

Multiple Design Patterns for Voice over IP (VoIP) Security

Zahid Anwar† William Yurcik‡ Ralph E. Johnson† Munawar Hafiz† Roy H. Campbell†

†Department of Computer Science
‡National Center for Supercomputing Applications (NCSA)

University of Illinois at Urbana-Champaign
{anwar,johnson,mhafiz,rhc}@cs.uiuc.edu byurcik@ncsa.uiuc.edu

Abstract– Design patterns capture software solutions to
specific problems that have evolved over time and reflect
many iterations of work. Documenting such patterns
promotes proven design and software reuse. There has
been a growing amount of work documenting design
patterns for security, however, little work specific to VoIP
security. In 2005 NIST released a report on
recommendations and best practices for securing VoIP,
however it lacks the structure, terminology, and ease-of-
understanding needed for both technical and non-technical
audiences that is an inherent feature of design patterns.

 In this paper we document three design patterns for
VoIP implementations related to specific security
problems: (1) secure traversal of firewalls and NATs; (2)
detecting and mitigating DDoS attacks; and (3) securing
against eavesdropping. With many VoIP vendors rushing
products to market with overlapping functionality and
requirements for interoperability, documenting design
patterns is poised to become an important part of secure
programming processes for VoIP.

Index Terms– security design patterns, VoIP security,
threat modeling, secure traversal of firewalls and NATs,
Internet telephony

I. INTRODUCTION

The continuous number of high-profile Internet
security breeches reported in the mass media show that
despite an emphasis on security processes that there is
still a gap between theory and practice. Not only is
there a need to develop better software engineering
processes but also theoretical security improvements
need to find their way into real systems.

Software design patterns are defined as
“descriptions of communicating objects and classes that
are customized to solve a general design problem in a
particular context” [5]. As software design patterns
have proven their value in the development of
production software1, they are a promising new
approach to help in both the theoretical development

1 Java APIs, OpenStep libraries, and the Microsoft Foundation Classes
all use catalogued design patterns.

and practical implementation of better security
processes [3,12,15,16]. First, many/most software
developers have only a limited knowledge of security
processes and patterns are a proven way to improve
their understanding. Second, patterns work against
“reinventing-the-wheel” to promote learning best
practices from the larger community to save time, effort,
and money with easily accessible and validated
examples. Third, code can be reused since the same
security patterns arise in many different contexts.
Fourth, AntiPatterns or common security failures are
valuable examples of what not to do [18].

A growing number of security design patterns have
already been documented including patterns for services
(firewalls, mailers) and common security functions
(authenticators, key management) [16]. In this paper we
focus on Voice over IP (VoIP) security where security
design patterns may prove exceedingly useful. Internet
telephony or VoIP has grown in importance and has
now passed the tipping point – in 2005 U.S. companies
bought more VoIP phones than ordered new POTS lines
[20]. However, with the powerful convergence of
software-based VoIP to enable new functionality to
store, copy, combine with other data, and distribute over
the Internet also comes security problems that need to
be solved in standard ways in order to ensure
interoperability. This is further complicated by the fact
that various vendors competing for market share
currently drive VoIP security.

Given the importance of VoIP security, we are only
aware of only two other efforts for VoIP security design
patterns, a chapter within [15] and an unpublished M.S.
thesis supervised by Eduardo Fernandez of Florida
Atlantic University.

The remainder of this paper is organized as follows:
Section II summarizes previous work by reviewing a
recent NIST report on VoIP security. Section III briefly
presents three design patterns for VoIP security. We end
with a summary and conclusions in Section IV.

 Figure 1. VoIP Infrastructure Vulnerabilities

II. REVIEW OF NIST VOIP REPORT

NIST released a report on VoIP security in January
2005 [10]. This report elaborates on various aspects of
securing VoIP and the impact of such measures on call
performance. The report argues that VoIP performance
and security are not seamlessly compatible; in certain
areas they are orthogonal. We briefly review this report
and group VoIP infrastructure threats into three
categories as depicted in Figure 1: (1) protocol, (2)
implementation, and (3) management.

A. Quality of Service (QoS) Issues
The description given in the NIST report about QoS

issues is primarily based on the work by Goode [6],
Barbieri [1], and Chuah [4]. A VoIP call is susceptible
to latency, jitter, and packet loss. ITU-T
recommendation G.114 [7] has established 150 ms as
the upper limit on one-way latency for domestic calls. If
Goode's latency budget is considered, very little time (<
29 ms) is left for encryption/decryption of voice traffic.
QoS-unaware network elements such as routers,
firewalls, and Network Address Translators (NAT) all
contribute to jitter (no uniform packet delays). Use of
IPsec both contributes to jitter and reduces the effective
bandwidth. VoIP is sensitive to packet loss with
tolerable loss rates of 1-3%; however, forward error
correction schemes can reduce loss rates.

B. Signaling and Media Protocol Security
SIP (Session Initiation Protocol) (RFC 3261) and

H.323 [8] are the two competing protocols for VoIP
signaling. H.323 is an ITU-T umbrella of protocols that
supports secure RTP (SRTP) (RFC 3711) for securing
media traffic, and Multimedia Internet Keying
(MIKEY) (RFC 3830) for key exchange. SIP supports
TLS and S/MIME for signaling message confidentiality
and SRTP for media confidentiality.

C. Firewalls and NATs
RTP is assigned a dynamic port number that

presents a problem for firewall port management. A
firewall has to be made aware of the ports on which the
media will flow. Thus a stateful and application-aware
firewall is necessary. However, if a client is behind a

NAT, call establishment signaling messages transmit the
IP address and RTP port number that is not globally
reachable. NAT traversal protocols like STUN (RFC
3489), TURN (RFC 2026), and ICE (14) are necessary
to establish a globally routable address for media traffic.
For protocols that send call setup messages via UDP,
the intermediate signaling entity must send to the same
address and port from which the request arrived.

C. Encryption and IPsec
IPsec is preferred for VoIP tunneling across the

Internet, however, it is not without substantial overhead.
When IPsec is used in tunnel mode, the VoIP payload to
packet size ratio for a payload of 40 bytes and
RTP/UDP headers drops to ~30%. The NIST solution to
avoid queuing bottlenecks at routers due to encryption is
to perform encryption/decryption solely at endpoints.
SRTP and MIKEY are specified for encrypting media
traffic and establishing session keys respectively.

D. Categorizing VoIP Threats
The threats faced by a VoIP are similar to other

applications including: unwanted communication
(spam), privacy violations (unlawful intercept),
impersonation (masquerading), theft-of-service, and
denial-of-service. Table 1 groups these threats into
protocol, implementation, and management categories.

 Table 1. Categorizing VoIP Threats

Protocol
Signaling,
Media Confidentiality,
Integrity

end-to-end protection as well as hop-by-
hop (Proxies might be malicious)

Configuration,
Confidentiality,
Integrity

most VoIP devices are managed remotely

Identity Assertion Users concerned about whether they are
talking to the real entity as opposed to a
'phished' entity

Reputation Management
Implementation
Buffer Overflow, Insecure Bootstrapping.
Management
Access Control protection against unauthorized access to

VoIP servers and gateways
Power Failures

D. Is the NIST Report Complete?
In four key areas we find the NIST report incomplete.

First, the NIST report cites results that the SHA1 hash
algorithm throughput is less than the throughput of
DES/3DES for a VoIP packet stream. This result is
counter-intuitive since encryption/decryption algorithms
are generally believed to require more processing than
hashing algorithms.

Second, the Mean Opinion Score (MOS) is a
standardized quantitative measure of human speech
quality at the destination end of a voice circuit. MOS
uses subjective tests that are averaged to calculate an
indicator of system performance. The NIST Report does
not use MOS which is a useful metric for balancing
security versus performance tradeoffs.

Third, greater payload compression means that the
codec employs temporal relationships between the voice
blocks. It is this temporal relationship that is sensitive to
packet loss. However, this is not clear from the NIST
report when it says "greater payload compression rates
resulted into higher sensitivity to packet loss" [10].

Fourth, the NIST report does not anticipate the use of
VoIP as a SPAM DoS tool. While Email spam relies on
SMTP servers for transmission, VoIP RTP packets have
no such constraint. Qovia [11], a company that sells
tools for VoIP monitoring and management, recently
applied for two patents on technology to both broadcast
and block messages using VoIP.

While VoIP has threats, in comparison traditional
phone service has dealt with many threats over many
years. For example, tapping a landline at a wirebox and
eavesdropping by tuning in a cordless phone frequency
is currently easier than spoofing VoIP packets. VoIP
companies such as Vonage and AT&T have taken only
preliminary precautions at this point (firewalls). The
VoIP Security Alliance (VOIPSA) [19] has been
organized to improve security awareness and form
consensus on “Best Practices”.
.

III. VOIP SECURITY DESIGN PATTERNS

While the NIST report missed some points, it does
provide a general summary of VoIP security problems.
However, the NIST report does not describe specific
solutions used to overcome the problems identified. In
this section we describe software design patterns that
have emerged as implemented solutions to specific
VoIP security problems. In the first pattern we describe
the ad hoc but effective techniques used by most VoIP
vendors to traverse firewalls and NATs.2 In the second
pattern we describe how to keep “Man-in-the-Middle”

2 Skype, the world's most popular VoIP service provider with 38

million software downloads representing about 5 percent of all Internet
users implements the techniques described in pattern one [17].

attacks from disrupting VoIP connections. In the third
pattern we describe how to protect VoIP against
eavesdropping.

Software design patterns typically have a presentation
format that includes: (1) UML diagrams of the structure
and dynamic interactions of the objects that constitute
the patterns, (2) examples of the patterns in use, (3)
pointers to related patterns, and (4) sample code
implementing the pattern. We adapt this format due to
space limitation to focus on the four essential elements
of a pattern: (1) pattern name, (2) problem, (3) solution,
and (4) consequences [5]. We begin each design pattern
with a name and example scenario with accompanying
assumptions. Given the example context, we present
problem(s) matched with corresponding solution(s), and
consequences – all of which distilled from the VoIP
community.

A. VoIP Security Design Pattern One
Secure Traversal of Firewalls or NATs for VoIP: allows
clients using private IP addresses hidden behind
firewalls/NATs to be able to make VoIP calls to other
clients without the need to modify intermediate firewalls
or NATs or making assumptions about device types.

Example: Alice works at a large organization
scheduling meetings between teams distributed at
offices around the world using the telephone. Her
manager decides that she should use a new VoIP phone
for cost savings. Alice is not concerned about voice
quality in her short conversations.

As shown in Figure 2, the organization uses firewalls
with strict policies. Alice’s new VoIP phone uses SIP
but it is giving her problems. She is trying to call Bob at
another office behind a firewall. Alice had been warned
that firewalls are a common problem with VoIP phones.
When the called party picks up the phone the two
people often cannot hear each other. In Alice’s case,
Bob’s phone does not even ring when she calls.

 Figure 2. VoIP Between Firewalled Networks

Alice tries to switch to phones that use other protocols
(e.g. H.323) but the same problem occurs. She contacts
her organizational support staff to request opening
certain firewall ports but is turned down. After hours of
debugging, Alice and the technical support staff of the
VoIP provider deduce that the NAT device her
organization uses is the most stringent type (i.e. a
symmetric NAT that changes its IP/port configuration
based on both caller and callee identities).

Problem: Setting up a VoIP call has two major parts.
First, a signaling protocol is used to set up a call and
play Dial and Ring tones. Subsequently if the called
party goes off-hook then this protocol negotiates
address/port and then the data protocol takes over to
exchange voice until the call is torn down.

Firewalls and Network Address Translators (NATs)
are located at the edge of most all enterprise networks.
Often software-based firewalls and NATs are bundled
in residential DSL packages as well, so this problem
affects both business users and residential users. The
problem starts with how to locate a client that is behind
a firewall? How to determine if they are even online?

Signaling between clients contains details of the
private IP addresses and ports that the clients want to
use for the media flows. When the clients attempt to use
these private addresses to send/receive media, the
connection fails because they are not routable. Some
solutions such as TURN and STUN have been proposed
to help solve this problem. However, they are
incomplete because they are designed to work with data
only (assuming signaling is working) and do not work
with every type of NAT.

The TURN protocol requires TURN capability in the
actual client and a trust relationship based on shared
credentials [13]. A VoIP phone or software package
may include a STUN client, which will send a request to
a STUN server. The server then reports back to the
STUN client what the public IP address of the NAT
router is and what port was opened by the NAT to allow
incoming traffic back in to the network. The response
allows the STUN client to determine what type of NAT
is in use, as different types of NATs handle incoming
UDP packets differently. This will work with a full
cone NAT (address binding remain constant for all
outgoing connections), but requires some special
treatment with restricted cone NATs that only allow
connections initiated by firewalled machines. STUN
will not work with symmetric NATs (which create new
bindings based on each source and destination pair).
Unfortunately, symmetric NATs are found in many
enterprise networks.

Solution: A Global Directory Index (GDI) maintains
a list of all online clients. Certain clients are selected
that are accessible from the public network to act as
relays. When a client comes online it registers with the

GDI which does not save the contact information
provided in the Register message but rather saves the
real address. Subsequently, the GDI and client exchange
keep-alive packets with the GDI below the NAT
binding expiration time threshold. When a permanent
link is open between a client and the GDI, a VoIP
signaling session can then be negotiated at any time.

When two clients wish to communicate, the caller
tries to contact the called party directly. However, if the
called party is protected by a NAT, then the called
party’s computer is asked by the GDI to connect in the
reverse direction back to the caller’s computer. If either
of these connections succeeds then the call is
established using the direct connection that provides the
lowest-latency connection possible.

If both parties to the call are behind restrictive
firewalls, then neither party will be able to reach the
other directly. The GDI then chooses a third party
(relay) who is reachable by both parties. In this case,
both the caller’s and the called party’s computers
establish a direct link to the relay that will forward data
packets between the two parties. When calls are relayed
by third parties, the entire contents of the call (including
any voice conversations, text messages, or file transfers)
are encrypted between the caller and the called party.

Structure: The signaling sequence diagram in Figure
3 shows the interaction between different entities in the
system. During startup, each VoIP client registers with
the GDI. The GDI records the client’s actual public IP
address and port. Subsequently it exchanges keep-alive
messages with the client to ensure that the bindings
remain open. If the callee happens to be behind a
restricted-cone NAT (where the private IP may only
participate in a connection that it initiates) then it asks
the callee to call back the caller. In the case where RTP
media cannot flow directly between parties the GDI
chooses a public relay that tunnels the media for them.
With the most global view, the GDI is in the best
position to select relays for shortest path routing, low
latency routing, and load balancing.

 Figure 3. VoIP Signaling Sequence Diagram

Implementation: There are two parts to maintaining
a VoIP connection - signaling and media. VoIP will
normally open separate ports for each part. If the client
is behind a restrictive firewall, the client will have to
maintain bindings for the two separately.

VoIP signaling protocols can be roughly divided into
two main categories, client-server and point-to-point.
SIP and H.323 are two popular examples of point-to-
point protocols. SIP which is relatively lightweight and
flexible For example, the HTTP text-based protocol
uses an “INVITE” message to request a session with a
successful response being “200 OK”. These simple
messages can be used to establish communication
between a SIP client and a GDI. In the event that the
caller cannot access the callee directly, the GDI can ask
the callee to send a “RE-INVITE” message to the caller.

For client-server based VoIP protocols, the
controlling entity is known as a “Call Agent” which
manages all the signaling between the media streaming
devices known as Gateways (e.g. MGCP and H.248). In
such a scenario the role of the GDI can be played by the
Call Agent resulting in minimal change to the protocol.

The Session Description Protocol (SDP) is used by all
VoIP signaling protocols to exchange parameters
particular to the session (RFC 2327). Parameters include
but are not limited to: IP address, port number, frame
rate, compression type, and encoding. The NAT
bindings should be exchanged via the SDP protocol.
The example in Figure 4 shows a SIP message
encapsulating a SDP descriptor (Lines 13 to 20). The
highlighted values indicate the IP address and port that
need to be changed in either the public address provided
by the NAT binding or the address of the relay.

 Figure 4. Session Description Protocol (SDP)

Once the signaling determines that the parties are
ready to talk, a new channel is opened for media
binding. Since the GDI can only be used to maintain the
NAT binding for the signaling this binding has to be

maintained in some other way.3 RTP is normally used to
transfer the media payload between the clients. The
receiving address and port number have to be
determined by the client itself using a signaling protocol
such as SIP, H.323, MGCP, H.248 etc. The frequency
of media packets is a typically much higher than that of
the signaling and the binding is maintained
automatically. This way there is no need to modify the
RTP protocol except to use the same port for incoming
and outgoing media. The only way the binding can be
broken is if there are long silent pauses in between
conversations and the media packets are suppressed to
preserve bandwidth. It is desired that silence
suppression not be used as a feature when using this
pattern, however, silence suppression is extremely
popular with VoIP vendors because conversations
typically consist of ~50% silence. Disabling silence
suppression will ensure the UDP bindings at the NAT
are maintained.

Known Uses: Skype uses peer-to-peer networking
with super nodes as relays to overcome the NAT
traversal problem [2]. eNat software runs on the client
device and allows the popular MSN Messenger to allow
voice chat behind firewalls [9]. It basically acts as a
proxy diverting all signaling and media through itself
and through special ports it asks the user to open in the
firewall. This will not work in an enterprise setting
where a user does not have control of the firewall.

Consequences: This pattern has these advantages:
1) End users do not need to be aware of NAT and

firewall configurations
2) Provides increased security over opening ports

or tunneling through firewalls
3) The overlay nature of this pattern distributes

relay load over multiple clients
4) Works for groups of users, however, the

conference size is limited by relay bandwidth
This design pattern has the following disadvantages:

1) Relays increase bandwidth consumption
2) The GDI is a single point of failure
3) Added complexity

B. VoIP Security Design Pattern Two
Detecting and Mitigating DDoS Attacks Targeting
VoIP: allows key components in a VoIP infrastructure
to detect and mitigate Distributed-Denial-of-Service
(DDoS) attacks meant to overwhelm either client and/or
server resources and disrupt VoIP operations.

Example: Alice tries to call Bob on her VoIP
telephone with an important message as depicted in
Figure 5. An attacker anticipates Alice’s call attempt

3 media never goes through the GDI but rather directly between the
parties and the relay

and sends a specially crafted messages to Alice’s ISP
server causing it to over allocate resources such that
Alice receives a “service not available” (busy tone)
message.

 Figure 5. VoIP Environment to Consider DoS Attacks

Alice switches to her backup line that uses the SIP
protocol that does not signal through a central server.
Her phone makes a direct connection to Bob but before
Alice can convey her message an attacker sends a
special ‘BYE’ message to Bob’s VoIP phone pretending
to be Alice which prematurely ends the connection.

Alice is persistent and dials Bob again. This time the
attacker intermittently sends garbage voice packets to
Bob’s phone in between those of Alice’s voice packets.
Bob’s phone is so busy trying to process the increased
packet flow that the jitter (delay variation) causes any
conversation to be incomprehensible.

In this pattern we assume that the vendor has
implemented the minimal set of recommended VoIP
security requirements [10]. Megaco recommends
security mechanisms in the underlying transport
mechanisms such as IPSec. Implementations of the
protocol using IPv4 are required to implement the
interim AH scheme.

MGCP (RFC 3435) and Megaco/H.248 (RFC 3261)
are control protocols designed to centrally manage
Media Gateways (MG) deployed across a VoIP
infrastructure. A MG executes commands sent by the
centralized Media Gateway Controller (MGC) and is
designed to convert data between PSTN to IP, PSTN to
ATM, ATM to IP, and also IP to IP. MGCP and
Megaco/H.248 can be used to set up, maintain, and
terminate calls between multiple endpoints, while
monitoring all of the events and connections associated
with those endpoints from the MGC. The MGC is a key
component in the entire infrastructure as it can control
multiple MGs each with its own many endpoints (VoIP
users). In addition it talks to other MGCs using SIP if a

call warrants a connection between an endpoint on an
MG controlled by one MGC and endpoint on an MG
controlled by a different MGC.

Occasionally some endpoints have a feature which
enables them to make a call directly to another endpoint
without having to go through an MG or MGC using
SIP. Usually this requires an address lookup from a SIP
Proxy server and the rest of the signaling and media is
handled by the endpoints themselves.

Problem 1: An attacker can disrupt Alice’s Media
Gateway. MGs are dumb clients in the MGC-MG
relationship, not holding call state and carrying out
instructions received from the MGC without validity
checks. Although an attacker cannot pretend to be the
MGC owing to the AH check required in the
authentication header of the Megaco protocol, they can
mount a replay attack on the MG when they detect that
Alice is about to make a call.

An attacker has a number of options available after
Alice is detected making a call. They can replay with
any one of the Megaco commands listed in Table 2
spoofed off the MGC outbound links earlier in the
communication. By replaying any of these messages to
Alice during her call, an attacker will force the MG to
teardown Alice’s conversation with Bob.

 Table 2. Megaco Commands Which Can Disrupt

ServiceChange Restart causes MG to hard reboot. Used in
registration initial set up.

Notify Event OnHook signifies called party has hung up
Subtract Termination deletes ephemeral termination created

for media exchange
Modify Media SendOnly changes media protocol to send but

not receive voice packets

Once an attacker knows which packet corresponds to
which message, another attack is selective dropping of
Alice’s important packets. For example, an attacker can
prevent Alice’s call from even getting set-up by
detecting her Notify event ‘Dial Digits’ and dropping it.
Table 3 lists three ways in which an attacker can
identify the specific messages from MGC-MG
communication.

 Table 3. Methods for Identifying Specific Messages

Timing ServiceChange Restart is the first
message sent by MGC to MG after
MG registration

Visualization associate messages with observed
physical events (OnHook command is
observed after Alice hangs up phone)

Network Traffic Analysis commands identified by traffic
pattern; (Subtract Ephemeral
Termination command sent when
RTP media traffic of constant–sized
packets stops)

Solution 1: Commands between the MGC and the
MG are grouped into Transactions, each of which is
identified by a TransactionID. Transactions consist of
one or more actions and are presented as

TransactionRequests. Corresponding responses to a
TransactionRequest are received in a single reply.
Ordering of Transactions is not guaranteed -
transactions may be executed in any order or
simultaneously. Transactions are identified by a
TransactionID, which is assigned by sender and is
unique within the scope of the sender. The MG should
explicitly check TransactionIDs have not been repeated.
If a repeated command is found with a TransactionID
then it should be silently discarded. TransactionID
sequences should start from a unique random value for
each session so that it is hard for an attacker to reuse
messages from old sessions.

The MG should use the Megaco message-
piggybacking feature to make it difficult for an attacker
to correlate Alice’s particular messages based on
visualization and network traffic analysis. Multiple
commands can be sent simultaneously by the MG to the
MGC randomly shuffling their order in the message
body. MGs can also be made less predictable by adding
random delays between the occurrence of a physical
event (hanging up) and its notification to the MGC.

Problem 2: An attacker may degrade VoIP QoS. An
attacker may exploit the property of VoIP media
communication that it is highly sensitive to delay and
jitter. Delays greater than 150 ms cause a conversation
to become uncomfortable. This level of delay is usually
the point at which both parties begin to speak at the
same time. Jitter manifests to the listener as pops/clicks,
words missing, and/or garbled speech. If jitter values
exceed 50ms it is usually considered poor voice quality,

To reduce the impact of jitter, VoIP phones usually
have a jitter buffer. The jitter buffer is usually designed
to hold 1-2 datagrams and may adjust dynamically
based on the perceived jitter. As datagrams arrive, they
are placed in the jitter buffer, which holds them long
enough to supply them to the codec at a constant rate. If
a datagram arrives too early or too late, it may not fit in
the jitter buffer and is discarded. Ideally the jitter buffer
should be just large enough to handle the maximum
delay variation, however, for every millisecond that you
increase the jitter buffer you also add a millisecond of
delay.

The attacker has two options: (1) faking some of
Alice’s packets by changing the SSRC field, which
designates the source of RTP packets (to impersonate
Alice) and inject artificial packets with higher sequence
numbers that will cause the injected packets to be
played in place of the real packets; or (2) sending
garbage packets meaning both the header and the
payload are filled with random bytes corrupting Bob’s
jitter buffer (most likely this will cause Bob’s VoIP
phone to crash or cause exorbitant delay processing
which disrupts established VoIP conversations).

Solution 2: A VoIP implementation should have an
intrusion detection system (IDS) or firewall on the
phone itself that checks the media packet flow. Either
the IDS or firewall can then be used to ensure: (a)
packets with very large sequence numbers are
discarded, (b) garbage packets are identified and
discarded before the codecs try to mathematically
decode them, and (c) large traffic volume for a single
RTP flow signal a warning.

Problem 3: An attacker can mount a DoS attack on
the VoIP signaling. An attacker can prematurely tear
down Alice’s and Bob’s direct SIP signaling connection
by sending a fake SIP BYE or ICMP Port Unreachable
message to either of the parties. This results in the
attacked party stopping the media transmission
immediately while the other party continuing the
conversation oblivious that the connection has been
degraded or terminated.

Solution 3: In order to detect this attack, the VoIP
infrastructure should create a rule that it detects orphan
RTP flows. Specifically, if it is indeed B who wants to
stop the connection, then A should not see the RTP flow
from B after getting the BYE message.

Consequences: This design patterns has the
advantage of users having increased security for their
VoIP calls but the disadvantage of increased delay.

C. VoIP Security Design Pattern Three
Securing VoIP against Eavesdropping

Example: RTP is not a complete protocol but a rather
a framework where vendors are provided
implementation freedom according to their specific
application profiles. RTP facilitates network transport
functions for real-time data, provides application level
framing, and usually runs over an unreliable transport
protocol such as UDP that does not guarantee the timely
delivery of packets in order. RTP is usually
implemented in conjunction with higher layer control
that provides feedback information on transmission
quality.

Problem: Security facilities provided by RTP alone
are inadequate. RTP provides a framework for
implementing high-level protocols which in turn can
implement their own security services that may
eventually provide benefit to RTP itself (RFC 1889).
RTP cannot rely on the underlying network just because
it is transmitted over IP and considering IPSec will
consequently provide the security services. Services
provided by IPSec are not useful for protocols other
than IP and also do not support multicast sessions. RTP
is network independent and could use other protocols
like ATM/AAL5 for transmission of real-time data for
which IPSec is not relevant. We discuss a technique to
provide actual RTP packet encryption which provides

reasonable privacy from eavesdroppers and does not
change the RTP properties of out-of-order packets,
delay, and jitter requirements.

Solution: The DES cryptographic algorithm is used
in the DES-CBC mode. The DES-CBC mode has a
random access property that guarantees lost packets
only prevent decoding of themselves and the following
packets of their specific blocks without affecting the
remaining transmission. The overhead of DES is much
lower than that of compression algorithms used by RTP.
The slight disadvantage of this approach is that DES is
typically implemented in hardware and difficult to
implement in software. This makes the solution slightly
harder to implement since most VoIP products are
software based. Other than DES, the current AES
standard encryption algorithm may also be used with
Counter Mode and f-8 mode (normally used for wireless
transmission). AES overcomes the flaws of individual
bit manipulation introduced by the CBC mode since
AES encryption/decryption of one packet does not
depend upon preceding packets. It also provides
increased security with a larger block size (128 bits) and
larger encryption keys.

IV. SUMMARY

As VoIP market penetration increases there are
growing security concerns. The 2005 NIST report is
currently the most comprehensive source on VoIP
security and in this role is a good summary for
managers considering the potential use of VoIP,
however, it does not provide practical details about
specific solutions that can be emulated.

This is where design patterns come in – design
patterns are accepted solutions to well known problems
cataloged by and for the actual developers who have
been working with the internals of the technology.
Design patterns reveal insights on how software
solutions are actually implemented in real systems. We
review the general guidance within the NIST report as a
vehicle to contrast it with the specific guidance of
security software design patterns.

With this paper we contribute to the cataloging of

VoIP security design patterns by presenting three
patterns. We invite feedback on this work and
contributions of other VoIP security design patterns
using the forum in [16].

REFERENCES
[1] R. Barbieri, D. Bruschi, and E Rosti, “Voice over IPsec:

Analysis and Solutions”. 18th Annual Computer Security
Applications Conference (ACSAC), 2002.

[2] S. A. Baset and H. Schulzrinne, “An Analysis of the Skype Peer-
to-Peer Internet Telephony Protocol,” IEEE Infocom, 2006.

[3] B. Blakley, C. Heath, and members of The Open Group Security
Forum, “Technical Guide: Security Design Patterns,” The Open
Group, April 2004.

[4] C-N. Chuah, “Providing End-to-End QoS for IP based Latency
sensitive Applications.” Technical Report, Dept. of ECE,
University of California at Berkeley, 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[6] B. Goode, “Voice Over Internet Protocol (VoIP)”. Proceedings
of the IEEE, Vol. 90 No. 9, Sept. 2002.

[7] ITU-T, “Recommendation G.114 - One-Way Transmission
Time,” Feb 2003.

[8] ITU-T, “H.323 - Packet-Based Multimedia Communications
Systems”, Feb. 1998.

[9] JDSoft, “eNAT for MSN Messenger,”
<http://www.easyfp.com/>

[10] D. R. Kuhn, T.J. Walsh, and S. Fries, Security Considerations for
Voice Over IP Systems, U.S. National Institute of Standards and
Technology (NIST) Special Publication 800-58, January 2005.

[11] Qovia, Inc. <http://www.qovia.com/>
[12] L. Rising (editor), Design Patterns in Communications Software,

Cambridge University Press, 2001.
[13] J. Rosenberg., "Traversal Using Relay NAT (TURN)", Internet-

Draft draft-rosenberg-midcom-turn-07, Feb. 2005.
[14] J. Rosenberg, "Interactive Connectivity Establishment (ICE),

Internet-Draft draft-ietf-mmusic-ice-04, Feb 2005.
[15] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.

Buschmann, and P. Sommerlad, Security Patterns: Integrating
Security and Systems Engineering, Wiley, 2006.

[16] Security Patterns Homepage <http://www.securitypatterns.org/>
[17] Skype, “Skype-The Whole World can Talk for Free,”

<http://www.skype.com>
[18] B. Smaalders, “Performance Anti-Patterns,” ACM Queue,

February 2006.
[19] Voice over IP Security Alliance. <http://www.voipsa.org/>
[20] K. Werbach, “Using VoIP to Compete,” Harvard Business

Review, September 2005.

