is so busy trying to process the increased 
packet flow that the jitter (delay variation) causes any 
conversation to be incomprehensible.   

In this pattern we assume that the vendor has 
implemented the minimal set of recommended VoIP 
security requirements [10]. Megaco recommends 
security mechanisms in the underlying transport 
mechanisms such as IPSec. Implementations of the 
protocol using IPv4 are required to implement the 
interim AH scheme.  

MGCP (RFC 3435) and Megaco/H.248 (RFC 3261) 
are control protocols designed to centrally manage 
Media Gateways (MG) deployed across a VoIP 
infrastructure. A MG executes commands sent by the 
centralized Media Gateway Controller (MGC) and is 
designed to convert data between PSTN to IP, PSTN to 
ATM, ATM to IP, and also IP to IP. MGCP and 
Megaco/H.248 can be used to set up, maintain, and 
terminate calls between multiple endpoints, while 
monitoring all of the events and connections associated 
with those endpoints from the MGC. The MGC is a key 
component in the entire infrastructure as it can control 
multiple MGs each with its own many endpoints (VoIP 
users).  In addition it talks to other MGCs using SIP if a 

call warrants a connection between an endpoint on an 
MG controlled by one MGC and endpoint on an MG 
controlled by a different MGC.  

Occasionally some endpoints have a feature which 
enables them to make a call directly to another endpoint 
without having to go through an MG or MGC using 
SIP. Usually this requires an address lookup from a SIP 
Proxy server and the rest of the signaling and media is 
handled by the endpoints themselves.   

Problem 1:  An attacker can disrupt Alice’s Media 
Gateway.  MGs are dumb clients in the MGC-MG 
relationship, not holding call state and carrying out 
instructions received from the MGC without validity 
checks. Although an attacker cannot pretend to be the 
MGC owing to the AH check required in the 
authentication header of the Megaco protocol, they can 
mount a replay attack on the MG when they detect that 
Alice is about to make a call.  

An attacker has a number of options available after 
Alice is detected making a call. They can replay with 
any one of the Megaco commands listed in Table 2 
spoofed off the MGC outbound links earlier in the 
communication.  By replaying any of these messages to 
Alice during her call, an attacker will force the MG to 
teardown Alice’s conversation with Bob.  

 
   Table 2. Megaco Commands Which Can Disrupt        

ServiceChange Restart causes MG to hard reboot. Used in 
registration initial set up. 

Notify Event OnHook signifies called party has hung up 
Subtract Termination deletes ephemeral termination created 

for media exchange 
Modify Media SendOnly changes media protocol to send but 

not receive voice packets 
 

Once an attacker knows which packet corresponds to 
which message, another attack is selective dropping of 
Alice’s important packets. For example, an attacker can 
prevent Alice’s call from even getting set-up by 
detecting her Notify event ‘Dial Digits’ and dropping it. 
Table 3 lists three ways in which an attacker can 
identify the specific messages from MGC-MG 
communication.  
 

   Table 3.  Methods for Identifying Specific Messages  
           

Timing ServiceChange Restart is the first 
message sent by MGC to MG after 
MG registration 

Visualization associate messages with observed 
physical events (OnHook command is 
observed after Alice hangs up phone) 

Network Traffic Analysis commands identified by traffic 
pattern; (Subtract Ephemeral 
Termination command  sent when 
RTP media traffic of constant–sized 
packets stops) 

 

Solution 1: Commands between the MGC and the 
MG are grouped into Transactions, each of which is 
identified by a TransactionID.  Transactions consist of 
one or more actions and are presented as 



TransactionRequests.  Corresponding responses to a 
TransactionRequest are received in a single reply. 
Ordering of Transactions is not guaranteed - 
transactions may be executed in any order or 
simultaneously. Transactions are identified by a 
TransactionID, which is assigned by sender and is 
unique within the scope of the sender.  The MG should 
explicitly check TransactionIDs have not been repeated. 
If a repeated command is found with a TransactionID 
then it should be silently discarded. TransactionID 
sequences should start from a unique random value for 
each session so that it is hard for an attacker to reuse 
messages from old sessions.  

The MG should use the Megaco message-
piggybacking feature to make it difficult for an attacker 
to correlate Alice’s particular messages based on 
visualization and network traffic analysis. Multiple 
commands can be sent simultaneously by the MG to the 
MGC randomly shuffling their order in the message 
body. MGs can also be made less predictable by adding 
random delays between the occurrence of a physical 
event (hanging up) and its notification to the MGC.  

Problem 2: An attacker may degrade VoIP QoS. An 
attacker may exploit the property of VoIP media 
communication that it is highly sensitive to delay and 
jitter. Delays greater than 150 ms cause a conversation 
to become uncomfortable. This level of delay is usually 
the point at which both parties begin to speak at the 
same time. Jitter manifests to the listener as pops/clicks, 
words missing, and/or garbled speech.  If jitter values 
exceed 50ms it is usually considered poor voice quality, 

To reduce the impact of jitter, VoIP phones usually 
have a jitter buffer. The jitter buffer is usually designed 
to hold 1-2 datagrams and may adjust dynamically 
based on the perceived jitter. As datagrams arrive, they 
are placed in the jitter buffer, which holds them long 
enough to supply them to the codec at a constant rate. If 
a datagram arrives too early or too late, it may not fit in 
the jitter buffer and is discarded. Ideally the jitter buffer 
should be just large enough to handle the maximum 
delay variation, however, for every millisecond that you 
increase the jitter buffer you also add a millisecond of 
delay.  

The attacker has two options: (1) faking some of 
Alice’s packets by changing the SSRC field, which 
designates the source of RTP packets (to impersonate 
Alice) and inject artificial packets with higher sequence 
numbers that will cause the injected packets to be 
played in place of the real packets; or  (2) sending 
garbage packets meaning both the header and the 
payload are filled with random bytes corrupting Bob’s 
jitter buffer (most likely this will cause Bob’s VoIP 
phone to crash or cause exorbitant delay processing  
which disrupts established VoIP conversations). 

Solution 2: A VoIP implementation should have an 
intrusion detection system (IDS) or firewall on the 
phone itself that checks the media packet flow. Either 
the IDS or firewall can then be used to ensure: (a) 
packets with very large sequence numbers are 
discarded, (b) garbage packets are identified and 
discarded before the codecs try to mathematically 
decode them, and (c) large traffic volume for a single 
RTP flow signal a warning. 

Problem 3: An attacker can mount a DoS attack on 
the VoIP signaling. An attacker can prematurely tear 
down Alice’s and Bob’s direct SIP signaling connection 
by sending a fake SIP BYE or ICMP Port Unreachable 
message to either of the parties. This results in the 
attacked party stopping the media transmission 
immediately while the other party continuing the 
conversation oblivious that the connection has been 
degraded or terminated. 

Solution 3: In order to detect this attack, the VoIP 
infrastructure should create a rule that it detects orphan 
RTP flows. Specifically, if it is indeed B who wants to 
stop the connection, then A should not see the RTP flow  
from B after getting the BYE message. 

Consequences: This design patterns has the 
advantage of users having increased security for their 
VoIP calls but the disadvantage of increased delay. 
 

C.  VoIP Security Design Pattern Three 
Securing VoIP against Eavesdropping 

Example: RTP is not a complete protocol but a rather 
a framework where vendors are provided 
implementation freedom according to their specific 
application profiles. RTP facilitates network transport 
functions for real-time data, provides application level 
framing, and usually runs over an unreliable transport 
protocol such as UDP that does not guarantee the timely 
delivery of packets in order. RTP is usually 
implemented in conjunction with higher layer control 
that provides feedback information on transmission 
quality.  

Problem: Security facilities provided by RTP alone 
are inadequate. RTP provides a framework for 
implementing high-level protocols which in turn can 
implement their own security services that may 
eventually provide benefit to RTP itself (RFC 1889). 
RTP cannot rely on the underlying network just because 
it is transmitted over IP and considering IPSec will 
consequently provide the security services. Services 
provided by IPSec are not useful for protocols other 
than IP and also do not support multicast sessions. RTP 
is network independent and could use other protocols 
like ATM/AAL5 for transmission of real-time data for 
which IPSec is not relevant. We discuss a technique to 
provide actual RTP packet encryption which provides 



reasonable privacy from eavesdroppers and does not 
change the RTP properties of out-of-order packets, 
delay, and jitter requirements. 

Solution: The DES cryptographic algorithm is used 
in the DES-CBC mode. The DES-CBC mode has a 
random access property that guarantees lost packets 
only prevent decoding of themselves and the following 
packets of their specific blocks without affecting the 
remaining transmission. The overhead of DES is much 
lower than that of compression algorithms used by RTP. 
The slight disadvantage of this approach is that DES is 
typically implemented in hardware and difficult to 
implement in software. This makes the solution slightly 
harder to implement since most VoIP products are 
software based. Other than DES, the current AES 
standard encryption algorithm may also be used with 
Counter Mode and f-8 mode (normally used for wireless 
transmission). AES overcomes the flaws of individual 
bit manipulation introduced by the CBC mode since 
AES encryption/decryption of one packet does not 
depend upon preceding packets. It also provides 
increased security with a larger block size (128 bits) and 
larger encryption keys.  
 

IV. SUMMARY  
 

As VoIP market penetration increases there are 
growing security concerns. The 2005 NIST report is 
currently the most comprehensive source on VoIP 
security and in this role is a good summary for 
managers considering the potential use of VoIP, 
however, it does not provide practical details about 
specific solutions that can be emulated.   

This is where design patterns come in – design 
patterns are accepted solutions to well known problems 
cataloged by and for the actual developers who have 
been working with the internals of the technology. 
Design patterns reveal insights on how software 
solutions are actually implemented in real systems. We 
review the general guidance within the NIST report as a 
vehicle to contrast it with the specific guidance of 
security software design patterns. 

With this paper we contribute to the cataloging of 

VoIP security design patterns by presenting three 
patterns. We invite feedback on this work and 
contributions of other VoIP security design patterns 
using the forum in [16].   
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